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The success in research of the photon number statistics of the optical 
fields supplied the interest to the photon phase operator <P. This variable 
<P was proposed to have connection to the polar decomposition [1] 

(1) 

for a, a+ Bose-oscillator operators. There proved some mathematical 
difficulties in the cop.struction (1 ), which were overcame in different ways 
in papers [2, 3, 4, 5]. The correct form of the formulae (1) was found to 
be [3] the following · 

a+= vfiv+, a= VVN; <P = 1r + i[ln(l - v+) - lri(l - V)]. 

The matrix elements of <P in the basis Nin >= nln > looks like [3, 6] 

n=m, 
(2) 

n =/ m 

The finite dimensional operator <Pr is defined in the Bose-oscillator sub
space produced by the projection operator Pr: 

r-1 

Pr= L Im>< ml, 
m-0 

i~r 1F[ ar = e V Hr, 
(3) 

(k) _ 21rk 
c.pr - -r-, 

The r -+ oo limit in < rnl<Prln > is taken with the fixed numbers m, n 

via the Chezaro procedure [7] 

. 1 r-i 21r k i 
< ml<Prln >= hm - L fp(-) = --, (4) 

p-oo,r-oo r k=O r m - n 

f ( ) ~ (l. lvl) -ivx 1 {
2

rr ivxf( )d 
P x = ~ - - Cve , Cv = 27r Jo. e X X • . 

v=-p p 0 

The canonical conjugation between <P, N operators is fulfilled on the func
tions, equal to zero at c.p = 0 · and r.p = 21r. 
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As far as the operator <I> is a hermitian one, ~he eigen function of it 
may be found 

<I>jcp >= cpjcp >, 0 ~ cp ~ 271". (5) 

Their scalar product with the eigen functio_n of the operator N within 
the semiclassical approximation [3, 6] has the first term as follows 

1 . . 
< nlcp >~ r;,:-emcp, n :::}>·1 (6) 

y27l"' 

The formulae {2,3) were introduced in [5] also and a certain "contin
uum limit" r -+ oo for them was successfully used [5, 8] in some problems 
of coherent optics. 

We ar~ going to make here an additional calculation, that gives a 
new illustration of the application of the formulae (5,6). In order to 
step forward in this question we consider the correction term for the 
approximated formula (6) and try to appreciate the contribution of this 
term to the dispersion of the phase in various states of optical field. 

Let us start with the formula of matrix element [3, 6, 10] with the 
unit decomposition over the complete set jcp > 

. 2,r • 

< mlW(<I>)ln >= J W(cp) ~ mjcp >< cpln > dcp 
0 

for the arbitrary function W of the phase operator <I> and introduced the 
auxiliary operator G 

< mlW{<I>)jn > = -. W(z)Gmn(z)dz, I ·1 
2z7l" 

lzl=l 
Gmn(z) = < nilGln >, (z - <I>)G = l. (7) 

t 

Operator G is the resolvent for the phase operator <I> and· its matrix 
elements are determined by the equation 

00 

zGmn - L <I>mkGkn(z) = 8mn, 
k=O 

2,r 

<I>mn = 
2
~ / dcp cpeicp(m-n). (8) 

0 

The formula-of the· integral representation of <I>m~ in (8) corresponds the 
determination (2) of the operator <I> .1 Our purpose is to calculate G 

1 It was pointed out in (6], that the other ( except p = 1) powers of <I>P, p = 2, 3 ... 
has no such representation. 

.. -~12 ,: ,:.:. 
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from (8) in such a way that the correction terms for the approximation 
(6) will be found. It is useful to introduce an operator F, which satisfies 
the equation 

00 

zFmn - L <I>!kFkn(z) = bmn, 
k=-oo 

2,r 

F, ( ) _ 1 / eicp(m-n)d 
mn Z - - cp 271" z . 

0 - cp 
(9) 

This operator Fis the resolvent for the operator <I> 0 

(z - <I> 0 )F = I 
for the eigen functions of which the quality (6) is exact. It is seen that 
the equation {9) is close to the equation (8) for large m, n. Therefore the 
operator F may be used as the first approximation for G when m, n :::};> 1. 
The indexes m, n of F, <I> 0 may be negative while the indexes of G, <I> are 
positive. We notice that the difference between the matrix elements 
<I>mn, <I>!n consists in the values of indexes O ::; m, n < oo and -oo < 
m, n < oo correspondingly 2

, so the same formula <I>mn in (8) may be 
used both for <I> and 4>0 as far as O ::; m, n < oo. Therefore we combine 
(8) and {9) to the new equation 

00 -1 

z(Gmn - Fmn) - L <Pmk(Gkn - Fkn) = - L <I>!kHn-
k=O k=-oo 

After multiplying this equation by Gmk(m, k = 0, 1, 2, 3, ... ) and sum
ming up the index k the last equation may be reduced to the form 

tam, (,a,.- t~.,a,.) - t (F,,,Gm, -tam,~.,F,.) = 

oo -1 

= - L L Gmk<I>2,Ftk• 
k=O 1=-oo 

The bkn factor is present in the first brackets here because of the equation 
(8), and the same is true for the second brackets because of the equality 

00 

L (Gmk<I>k1F1n - Gm1<P1kFkn) = 0. 
k,l=O 

2,r 
2The integral representation (8) (<I>~n)P = 2~ J <p'dt.pexp (it.p(m - n)) is valid for 

0 

any p = 1, 2, 3, ... in the contrary to the case <I?~, see note1 above. 
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Now the equation for Gmn is found 

Gmn - f Fkn (zGmk - f Gm1<I>k1) 
k=O l=O 

Gmn -Fmn = 

oo -1 

L L Gmk<I>~1Ftk· 
k=O l=-oo 

This equation is exact and an iterative procedure for the last equation is 
possible so that 

G~~ = Fmn,-
oo -1 

G~~ = Fmn - L L Fmk<I>~1F1n, 
k=O l=-oo. 

Thus we have the approximative formulae for operator G through the 
operator F, which has - in the contrary to G - a simple analytical repre
sentation Fmn(z). Really Gmn function with the numbers 0::; m, n < oo 
corresponds to the Fock space of the Bose-oscillator with the spectrum 
on [0, oo ), while Fmn with -oo < m, n < oo corresponds to the quantum 
system with the spectrum on (-oo, +oo) such as the "infinit spin". If 
we take G = F as the zeroth approximation of the iterative procedure, 
it means that we ignore the vacuum state on the left side of [0, 'oo) simi
lary to the quasi classical approximation ( 6) and to the "continuum limit" 
construction (see the discussion later in this paper). 

In this way we receive the first correction term Dmn for the matrix 
element < mlWln > 

2,r 

< mjW(<I>)jn >= 2-f W(<p)i(m-n),pd<p + D~L (10) . 
21r 

0 

l 2,r 2,r 

n(2) = _1 _ ~ ~ <I>o J d J di/)' W( <p) .- W( <p') ei[(m-k),p+(l-n),p'J. 
mn (21r)2 0 ~ kl <p r <p _ <p' 

k-0 1--oo o 0 

and it will be seen later that the term Dmn is really a small corrective 
term corresponding to the main value Fmn· It can be shown, that Dmn 
is the contribution of the integral around the cut (0,1) in the z- plane 

4 

'1 

'• 

in the integral over the unit circle. The first term in (10) corresponds 
to the approximation (6) and as it was explained in [3, 6] represents the 
contribution of the pole of the function G. Some simplification of Dm,n 
can be reached by the use of the operations · 

i 
0 ---, <I>kl = l - k z- -1, 

-1 00 

I:-~, 
l=-oo l=l 

1 00 

k + [ = j ds e-s(k+I) 

0 

so that the final formula is 

D(2) 
mn 

2,r 2,r 

= _i _ J d<p J dcp' W(<p) - W(<p') x 
(21r )2 cp - cp' 

.o 0 

1 1-exp(-i,p) 
n ( . ') 1-exp -1,p • i[(m+l),p-n,p'] 

x exp( icp) - exp( i<p') e · 

The most important variables for optical experiments are sin - and 
cos - functions of the phase operator <I>. That is why we choose W( <I>) = 
exp i<I> and in the case of m, n > > l the approximated formula for the 
matrix element is received in the form 

< mjei~jn >'.:= 8m+I,n + dmn, (11) 

dmn 

2,r 2,r 
i J J In 1-exp(-i,p) = (21r)2 d<p dcp' 1-exp(-i,p') . ei((m+l),p-n,p'] ~ 

cp - u,' -
0 0 · T _ 

ln2(m:1) 
~ -41r2(n-m-1)' 

m,n»l.·· 

To define an importance of the supplementary term as compared with 
(6) we consider the variance of the phase operator cosine for the occupa
tion number, Gauss and coherent states. First of all for arbitrary state 
If > which can be expended to the number states · 

00 

If>= Lbnln >, 
n=O 
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when bn is real, we shall write the general phormula for cosine of the 
phase operator using the formula ( 11) 

D( cos <I>) 
1 1 

00 

= < cos
2 

<I>> - < cos <I> >
2= 2 + 2 L bnbn+2 + 

n=O 

oo{ oo 12 112k 1 1 n m+l n l+l + - - + 811"2L 47r2L(k-/-l)(l-m-l) mk I 

+ 
ln2 _k_ ln2 k-1 } [ oo 

k _ ;-~ 2 + k _ ;-~ 2 bnbm - ~ bnbn+l + 

+ l 
2 1 oo ln2 _k_ 

- bkb . m+l 
47r2 m;O m k - m - I 

k,m,l»l. (12) 

At first we shall find the variance of the phase operator cosine for the 
occupation number (Fock) states Nin >= nln >, which is the function 
of the occupation number. Taking into account bn = 1 is only nonzero 
for these states, we have 

D( cos <I> )n = 1 1 1 n n+ 1 . n k+l 
{ 

ool2k 12n 
2 - 1671"4 2 ~ (n - k) 2 - 1 + 

+ 7r2 (ln2 -- + ln2 
--) + ln4 

-- , 
n n-1 n } 

n+2 n+l n+l 
k»l.(13) 

In the Fig.I one can see the variance depending on the occupation num
ber. For the number states (also the vacuum) phase operator defined by 
( 6) has regular distribution, which is represented by solid line in Fig. I. 
In other words, the variance of the phase operator cosine is equal ½ for 
approximation (6) and is not constant for ( 11) approximation described 
by the dotted line. It is important to note that the photon number n 
is the smaller the larger the difference between ( 6) and ( 11) definitions. 
The same difference was found in [9] between the 'results [2] (which are 
similar to those presented here) and [5]. ' 

For the Gauss states. the contribution l:::,. of the term d,,rn(l 1) in the 
variance 

1 
D(cos <P)c = 2 - 6, 

6 

( 14) 

:J 
.·i 

I ,, 
/.11~ · ; V. 
r 
i 

1 · l oo ( )n{ oo l 2 k l 2 n n 0 1 n n+l · n k+i 

l:::,. = 1671"4 1 + n0 L 1 + n0 2 L ( n - k )2 - 1 + 
n k 

+71" n -- n -- - x 2 1 2 n 12 n-l} 1 1 
( n + 2 + n + l) 1671" 4 (1 + n0 ) 2 

{ 

oo n }2 X ~ (1 :Ono) ln2 n: 1 , n, k » l, no= Sp(e-/3wa+a) 

is smaller than one for the occupation number states (Fig.2). It means 
that, the thermal fluctuations suppress the influence of this term in this 
case. 

One can show by the similar calculation that the contribution of the 
dmn term to the variance 9f cos <I> can not be distinguished for the coherent 
states. Thus, the cases above considered show that the defect of the 
approximation (6) can be observed only for the occupation number states 
as the occupation number is small. 

So we have the following situation with <I> variable. The formulae (5-
14) are based on the calculations [3, 6, 10] of the eigenfunctions (5) for the 
operator < ml<I>ln >= lim < ml<I>rln >, r -+ oo. The "continuum 
limit" treatment <ptk) -+ <p is based on the formula for average value of 
any function F of <I> in quantum "physical" state p [5, 8] 

r-1 {2~ 
< W(q,) >= }~~ ~ < r.p~m)IPl<f'~m) > W(r.p~m)) = Jo W(r.p)IT(r.p)dr.p,(15) 

. 1 00 

IT(r.p) = - ~ < mlpln > exp[i(n - m)cp]. 271" ~ . 
m,n=O 

The r -+ oo limit in this formulae may be understood in the way similar 
. to ( 4) because Toeplitz matrix 

1
2~ 

Mr = ei(n-m)<,0W( <.p )dr.p, 
0 •. 

n,m = 1, ... r 

used in (15), is approximately (with r-+ oo) close [12] to the matrix 

Lr=~ t e2i~~(n-mJWP(27r~) 
r r 

k=l 
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defined for Chezaro functions WP. If we omit index p in the last symbol 
and substitute WP--+ W we receive (15). It was shown [6, 8, 9, 11] that 
the approaches [2, 3, 6, 10] and [5, 8, 11] for the phase variable <I> give 
the same result for quantum state of the Bose-oscillator with the large 
occupation number n ~ 1 and different result for small n. The same 
conclusion follows from the formulae (12-14) of this paper. The origin 
of this discrepancy seems to be as it was also assumed in [9, 11], in the 
different ways of taking a limit r--+ oo in the formulae(3). · 

It was noticed also that for the slightly excited oscillator the phase 
distribution [2, 3, 6, 10] has an anisotropy and it is phase fluctuations 
are small~r then those in [5, 8, 11]. Namely the advantage of formula 
(15) is that it gives the isotropy distribution of 'P values in [O, 21r] for 
any n- photon state. This advantage follows from the definition (15) as 
the "continuum limit" procedure for average value < W( <I>) > and this 
fact was underlined earlier [ 9, 11]. . 

The eigenvectors l'P > in (5) shows the anisotropy in 'Pin the scalar 
products < nl'P > for the slightly excited states of the field oscillator 
[6, 9, 11]. This anisotropy may be considered as a certain "repulsion" 
between the phase values in [0, 21r]. This case is close to that one in the 
theory of complex molecules and heavy nuclei [13], where the energy lev
els also demonstrate the extraordinary "repulsion". Such a phenomena 
shows, that the canonical quantum theory may give an unusual behav
ior of the system when the semiclassical approximation is invalid. This 
situation is known over the title "quantum chaos" due to the analogy 
with chaotization for the irregular motion in classical mechanic. Bose
oscillator is a simple system in p, q variables, but it is not so in N, <I> 
variables.• The reason is that the combination of requirements to have 
the polar decomposition and the canonical conjugation for N, <I> com
plicate the situation for these variables near the ground state. All these 
problems disappears for excited oscillator, where the formulae (5-14) and 
(15) give the same result. 

To see the role of such "repulsion" it is necessary to examine the 
states with the small occupation number. At the same time, it is known 
[14] that the normalized term g of the factorial decomposition for the 
one-mode optical field 

< n 2 > - < n > 
g= 

< n >2 
is equal to 1 - (n)-1 for the occupation number state In >. The sub-
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1. Dependence of the variance of the phase operator cosine upon the 
occupation number for the number occupation states. Solid line corre
sponds to the approximation (2), dashed line - to the (7) approximation. 
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2. Dependence of the variance of the phase operator cosine upon the 
average occupation number for Gauss states. Solid line corresponds to 
the approximation (2), dashed line - to the (7) approximation. 
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Poisson effect for photons is associated with the values g < l. Therefore 
the term dmn in (11 ), which represents the correction of the approxima
tion (6), may be valid for the case of the strong sub-Poisson effect in a 
weak optical field. 
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IlonoB B.H., CropaKmHHa JI.A., .sipyHHH B.C. 
KBaHTOBhlii onepaTop <pa3hl 
H CTaTHCTHKa OilTH'leCKOro IlOJUI 

E17-93-453 

BBeAeH nonpaBO'IHhIH 'IJieH K IlOJiyKJiaCCH'leCKOMY npH6JIH)KeHHIO MaTpH'I
HhIX 3JieMeHTOB onepaTopa <pa3hl. PaCC1IHTaH BKJiaA 3TOro AOilOJIHHTeJibHOro 

'IJieHa B AHCnepCHIO KOCHHyca onepaTopa <pa3hl B npeACTaBJieHHH 'IHCeJI 3anoJI

HeHmI, a TaK)Ke AJISI rayccOBCKHX H KOrepeHTHhIX COCTOSIHHH. O6cy~aeTC.SI 
IlpH'IHHa pa3JIH'IH51 Me~y peayJibTaTaMH AaHHOH paOOThl H TeMH, KOTOphle 

CJieAYIOT H3 HenpephIBHoro npeAeJia. O)KHAaeTC.SI, 11To nonpaBO'IHhIH 'IJieH cy
m;eCTBeH B CJiy11ae CHJibHOro cy6nyacCOHOBCKOro 3<p<peKTa B CJia6hIX IlOJI.SIX. 

Pa6oTa BhIIlOJIHeHa B Jia6opaTOpHH TeopeTH11ecKoii: <pH3HKH OM.sIM. 

IlpenpMHT Ofu.e,111HeHHOl'O MHCTMT)'Ta Sl,!lepHblX MCCJJe,!I0BaHMH. )fy6Ha, 1993 
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The corrective term for the semiclassical approximation of the phase 
operator matrix elements is defined. An influence of this supplementary term 
on the variance of the phase operator cosine is determined for the occupation 
number, Gauss, coherent states. The origin of the difference between these 
results and «continuum limit>> treatment is discussed. The corrective term is 
expected to be valid for the case of the strong sub-Poisson effects in the weak 
field. 

The investigation has been pedormed at the Laboratory of Theoretical 
Physics, JINR. 
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