


I. INTRODUCTION
" The Jaynes-Cummings model (JCM) [1} describing the interaction of a single two-
level atom with a single-mode quantized radiation field is one of the simplest nontrivial
system in quantum optics. In spite of its. mathematical simplicity, the model gives
rise to an interesting and surprisingly rich dynamical behavior (for a review see 2D)-
Much attention has been focused on the collapses and revivals of the Rabi oscillations
which provide evidence for the quantum nature of the radiation field [3] Successful
realization of the JCM by using highly excited Rydberg atoms enclosed in high-Q
superconducting cavities has been reported [4] and the collapse and revival phenomenon
has been eiperimenta.lly tested.
Recently, Gea-Banacloche has studied the evolution of the atomic and field states
in the JCM [5] He showed that an arbitrary initial pure atomic state evolves into a
unique pure state in the middle of the collapse region, provided the ﬁeld‘is initially
in a coherent state with large intensily. Moreover, at the half-revival time, the cavity
field repres;ents a coherent superposition of the two macroscopically distinct states with
opposite phases. The fact that the atom and field in the JCM most closely return to
pure states during the collapse region can be traced out from the behavior of the two
quantities: the trace of the square of the density operator (5] and the entropy [6]. Using
the entropy concepts, Orszag et al. have pointed out thaf the pureratomi(‘: state can be
generated even from the initially mixed ones [7]. |
The modification of the JCM in which the atom makes twofphot-on transitions
has also attracted considerable inlterest due to recent development of the two—photon
micromasers [8]. Alsing and Zubairy [9], Puri and Bullough {10] have shown that
the revivals of the Rabi oscillations in this mode] are bc;th compact and regular, in
contragt with the one-photon case. The effects of the field statistics [11] and cavity
damping [12] have been explored. In [13], Sherman and Kurizki have proposed z scheme
for preparation and subsequent detection of macroscopic quantum superposition r-sl,a‘tef.

based on the two-photon JCM. Phoenix and Knight have calculated the entropy in this
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model] and pointed out the periodic recovering of the initial atom-field state occurring
under a proper choice of the detuning parameter [14].

In the present paper, we investigate the state evolution of the atom and the field
in the two—photon JCM using the effective Hamiltonian approach. We consider both
cases when the dynamic Stark shifts are not included and when they are, and compare
the obtained results. Various initial field states, namely, the coherent, squeezed vacuum
and chaotic ones are treated. We show that when the intensity-dependent energy shifts
of the two levels are equal; the atom is prepared initially in a pure state and the field in
a highly excited coherent state, the atom and the field most closely return to pure states
twice before the revival times and right at the revival times. The atomic and field states
at these times are found. The effects of the cavity damping are discussed within the
dressed-state approximation. For initial squeezed vacuum and chactic states, numerical
calculations are performed, revealing novel features to be absent in the standard JCM.
In the appendix, the atomic and field entropies are calculated with due account for the

dynamic Stark shifts.

II. EVOLUTION OF THE FIELD AND ATOMIC STATES
The two-photon JCM under consideration is obtained when a cascade of the atomic
transitions |e} — [i) — [¢) is resonant with twice the field frequency, w,, = 2w whereas
the intermediate transition frequencies w.; = w 4 A and wip = w — A are strongly
detuned from w. After adiabatically eliminating the intermediate slate, one arrives at

the effective interaction picture Hamiltonian [8.10], in the rotating wave approximation,
H = hy () ol + altig)el) + sralalo)igl + 2 (et 1) leiel, 1)

where the Stark shift parameters 3, and s of Lhe two levels and the effective two-
photon coupling g are defined in terms of the coupling constants g, (for lg} — |1}, @

{for &) — [e)), and A as follows

f=2 m=2 g=99 (2)

Notice that in Eq. (1) the spontancous contributicn to the energy-level shifts has |
been included [8,10]. Another form of the effective two—photon Hamiltonian, where
ﬂ;aTa|e)(e| stands for 3, (afa + 1) le){e], is also of frequent use. In the high—field limit
we are interested in, the two forms obviously lead to identical results.

As has been pointed out by Toor and Z‘ubairy [15], the effective Hamiltonian (1) is

valid for strong fields and for times and detunings such that

_ g 2
P w<t, ®
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where ﬁ,‘ is the mean number of photons and r = ¢, /¢2. The conditions fmd limitations
for the validity of the effective Hamiltonian apbro;ch have also been discussed in detail
in [16] and [17]. In the case of r = L, it is known that the Stark shifts give rise to an
additional overall phase factor which can only play a role in the off-diagonal elements
of the density matrix. Keeping this point in mind, we put aside for a'while the last two

terms in Eq. (1) and work with the effective Hamiltonian
i
1 = g (ebol + alg)(el). (@

The case with the complete Hamiltonian (1} will be analyzed in the next section.

Using the Hamiltonian (4) to solve the corresponding equations of motion with the

initial atomic condition

|.:(0)) = ale) + Blg),
and initial field condition

[B5(0)) = 3 Caln),

n=0.

one can easily find the state vector of the system at time ¢

[@{t)} = f:{[a(}'n cos(gv‘- n 4+ 21) — ifCnyz sin(gv/n + 2t)]|e)
+[~iaCuysin(gv/at) + BCu cos(gv/at)llg) I}, (5)

where Cp, = 0 for n < 0. The exact solution {3) represents a strongly entangled atom-

field state. Following [5], we introduce the semiclassical Hamiltonian corresponding to

Eq. (4)



H = hg (V|e}{g] + v"*lg){el) (6)

ohtained by replacing the annihilation operator a by a complex number v = |v] exp(i¢).
The eigenstates of (6) are

.

ko) = %_[|e>iexp(ﬁzw)|g)}. )

If the atom enters the cavity in eitiler of the states (7) and the field is treated classically,
the physical observables do not evolve. In a fully quantized theory, ihough the -quantum
nature of the électromagnetic field implies that the system would evolve dynamically,
one can expect that the states (7) still exhibit features distinguishable from the olhers.

Indeed, lel the field be initially in the coherent state

[94(0)) = exp () f \/i expling)ln) (®)

which is the most close quanlum counterpart of the siable monochromatic excitation
in the semiclassical theory. For # > 1, by employing the solution {5) and the relation
Cp-z =~ C,exp{(—2p) holding for n in the neighborhood of the mean #, one finds

approximately

1

[$d)lv)| _ — Zzlexp(=i2gt)le) + exp(—2ie)lg)]

X exp (—g) ij: \/gexp(imp) exp [—ig n(n - 1)11] [n}, (9a)
lbsc)le)

X exp (—g) i @exp(imp)exp [ig ni{n — l)t} |2}, (9b)
n=0 :

Equations (9) show that starting from the imiial conditions (7), the state of the atom-

e %[exp(i?gi)lﬂ) — exp{—2i)lg)]

field system can be roughly decoupled into atomic and [ield parts, each ol them evolves,
rematning in a pure state. Even more interesting is that the alomic slales appearing in

equations (9a) and (9b) exactly coincide at times
T
t :(4k+1)TR, (10a)

4

and

o= (4k+3)%, (10b)

where k is an integer and 7 is the period of revivals of the Rabi oscillations in the

two-photon JCM: T = (x/g) [9, 10], ar:d are equal to

5110~ exp(~2ip)la), (11a)
and

—5H1e) + exp(~2ip)la], ()
respectively.

Since the states (7) are orthonormal and can serve as a basis, it follows that any
pure initial atomic state will converge inlo the states {11) al Limes {10). In other
words, we observe the so-called crossings of the atomic “trajectories” in the Hilbert
.spa,ce of the atomic states [5]. In contrast with the one-photon transition case, where
the crossings are reached at preciscly hall the time of the peak revivals, in the system
af hand they take place twice in each time interval between a collapse and a subsequent
revival, at one and three quarlers of the revival Lime. If the initial atomic state is a

linear superposition of (3.}, say, the cxcited slate

e} = \/i,; (1Wte) + 1650)) | (12)

then the cavity field at times (10} is a coherent superposition of the macroscopically

distinct states

[®4(1)) = exp (—gj i \/?gexp(ing)cxp [$ig n{n — l}t] [n) (13)

{a “Schrodinger cat”). The field states given in equation (13) are different from their
one-photon counterparls by Lhe plhase faclors ;j\/m which are nothing else but
the [requencies of the two-photon Rabi nutalions between |0} and |g). Kecall that
in the one-photon JCM, the Rabi [requencies are of Llie Torm A% with A being the
one—photon coupling constant. By expanding gm in powers of n~!
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g n(n—l):gn(l—% 1+...), )

n 8n?
and retaining only terms of the order n we obtain, instead of |$.(?)), two coherent

states

A\ o [ar ) '
exp (—2) 2 4/ T explinte ¥ gtlin) (15)
n=0 '
which exactly coincide with each other at every time of revivals of the Rabi oscillations

ty=kTp, (k=1,2,...). (16)

"They are identical to the initial state for even k and undergo a global phase change of
# from the initial state for odd & whereas the atomic state is the same as that at 1 = 0
for all k.

As a result, there exist three series of the recreations ol the field and atomic state
vectors in the two-photon JCM, provided that the cavity field is initially in a coherent
state with large enough intensity [Under “series” we mean just the first recreations for
which the condition (3) is fulfilled]. This is clearly visible in Fig. 1(a), where we have
plotted the quantity Tr(pZ,) as a function of the dimensionless time gt for the atom
heing initially in the upper state and the field in a coherent state with & = 30, It is not
difficult to check that if both the atormic and field ‘subsystems are prepared at £ = 0 in
pure states Tr(p}) = Te(p?,).

The results (9)-{12) can be generalized to the field states having a sufficiently well
defined phase, for example, the squeezed states {18] with a dominant contribution from
the coherent excitation, in the way similar to that employed by Gea-Banacloche for
the one—photon transition case [19]. Unfortunately, this asymptotic operator solution

approach does not apply for such field states as the squeezed vacuum state i18]

n (=1)" expling) /(2n)! "
I¢;(0))=§ \/5511)17 ?) 2{nn! (tanh r)"|2n) (17)

(where r is the squeezing parameter and n = sink’r), which has 2 double—peaked phase

distributien [20], or the chaotic state

o0 w

PO =3 EEm R I (18)
whose phase is randomly distributed. For these, we have evaluated the quantity Tr(pZ,)
using a computer. The results are presented in Figs. 1{b) and 1{c) for the imitial
conditions (17} and (18), respectively; for # = 50 and the atom being initially inverted.
Fig. 1(b) shows that when the ca,vity"initially contains a squeezed vacuum state, besides
the recreations of the state vectors occurring at i1, {; and s, there appears one more
series of the recreations at times k(Tr/2) (£ =1,2,...). As{or the Jlnitial chaotic state
[Fig. 1{c)], we still observe one series of the recreations at times {3 = kTg. This is a
quite nontrivial resuli: Despite the fact that in our system the atom, which is a two—
state system, is coupled to the electromagnetic field, which is a system with an infinite
number of degrees of freedom and initially prepared in a completely mixed state, the
initial atomic purity is not absorbed forever by the field but periodically returns to the
atom. We have also calculated Tr(p3} (not shown in the figure) which in this case is

not equal to Tr(pZ,) and saw that it undergoes oscillations near zero, with amplitudes

insignificant as compared with those of Tr(p2,). The recoverings of the state vectors

" under the initial squeezed vacuum and chaotic states are entirely due to the two—photon

character of the atomic transitions and do not appear in the one—photon JCM.

Let us proceed to consider another important aspect of the problem, namely, the
effect of the photon leakage from the cavity on the state evolution in the two-photon
JCM. Tt is natural to expect that the purity of the atomic and field states should be
very sensitive to the factors of this kind. With the cavity damping taken into account,
if the thermal quanta are ignored, the density matrix desc;ibing our system is given by
the master equation [12]

dp _ 1 i t o gt
E——_E[H’p] —n(a ap - 2apa' + pa a), (19)
where the Hamiltonian H is given in Eq. {4) and 2« is the rate of leakage of photons
from the cavity. In the case of finite but very high @, the master equation (19) can be

solved within the dressed-atom approximation [12]. For the solution of (19), we refer
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the readers to the work [12] by Puri and Agarwal.

We plot in Fig. 2 the quantity Tr(pi,) for various values of the damping rate,
assuming as before an initially excited atom and an initially coherent field with # = 50.
It can be seen that the degree to wi’aich the atom for the first time approaches a pure
state is about 84% for x/g = 10~3 and 96% for x/g = 10~%. In the two-photon maser
developed by Brune et al. I8], where the maser action between the 405, state and
the 3952 state of ®*Rb is mediated by the opposite—parity intermediate state 39F
with g ~ 4000 sec~! and w = 68.415 GHz, these damping rates j«/g ~ w/(2¢Q}] would

correspond to @ = 10'° and 10", respectively, i.c., of two and three orders higher than

that really used [8]. It should also be noted that the other factors, such as the presence
of the thermal quanta, may worsen further the anew acquired purity of the atom and

the field.

ITf. EFFECTS OF THE DYNAMIC STARK SHIFTS
In the previous section we have restricted our discussion to the simplified effective
Hamiltonian {4}, which is legitimate for g; ~ g;. To investigate the effects of different ac
Stark shifts on the state evolution, we use below the complete form (1) of the effective
two—photoﬁ Hamiltonian. The Hamiltonian (1) can be easily diagonalized with the

results [8, 10]
HIYE) = hAZ190),

Mo=8i{n+2)+ Bn+ 1) AL

. sin @, cos f,
o} = ) |, €} + Y fn+2,g}, (20)
cos 0, —sind,
Baln + 1)]”2
tanf, = [=—————— .
" [ﬁl(mz)

Hence, we have
exp (jgi) In,e) = (exp{—i[ﬂl(n +2)+ Ba(n + I)Jt} sin® 0, + cos? On)|n, e}
,-I—(exp{—i[ﬁl(n + 2} + Ba(n + 1))t} - 1) sin 0y cos 0| + 2, g}, (21a)

8

Ht) |+ Q,g)‘ = (exp{—i[ﬂl(n + 2V + Baln + 1))t} - 1) sinf, cosf,|n,e)

(—z
€Xp

+(exp{—i[ﬂ1(n +2) 4 Ba{n + D]t} cos® 8, + sin® 9,,) In+ 2,9} .. (21b)

By replacing the field annihilation operator a by the c-number v = fu| expli) we get the
semiclassical version of (1). As before, the eigenstates of this semiclassical Hamiltonian

play a crucial role in the system state evolution under large initial fields. They read

hb:l: ) _ i"‘ﬁc :Fpglh’l2
e = REAE T AP

where M, are the corresponding eigenvalues

glv|? exp(—2ig) o) (22)

HA c:Fﬂlh’ 3

hAge =2 [Bulel® + Bal ol + 1) + al,

Q= /IBilv] — Aaflof? + I + g7 (23)

Supﬁose that the atom enters the cavity in one of the states (22), and the field

" as before is initially in the coherent state (8) with (f 3 1}. Then, with the aid of

Eqs. (21), after some algebra one approximately gels

Mo = bilel? _; glv[® exp(—2ip) }
I"b;C)‘v)L:a — {Wéxp[ 1208 + F2)t)le) + N A ﬁllvlz)‘g)

X exp (—g) Z \/;%_f;exp(ingo) exp{—i[Bin + Baln — 1)]t}n}, (24a)

[95clo)] _, — Wscdin). - (oab)

In deriving Eqs. (24) we have used the asymptotic relations (A%, —B1|w)?) ~ Bol v+ 1)
and (—Azo+ A1 [v]?) ~ Bilv)* which Liold true in the classical limit {lv]* 3 1). As before,
Eqs. (24) are of the product form. But now, only when the system starts with the
semiclassical eigenstate |1}, the atom and the ficld afterwards evolve dynamically.
The atomic states appearing in the right-hand sides of {24a) and {24b)} do nol become
identica.l in the course of time, except lor the case of v = 1. In his case, one can casily
verify that the atomic state originated [rom jihd, ) evolves into thé stale [tg-} al times

t, and £y, with {5} being roughly equal Lo
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| [¥52) = Z5lle — exp(~2iv)la), (25)

i.c., the same as in equation (7). Taking into account the sharp location of the photon

* number distribution around & 3 1, we replace [Bin + fa(n ~ 1)] by (8 + B2)m, that
is, we transform the field state in (2;13.) into a coherent state with the timeﬁdepeﬂdent
phase [ — {8, + B,)¢]. This state coincides, independently of the concrete value of r,

with the initial state at times ‘

ta=2kw[(r+%)g}_l, (k=1,2,. ). (26)

Equation (26} is nothing else but the times of revivals of the Rabi oscillations in the
two-photon JCM [10]. It reduces to Eq. (16) when setting+ = 1.

Thus, for r = 1, if the atomn is initially prepared in a state composed of W’;c)

(e.g. |e} or |g)), we observe three series of recreations of the state vectors at times

(10a}, (10b) and (16}, stmilarly to the case when the system is driven by the simplified

effective Hamiltonian (4). It is clearly seen {rom a comparison of Fig. 3(a), where we
have used the exact solution (21) to plot Tr(p2,) for the atom initially in the excited
state and the field in the coherent state, with Fig. 1{a). However, the two Hamiltonians
(4) and (1} predict different state evolutions: The attractor state (25) is not equal to
the states (11). Thus, our results are complementary to the conclusions of Toor and
Zubairy staiing that the effective Hamiltonian (4) is adequate only for describing the
quantities in which diagonal elements of the density malrix are involved bul 1s nol valid
for the description of such quantities as squeezing.

At t; and ty, when the attractor state {25) is reached, the cavity field is a super-
position of the two macroscopically distinct states with the relative phase of m/2. If
one uses the state reduction scheme proposed by Sherman and Kurizki [13], ie., if
one projects the atom—field system onto one of the atomic energy states, for example,
the upper state, one will have a field macroscopic quanium superposition state with
arbitrary relative phase. 7

In Figs. 3(b} and 3(c), we have depicted Tr(p2,) for r = 0.5 and + = 0.3, respectively.

As is visible from the figures, the effects of the dynamic Stark shifts are mere proncunced

10

when r is dev;iated from unity. On the one hand, the minimal values of Tr(p?,) raise
indicating that the atemic (and field) state becomes less mixed. On the other hand,
the convergences of the atomic state 'into the unique state is destroyed. These effects
resemble those occurring in the standard JCM when the atom-field detuning takes
nonzero values [19, 21], which is understandable since the ac Stark shifts can be treated
as the intensity—dependent detunings. In contrast with the one—photon JCM, in the
two-photon model the atom-field system always returns to its original state at the
revival times, regardless of the chosen value of r.

We have alse depicted Tr{p2,) for the field being initia‘lly in the squeezed vacuum
state (Fig. 4) and chaotic state (Fig. 5), for various values of ¥. By comparing Fig. 4(a)
with Fig. 1(b), and Fig. 5(a) with Fig. 1(c) we see that when r = 1, the two Hamiltonians
(1) and (4) lead to an identical behavior of Tr(p2,), as is expected. For r # 1, when
the cavity field initially contains a squeezed vacuum state, only the recreation-of-state-
vector series at the revival and half-revival times survive; while when the cavity initially
contains a;'ci:la,otic state, the recreations of the atomic staie vector are no more observed.

In the above discussion, we have used the quantity Tr(p2,) to determine the purity
of the atomic state. Another way of looking at this problem is via the entropy [6]. The
atomic and field entropies in the two-photon JCM have been calculated and compared
with those in the Raman-coupled model [22] by Phoenix and Knight [14]. However,
the authors of [14] have ignored the Stark shifts. We present thel solution for the case

in which the dynamic Stark shifts are taken care of in the appendix.

IV. CONCLUSIONS
We have considered the state evolution in the two-photon JCM with large fields. We

have found that for an initially coherent state field and equal Stark shifts of the levels,

at 1/4 and 3/4 of the revival time the atom is converged into a unique pure state, no

matter how the initial atomic state is chosen, while the cavity field represents coherent
superpositions of the two distinguishable components shifted from each other by = /2.

Right at the revival times, the initial atomic and field states recover. The explicit
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forms have been obtained for the atomic attractor states and the field “Schrodinger
cat” states. To make the model more realistic, we have included the leakage of photons
from the cavity. The sensitivity of the state purity to the cavity loss has been graphically
illustrated for various damping rates. We have also investigated the field being initially
in the squeezed vacuum and chaotic states. For both these Initial conditions, in conirast
with the one-photon transition situation, one still observes the recreations of the state
vectors. The mode!, in which the atom makes two—photon t.ra.ﬁsitions, is not simply a

generalization of the one-photon JCM. It provides us with a much richer dynamics.

APPENDIX
In this appendix we derive expressions for the atomic and field entropies in the
- two—photon JCM in the presence of Stark shifts. In the atornic basis and interaction

picture the time evolution operator can be written as
H\ () | Balalat1) ga?
exp (‘ ):E(?) ( ) _ (A1)

h =0 n! gr.ﬂL2 ,Blana

By using the relation g = /# 7;, one fAnds the following identity, after some

straightforward algebra,

ntl
Balala+1) ga? Bolata + )M™ ga'N™ A2
gaJrz ﬂlata gaTzM" ,'B]GTCLNH !
where
M=pala+2) + falala +1), (A3)
N=pata+ Byale—1), , (A1)
and eventually obtain
(1Ht) falaat1) “:;H exp(iMit) + Mfatat?) ’IL"” %[cxp(iN!) - 1]
eXp| —<— = . '
’“"Tt[exp(th) —1] %exp(iNﬂ) + Qz—[‘ﬁj\f—fll
(A3)

Assume that the atom is inijtially in Lhe excited state and the field in the pure state
p7{0) = [¥;(0)){zp¢(0)]. Then, the density operator of the atom-field system at time ¢

is given by

Cos0)Ct Cpy0)St

plt) = :
SpAmCt Spy(0)st
_ 19 et} 56)
Is}{el {s}{s]
where the notation
F) ﬂ.Tﬂ T
C='B——( M+ 1}exp(—zM£)+—ﬁ](a{:'+2), (A7)
f2 ’
S = [exp(~iNt) — 1] % | (A8)
e} =Clp;(0)), s} = Sly,(0)) ' . (a9)

' has been introduced. Clearly, the field density matrix ps(t) = Tr.[p(1)] is equal to

ps(t) = le)lel + |s) (s - {A10)

According to Phoenix and Knight [6], if the density matrix is of the form (A10), its

eigenvalues are
7 = {cle) £ |(cls) exp(£0) (AT1)

where

Al2
@ (A12)

The field entropy is found {from Eq. (Al}) to be
Sy =—(myInmy +7_Ilnm_). (AL3)

The atomic entropy can be determined in a simpler way [6, 7, 23]. By tracing the

equation {A6) over the field variables one gels for the reduced atomic density matrix
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FIG. 1. The time evolution of Tr{p?,) for the atom initially in the excited state and the
field in the {a) coherent state, (b} squeezed vacuum state, and (c) chaotic state. The mean

photon number 7 = 50.
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AH A]'l
parlt) = ; _ _ (Al4)
Azy Ay

where A; = Tre[p;;(t)], and py;(t) are the matrix elements of p{f). The eigenvalues

of {Al4) read

1 .
oy = 5 [1 1 \/(/\11 - )122)2 + 4|A12|2] N (A15)

so that the atomic entropy is given by

S;=—(arlnay ¥a_Ilna_). (A16)

When both the atom and field are initially in the pure states, it is not difficult to prove
that Eq. (A15) is identical to Eq. (A11), i.e., the atomic and field entropies are equal.
This fact can also be derived from the Araki-Lieb triangle inequality for the entropies

of the two interacting quantum systems [24).

1.00

FIG.2. Tr{p2,) as a function of time for various values of the cavity relaxation parameter:
(a) k/g = 0.0001 and (b) /g = 0.001. The atom is initially prepared in the excited state and

the field in the coherent state with 7 = 50.
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FIG. 4. The same as in Fig. 3 with (a) r = ], (b} r = 0.5, but now the field is initially
FIG.3. Tr(pZ,) as afunction of time in the presence of Stark shifts: (a)r = L,{b)7 = 0.5, in the squeezed vacuum state.

and (c) r = 0.3. The atom is initially in its upper state and the field in the colerent state

with 7 = 50.
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