


| P Intnoduction I T e e
Unsolved problems 1n theory of, turbulence permanently evoke new and
new attempts to create, effective theoretical approaches wh1ch could help,
to understand the nature of turbulent phenomena -Besides other .ap-,
proaches made over the last fifteen years, renormahzatlon group techmque
(RNG) whlch turned out, to be so fruitful in critical phenomena theory,
has been W1dely appl1ed in theory of developed turbulence Apart from
the critisizm addressed to the RNG by some theoret1c1ans worklng in this
area, it gave valuable contr1but10ns to eluc1dat10n of many .phenomena in
turbulent. ﬂulds (1, 2, 3 4], e.g.) based on the first principles (1 e..on the
Nav1eroStokes equation). - R ot

.. Two realisations of the RNG approach ex1st - the Wllson RNG [5] .
and the quantum—ﬁeld RNG [6]. The Wilson RNG is phys1ca.lly more
transparent but the quantum field RNGls technically ‘more_convenient
and gives the possibility to extend the calculations to ‘higher_orders;‘_of
perturbative theory. The physical meaning of the Wilson RNG approach
consists in successive eliminations of short wave and high?frequencysde-
grees of freedom of a nonlinear field system to obtain’effective equations
describing its large scale behaviour. If Wilson RNG procedure of succes-
sive integrations.over small scales with a consequent rescaling leads lto a
theory with parameters which do not change with recurent. applying .of
this procedure, than a stable fixed point of RNG transf_ormations exists:
- Unlike this. procedure the quantum-field RNG investigates the infrared
asymptotic behaviour. of effective variables such as- turbulent -viscosity,
turbulent magnetic Prandtl number, etc. - - ~ A

The RNG approach has been used to 1nvest1gate a fully developed tur-
bulence governed by the stochastic Navier-Stokes equation with external
random force f [1, 2, 7]. The existence of a stable fixed point has been
demonstrated. The dissipative term in the effective equation of motion
considerably differs from that of the Navier-Stokes equation., Molecular
viscosity is replaced here by the wavenumber dependent effective turbu-
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lent viscosity. Due to the Galilean invariance of the Navier-Stokes equa-
tion its nonlinear term does not change essentially. The energy spectrum
depends on the random force spectrum (| f¥(k) |2) ~ k1% (k =| k |),
and for € ='2 it coincides with the Kolmogorov spectrum. This value
corresponds to' the case where the’ ra.ndom force amplltude has thc di-
mensmnahty of the énergy injection rate. ‘ . o

The developed turbulence driven by a weak anisotropic’ random force
has'been: 1nvest1gated and the stable fixed pointof RNG transformatlons
has been found [8]. Tt corrésponds to the Kolmogorov scahng “Additional
terms describing effective anisotropic v1sc051ty are generated by nonhnear
interaction. These terms are small if the anisotropy is ‘weak. ”

* The isotropic MHD turbulence has been studied by‘both approaches,
the Wilson RNG [9] and the quantum field RNG [10]. The case of a
strong ‘Thagnetic forcmg has been considered in these’ papers “The exis-
tence of two stable fixed points has been determined by free parameters
of the theory. The effective Lorentz force in the kinetic fixed point be-
"comes unimportant for the large scale behaviour of correlation functions
and gives-only some non-.arialytical corrections to these functions. The
energy ‘spectrum remains of the Kolmogorov form. The effective mag-
netic Prandt]l number is very large in the magnetic fixed point’ and the
energy spectrum is not of the Kolmogorov form. - ‘

‘The*influence of Gaussian' random forces with anisotropic two-point
correlator on the MHD turbulence is investigated in the present paper.
It turns out'that nonlinear interactions generate effective anisotropic vis-
cosities'and additional vertices which correspond to anisotropic Lorentz
forces. An‘important discrepancy-compared to the above mentioned cases
consists in the fact that these forces can play significant role in effective
eouations of motion. The strength:of this effect depends on. the power of

k1=2a¢ and

grows with increasing the value of a. This increase does not break the

the singularity in‘the magnetic force spectrum (| £?(k) |2) ~

Kolmogorov spectrum if a < 0.65. For the range a > 0.65, the Kol--

s,

mogorov spectrum is preserved only:i‘f‘ the value of anisotropy 1s strongly
limited., Otherwise the magnetic field does not -play.the role of a passive
admlxture and’ the Kolmogorov reglme does not exist. It,is necessary
to e\{amlne the e‘clstence of a new. stable fixed point and to. study the
corresponding critical scaling regime in thls,regl_on. R

2. ' The functional formulation of the °

t

. problem

The MHD equations for incompressible conductive turbulent fiuid gov-

erned by_ra.ndom‘ forces lra\;e the following form (see e.g. [10]): - »

'a;v‘=‘ ;u0v2 (vV)v+(bV)b Vp+f', VA =0, V=0, (1)

b = uouov% (vV)b + (bV)v +f°, V=0, Vb=0. (2

where v is the molccular. viscosity, ugvy is the molecular magnetic diffu-:
sivity, ug is the inverse magnetic Prandtl number, p is pressure. The first
equation’is the well-known Navier-Stokes equation for transverse veloc--
ity field v = v(x, t) with additional nonlinear contribution of the Lorentz
force. The second equation for magnetic field b = b(x;t) follows fron".
th}e‘vMaxWell equations for a continuous medium. : The magnetic field-is
measured in Alfven velocity units. The random forces are assumed to
have Gaussian distribution with (f) = 0 and with giVerl 2 x 2 diagonal”
matrix of two-point correlators (f f). The problem (1), (2) is equiva-
lent to the quantum field theory (QFT) with double number of the fields
® = (v,b,v',b') irr accordance with the general theorem of stochastic

quantization [7]. The corresponding action has the following form:

1 '
5| [ (f" ) +b’(fb 1 b] +
V' [-8v + 1V — (VV)v + (bV) )b]
b’ [-8ib + Vb + (bV)v — (vV)b] (3)
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The 1ntegrat10n over (x, t) and summatlon over the vector 1nd1ces are
1mpl1ed in (3) and in the sumlar expressions. The e\phc1t forrn of the
matrix ( f ) will be specified later The auxiliary fields v/, b’ ‘are vectorial
As usual in QFT the action (3) is considered to be
unrenormahzed ‘with the bare parameters marked by ‘the subscrlpt »Q7;

and ‘transvérse.

symbols without this* subscrlpt denote renormalized parameters. The
main objects of the study are the Green functions G2 of the fields & or,

equivalently, the eorrelation,\-funct.ionsand the _;response .\funetipns in the

terminology of the original problem (1),(2):

E A AP

G® =< 03..0 >= / D[®] $%...% exp[S(®)],  D[¥]
Here D[®] denotes functional measure of the integration over the fields ®
with all normallzatlon coefficients. ‘The equivalence of (1),(2) and QFT
(3) means that Green functions determined by (4) coincide with Green
funct1ons ‘which are obtained directly averaging the solution of the ¢ equa-
tions (1),(2) over forces f with a weight of exp [—3f (f£)~' f]. -

-Now, we choose the explicit form of the matrix (f f) and we assume
for .simplicity that the non diagonal elements (ff") vanish. Then the
anisotropic energy forcing is introduced by the tensors (f} f;') and (‘fb Jid)
which can be expressed in terms of transverse projectors Pjs'= 6j5—
k,kskf and "Pjnin;, Py, ‘where n is the unit vector which represents

an unaxial anisotropy. The weak anisotropy, which we are-interested.

in, is controlled by the small free dimensionless parameters a;, cvg; o, a4
(| @i < 1) which are included in the two-point correlators as it has been

“made in papers devoted to RNG application to anlsotroplcally driven

turbulent transport {11], {12]: -

<f1 (k’ n)fs (k n)> = évOVguoé(li.+ ll\{l)byv(k( n) N
<f1 (k, n)f"(k n)> = gboVouo 5(k+k)Dbb(k n), (5)

= DvDv'DbDD’.

DiY = c(Pjs + mnm[on(bim = P,m)PJs + 0y Pyt P EY —2¢— x
D})Sbﬁ = C(R” + nlnrn[a3(6lm - Ijlm)ljjs + 04-[)]1Pm5]) ]»4 ~2ae- d (6)

where lA{ = k,w, the constant ¢ = d(d + 2)( 47r)d/21"(d/2)

function) and factors vdug, vjuf have been extracted for conv enience of

P is gamma

calculations: Here D'¥ and DPP:are the most general parametnzatlons

of the nonhelical tensors which satisfy the symmetry relations, .

- D = Ds,, D(k) D( k) D(®) =D(-n).

_ The a and e are free parameters of the theorV and d s the dimension
of the _l{lspace._ The constants gvo, gno play the role of coupling constants.
‘Forf = 2 their dimensionality is the samne as that of energy. injection
rate. Note that parameter ¢ is independent.of, the space. dimension.. In
the usecl dimensional regularisation it plays the same role;as the analogical
par ameter in the known (4 — ¢) Wilson scheme [5]. .-
One can consider more general case when the cross-correlator < f}:f> > b

is'non zero. Than, in the case of non helical anisotropic MHD, the cor-

relator < f} f? > is-parametrized as .. . R
Bocaid 0 m
< f f > !] VOU’O Cl [€]sm ]”m + Qs €]m[]rm7l Tl[] k o . (I)

wbere 9o = /gvogno [10] (p and Q5 are new. free parameters of the theory)
In ref, [10] has been shown that in the 1sotrop1c MHD turbulence (a5 =0)
the ultraviolet divergences of all Green functions, which are obtained in
one loop approximation, does not depend on parameter p, because there
are not ‘any, drvergences proport1ona1 to the- a11t1synunet11e tensor €;,,- n
(7). Consequently, stability of fixed points; of RNG is. mdependent on-p
in thls ‘approximation. The same fact is valid also for.the anisotropic part
of the Cross- -correlator w1th small parameter Q. Therefore the casc of
< f"fb >=0 i is cons1dered in-the next., : .

. Green funct1ons -(4)are calculated by means of F(.vnman (lmbmnmn(

perturbatlve technlque The matrix of propag,at(ns A = K7! (the. lmes



in Feynman diagrams) can be "obtained from the squared term (1/2)3K®
of the:action (3) All non—vamshmg propagators with: anisotropic terms
are presented in Appendrx I

3. Renormalization analysis of anisotropic
Calculations show“thatﬂperturbation series for correlation functions pos-

sess terms like (gk~2¢)"  where n is the order of expansion. These terms
are too large in'the infrared range k — 0 for positive € (i.e. also for the

physical value of € = 2) and therefore summation of infinite series is nec-

essary. It is‘'the:same situation as'in the critical phenomena theory. This
nontrivial “infrared” problem can’ be overcome using RNG techmque Tn
“order to use this approach, the values of € close to zero must be consid-
‘ered. For e exactly equal to zero the infrared srngularltres disappear but

ultraviolet divergences (k — oo) occur. As consequence the problem of-

ultraviolet divergences elimination has to beé oVercame. In limiting case
€ = 0 the power of ultrav101et d1vergences does not depend on the order of
the dragramatxc expansron and they can be eliminated by the procedure
of the ultraviolet reriormalization [13]. Subsequently the RNG technlque
can'be applied and’the former physrcal value of the parameter € can be
| assrgned again. L ' ' '

‘In “dimensional - regularlzatlon the  ultraviolet divergences manifest
themselves like poles of €. They can be ellmlnated adding the appropri-
ate’ counterterms to the ”bésic” ‘action, which can be obtained frorn (3)
replacing the bare parameters eg by the renormahzed ones e: ey — ‘epd.
Here p is a scale settmg parameter. ‘Momentum dimensions d? will be
defined later. The counterterms are formed by the superficral ultraviolet
divergences which‘are present in one-particle irreducible Green functions

(see also [13]). If these counterterms have the same form as the térms

. of action (3), the ultraviolet divergences can be eliminated redefining the

‘parameters of the orrglnal QFT and the theory becomes to be multrphca—

trvely renormahzable To make the consrdered (3) theory by multrphca—
tive renormalizable it is neccessary to add formally new terms to the basic
action: ’ o
vV (nV)2v,  vxe(nv')Vinv, UVX3b (nV)b , uyx4‘(nb,')y2nb, h (8).
o A1(v'b)(nV)nb, /\Q(nv )(nV)b, As(nv')(bV)nb,

where x; and \; are some additional constants. In the following text these
and any other dimensionless constants (renormalized coupling constants -
gv> gb; Prandtl number u) will commonly be referred as charges. The
corresponding unrenormalized action S4 is of the following form

S4®) = S(2)+V [V0X10 nv)>® V-i-l/oXm)nv nv ©
4+ Apb(nV)nb+ /\20n(nV)b2 + Aggn(bV)nb] )
_ + b [UOVOX30(IIV) b+ uoygx40nV (nb)]
Here .S'((I>) is the actron (3). SRR
The classification of the ultraviolet divergences is possrble in terms
of power counting. The stochastic MHD considered above is invariant
under two independent scale transformations - in time and length, with
all the physical quantities, on which the action depends, transforming in
accordance to their dimension. Formally, it can be described by momen-
tum d" frequency a” and overall d= dP +2d” scahng dimensions for all

parameters and fields:

Yy = dy=1, d=dh=-l i =dy =1,

v

&, = A =d+l, & =di=1, &, =d=-2,

" Vo % ! Vg
&, = adl, =0, & =ad, =2, &=0,
P 2P o__ P 2 fy P _0.
d(;‘,,p,: d:ﬁp—d::op d;jf—d‘:\)fo'fd(:p_d;jp‘—d‘:\)m_- »
& =1, j=1,2,3,4, m=1,2,3.

The superficra.l ultraviolet dlvergences are s1mple polynomlals of the mo-
mentum and the frequency. The power of these polynormals is determined



by the formal ultraviolet dwergence index 6. The total scaling dimension
of one partxcle 1rreducxble Green functlon F‘I’ w1th Nq> external legs is [10] -.

“dr=d+2~Nods, Nade=Nydi+ Nody, + Nyidys + Nysdiy . a0

In the logarxthmxc theory (e = 0) 6 is § = dr. If § > 0 the diagram,

possesses ultraviolet dwergences It has been demonstrated [10] that in
1sotropxc MHD only one-particle irreducible Green functions rv'v, b
(bpvw = bbb = 2).and vertex TV*® (S.umb =:1) possess the super-

ficial ultraviolet divergences. Other Green furictions IV, AT A

[V'vb [Bvb pbvy bbb (irh: s >0 do not show ultraviolet divergences
due to the Galilean invariance and reflection symmetry. In anisotropic
MHD the same divergences are present but now the divergent parts of

I“"" bbb are proportional to all admissible tensor structures. The

amsotroplc structures proportlonal to n; nJ glve new add1t10nal counter-
terms (8). All ultrav1olet d1vergences can be ehmmated using indepen-

dent renormalization constants Zi,j = 1,2,..,10 and the renormahzed‘

action is in form-. _ e e

SA®) = Lt b gatioy]
oV [0V + Ziw Vi + Zywyx1(nV)® v+ ZsuxonVinv
— (VV)v + Z3(bV)b + ZgAib(nV)nb -
+' Zodn(nV)b? + Zp\sn(bV)nb] + b’ [~8ib + ZyuwVb
U 'Zguuxé(nV)2b + Z7uux4nv2nb + (bV)v‘—, (vV)b] . o

The action (11) is connected with unrenormalized one (9) by the standart
formula of the mnltiplicative renormalization : S{(®,e) = SA(Zs®, ),
where Z3® = (Zv'v Zb:b’ Zwv be) are renormalization constants -of
the fields ®. The renormalized parameters are related to the bare pa-
‘‘rameters by relations ' o

g0 = guW Dy, go0 = ol Zgy, w=vZ, ,  (12).

Up = uZua - Xio = XjZXj’ ’\jo =’\jZAja

and all renormalization constants depend on Z; as follows -

Zyy = Z{PZ5), Zg=Z7'Z3%Zy, Zy=21, Zui=Z2Z7,
Zy = ZZY, Ty = ZsZiY, Iy = 2627, Zya=ZiZ5),
Dy = Zm+7Z3~1, m=1,2,3,

m

Zy = Zu=1, Zy=Zy =2z S (13)

 The RNG-functions (3—functions, the anomalous dimensions of the
fields v¢ and of the parameters +.) can be expressed in terms of renor-

malization constants Z:
v¢ =D, InZs, 7.= Dy ane., ' | o (14)
By = LD}'Q" 9 = (gv, gb, U, X1, X2 \3, Xa» A1, Az, /\3) o
Here D, = p8/dp)., denotes the derivative with respect to the pa-

rameter p at fixed values of bare parameters eg. Later similar operation
D, = pd/opl. will be used at fixed values of the renormalized parameters

e. Usmg (12), (13), (14) onc obtains:

v = =0, Mm=—mw= %73, Yo =71 Bu=ulh1—72).
Bgw = gv(—2€+ 271+ 72) By, = gu(—2€a + 71 +27 — 73) (15)‘1
B = xiln—m),  Bu=xaln =), o
B = x3(2—7), B =Xalr2= 77,
Brn = An(ys—rmi7), m=123.

'4.. RNG calculatlons. Fixed pomts

In this section the constants Z and RNG- functlons are calculated. We use
the minimum subtraction scheme [14], where the constants Z possess onh
€ poles. The one- partlcle 1rred1101ble Green functions TV’ v, TP and FV ‘bb
have been calculated by the standard Feynman diagrammatic technlque.
The calculations of the singular parts of the graphs give the following



-expressions for constants Z;:

1
Zj =1~ ~(9Cj + 9uC; ), j=1,2.10. (16)

The coefficients C7, C'" which depend on d, u, a;j, x;j, Aj are given in Ap-
pendix II. RNG- functlons v; = DuIn z; can be determined from the rela-
tion 7; = (3_, By0,) In Z; and then

7 = 2(9vC} + 9C3). o an

The final goal of RNG analysis is to establish the infrared asymptotic
behaviour of the considered model. The Green functions G of renor-
malized theory (11) satisfy the basic RNG equations which express the
invariance of the unrenorrrlalized theory with respect to.the scale setting
parameter p: ) ’

D, + Zﬂgag ~ %D, + Ny + 1Ny | G* = 0; (18)
g : -

where Ny, Ny denote the numbers of the external lines of the fields b,
b’ (let us remind that the anomalous dimensions 7y, 7, of fields v, v/
vanish). Formally the asymptotic behaviour of the Green functions may
be inferred finding the fixed points g*, which are the solutions of the

equations [,(g*) = 0. A set of ten algebreic equations with free param- -

eters a,a;, j = 1,2,3,4 is obtained from (15). In the case of a; = 0 it
yields to the fixed points of the isotropic MHD [10]. The fixed points g*
are infrared stable, if the matrix Q0 = ‘—3%—

g is positively definite. Two
infrared stable fixed points are known - the kinetic and magnetic. The
first of them represents the I{olmogorov critical regime. It is clear that
the fixed points of anisotropic MHD for small anlsotropy are close to
isotropic MHD fixed points.

The anisotropic kinetic fized j;oint corresponds to two zero charges
gt = x4* = 0. The other charges are given by equations

. 2€

n=mt=n" =3, (19)

10

Yirst =mt, v =1 =123

where v* = v(g*) .
- In this fixed poiht it results in -

[w)' (13930 —0.0019 (01100
3 0.1595 ~0.0556 £ 0.0503
o 0 0 0
X1 0 01429 | 0.3571
e 0 01714 | 03714 | o
= / 4« Ty
I o |7 oo | 77| 04806 | 20)
| 0 o | o
A 0 ~1.4667 0.0573
X 0 2.3087 05484
RS K 0 ~1.4666) \ 0.0573

where gy = gv/ €.
The corresponding Q— matrix on the diagonalized form is
Q = ediag (10547, 2, 2(1.1595 — a), 0.7778 F 10.3685, 0.5890, (21)
0.8218, 0. 1013 0. 1857, —1. 0141)

In anisotropic magnetzc ﬁa:ed poznt another two charges are equal to

zero, gy* = u* = 0. The remaining charges could be found from equations

v71*+272_—73 V.=2<16_. R (22)

*

N=h=71 K="= Y Ymart =78t m=1,2,3
In th1s ﬁxed pomt for u* * =0 the equality ,6,\1 = ﬂ,\g holds therefore one
of the charges becomes free (we choose )\3 ) and for the remaining ones

n



. it yields

(' (o ([ o\ [ oy [ o
gv 0 0 , 0 0
i 1 0.229 0.081 ~0.304
X1 0 0121 | 0.368 —0.571
x2 | =] 0 | +as| —0146 | +as| —0285 | +Xs| 0.787
xs | 0 . 0.826 | - 0.117 ~0.475
X4 0 0189 | 0.611 0.516
A 0 ~0.146 | L0285 | | 0212

\ A2 0 —-0.095 —0.249 —0.297 /.
o c ' (23)

where § Gb = gb [ ae.
The diagonalized matrix in the magnetlc regime is given by the rela-
tion

Q = aediag(4, 2(4 — 1/a), 2, 12.3749, ~ (24)
—4.0189 T i3.7460, 2.1701 F i2.4401, 4.5369, 0) .

5. Solut_ions of RNG equations |

As it follows from relations (21),(24), Q— matrix eigenvalues with neg-
ative real parts are in both kmetlc and magnetlc regimes. This usually
means that these fixed pornts are unstable. Nevertheless if in theory with
many charges some of them are equal to zero ‘then the Green functions
may depend on such products of charges which eliminate the mstablhty
In other words a transformed set of charges, in whxch the ﬁxed point is
stable can be found.

Let us consider the kinetic fized point. We will examine as an ex-
ample the pair equal-time correlation functions G¥(k) = (| v(k) [*) ,
G®(k) = (| b(k) |*) with traced indices, which define the spectrum of

12

kinetic and magnetic errergy EVE(k) =27k2GVP(k). Equatlon (18) for'
these quantities taking into account (15) is in the form

(Du+ ) B0,
R g
(D# + Zﬂgay
g9

Correlation functions'G¥'? can be expressed in renormalized variables and

-nD,)G" =0, (25)

—mnD, +713)G" = 0. - (26)

expanded into a series of gy, g». The lowest order terms coincide with the
" corresponding propagator (44) changing

Vo = U, Uy = U, Gyo — G2, gho — gpp?, and  tracing indices.

‘Hence S
1L kn
GV = 5,u2‘1c2‘2‘"‘11/2gvu { [1 + (a1 /\1)( L2) ] (d - 1)
kn 2 21,2-2e—=dpv * o
+ o - & >}+"':”2€‘2 R, e

, 1 . kn)?], i
Gb = Elt2a€k2—2al(-d1/2gbu { l:]_ + (a3 —",\3)( ]\,2) ](d - 1)

K 9 2 orus
+ v(a4_X4)(1_ ( ]:;) )}+ =y lulaelz 2ae~— de R (28)

where the dots indicate higher order contributions of gy, g1, and R¥:*(s!¢)

-are functions of dimensionless arguments g, s = k/p . Substituting
(27),(28) into equations (25),(26) one obtains -
I3 : (26 — D+ ) B0, ~ 271> R'=0, . (29
‘ 9. . ) - - .
<2ae - D, + Zﬂ_,,a_,, — 27 + 73) RP = 0. (30)
g :
The invariant charges g;(s, g) are introduced as sOhrtious of equations
Dyg; = B49), g:{L.9) =gi. 1Y
‘ 13



The solution of equations (29),(30) for known RNG functions 7;(s, g) can
be written in the form

RY(s,9) = s 7" R'(1,3(5)) , (32)

Rb(s,g) = s U TR (1,9(s)) (33)

where :

5. s’ .,

CYisg)=exp) | @(s)N] - L (34

The relations (32),(33),(34) are the main results of RNG approach,; which

enable to find the asymptotic behaviour of the Green functions for s — 0.

Thé calculation of the functions R*"" using the perturbation theory gives

an expansion over the dimensionless parameters s~%g,, s7%%gy, which'

tend to 1nﬁn1ty if's:— 0. The RNG equatlon shows that the powers s -2
form combinations of g(s) with simple asymptotic behaviour g(s) = g

for,s — 0. Ce
‘Notice that the approach of s — 0 cannot be taken literally. Indeed,

in the developed turbulence the inertial interval is limited by an infrared

cutoff kg, = L~!, where L is the external scale of turbulence. So, the

minimum value of sis equal t0 kmin/ 1t ~ (Re)™%/* (Re being the Reynolds
number) because the p~! is of the same ‘order as the dissipation length [,
which is connected with L by relation: = Re=3*L. Therefore the maxi-
mum values of expansion parameters s ~2¢g. and s~%%gy, are approxxmately
equal to (Re)®*/? and (Re)%/2, respectively. -

Near the fixed point g the invariant charges behave like g(s) = g* +
, :69(s). The linearized equations for. 6g in form of D,6g; = Q,,(SgJ are
obtained from (31). They have the solution

Z cizs™ : (35) .

whete c,J "denotes atrix which diagonalizes - matrix , 2 :is the sum
-over the all elgenvalues Q; of Q— matrix. If all of them are positive then
6g:(s) — 0 and g;(s) — gf if's — 0 and the fixed point is stable.
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Firstly, the isotropic case with all positive Q; is considered. The

- asymptotic form of the expression (34) for s — 0 is determined by small

st

o) = o ([ 55 b5 + (50D = 7)]) = 7,

a=en{- [ % by -1}

The substitution of (36) into (32),(33) gives

where

R¥(s,g) = s* " AT’R"(1,9%), (36)
R®(s,g) ~ s** Mi+B AT 43R (1, ). o (37)
It follows from (27),(28) that G¥, G® are of the form |

G¥ = 2 #45/3k2-d—4§/3 A1_2RV(V1,gt)' e (385
GP = YAyt 4 2 AR (1, 9%) (39)

For € = 2 and d = 3 the Kolmogorov spectrum of the kinetic energy
EY ~ k™53 holds. One can see from (28) for the magnetic energy spec-
trum that in the lowest order R®(1,g*) =~ g = 0. The structure of the
vertices in action (11) maintain this property in all orders of perturba-
tion theory. To obtain a nontrivial result R®(1,g(s)) is to be considered
instead of RP(1,g*) and the asymptotic formula (35) should be used. It
gives F(1,3() ~ Bu(s) ~ 53 (s) = s, where f

Qq, = ~2ae+ 7+ 27 — 75 = 2¢(1 ~a) = 7. (40)

Thus the spectrum of magnetic energy is in the form E® ~ k-d+2(1-a)-4¢/3
as it has been obtaihed earlier [9]. For e = 2, a = 1 it coincides with the
Kolmogorov spectrum. These results for exponents of kinetic and mag-
netic energy spectrum are exzact and do not include the usual corrections

~e, &
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\Our attempt shows that it is ‘more convenient to use the rescaled
magnetic field b = b/,/gp than b. Then the quantity G? =G?/gyp, is
finite for s — 0. Using (29) for R® = R®/gy, one obtains:

(2ae— D+ 3000, — 2 +73>,Rb —o.
b
g
Substitution of ,,/gp from (15) resutts in

(—Ds + Zﬂgag + 27— 71)' R =0.

g ..

The solution of this equation is of the form '
R*(s) = ‘1’2‘1’1_le(1,9(3)) (41)
To calculate RM(1, g(s)) it is necessary to rewrite the action (11) in terms
of b and b'= b’\/gb, & =(v,b,v ,b"). Tt yields-
A(E Lo ge s imyvwys o 2ac 3 25 bby/ "_g
Sz(®) =§[gvu ruv' DY 4+ g rtu*b'D +v[ A
ZluV v+ Z41/xl(nV) v+ Z51/x2nV nv — (vV)

Zggb(bV)b + ZggnA1 b(nV)nb + Zggb/\gn(nV)b2 (42)
Zlogb/\gn(bV)nb] +b [—atb + Zyuv Vb

+ 4+ + +

Zeuvys(nV)*b + ZyuvxsnVinb 4+ (bV)v — (vV)B] .

Now, the nonzero quantity Rb(l, g*) can be calculated in perturba-
* tion theory with action (42) (without anisotropic terms). The vertex
v'(bV)b, related to Lorentz force (bV)b asymptotically for s — 0 does
not contribute and may be neglected. Thus the magnetic field does not
influence the velocity field dynamics and behaves like a passive «z_Ldmix—
ture. From (41) it follows that the magnetic spectrﬁm EP preserye’s the
previous form. ‘ ‘
In the anisotropic case among the eigenvalues (21) of the Q- matrl‘(

there are two negative values. From the {2 - matrix structure one can
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prove that the negetive'eigenvalues contribute’bnl‘y to 6g; = 6); (i=1,2,3)
in (35). The main smgular part of these charges increases as 510141 for

- 5= 0. Howevér they are included in’action (42) with the multlpher gb-

Hence the asymptotic form of functions R¥"*(1,g(s)) contains the product
of invariant charges ﬁb(s):\-,-(s)‘, which ‘is proportional - to 3(9“71._01415) =
s(130~28)¢ " For a < 0.65 the exponent is positive and therefore all A— -
vertexes vanish in infrared range. The same result is obtained if rescaled
ch!arges’:\,' = Aigb With refleﬁned ﬁ—functions . . SR
- by :6/\1 :6 b v

o=n(Bs gi) et
a.nd w1th correspondlng Q- matrlx are 1ntroduced The minimum elgen-
value of 0 which defines the stability of the ﬁxed ;point equals to Qin F=
(1.30 - 2a)e ’ Thus the Lorentz forces ‘become infrared important. for
a>0. 65 in amsotroplc case, whereas In isotropic case they become i im-
portant for a > 1. 16. N makes a szgmﬁcant difference between zsotropzc
and amsotropzc MHD because * ‘physical” value a = 1 belongs to the in:
stability range of a in anisotropic MHD.

The magnetzc fized point will briefly be 1nvest1gated The mvanant
charges g(s) and T(s) tend now to zero as §, ~ s, T ~ 5 (ng =
2¢(4a — 1); Q, = 4ea, see:(24)). This fact complicates the analysis: of
functions RV"(1,5(s)); because u occurs in denominators of perturbation:
series. In this case it is convenient to introduce rescaled fields b =b//z; o
¥ =v/u, b =b'Vu, ¥ =v', & = (¥,b,¥,b) and time { = ut. Taking.
into account the integration over. the time then.in new variables action

(11) lOOkS like R L e e

Sﬁ((i)) = % [gvué D""v' + 9 u2“‘V3b'Dbbb'] + Vv [—ua iV ,

' + ZywV? Vit Z4Vxl(nV) V4 ZgyxenVenv. - (43).
— w(FV)+ Z3(bV)b + ZgAb(nV)nb -+ +ng\2n(nV)b2
+ Zioxsn(bV)nb| + B [-0b + Zwv?h |
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+ Zsux3(nV)2B.+ Z7VX4DV:2DB + (BV)O-; (vV)B] .

It follows from (30) (15) that the functlon Rb Rb / u satlsﬁes the equa—

thIl ) : e G e .,
(2ae——D +Zﬂya - 72+’73)R =0, IR
which has the solution . IV . o

R™5(s, 9) = s20, 710, G RV(1, 5(s)) = Ay~ Ay Ags™ RVV(1, 0°),

where the relation (22) hasv;b,ee’n use‘df The quantities R"?(1,g*) may
be calculated in perturbation theory with action (43) Having in mind
that" ¥ =0 for d'= - 3, the spectrum of magnetlc energy is’ m the form
EP '~ k12" This result has been obtained for isotropic case 'in [9].

‘ "In the anisotropic case Q— matrix has some elgenvalues with negatlve
real part (24). It leads to an 1ncreasmg anlsotroplc part of invariant
charges Action’ (43) lmplles that ‘this increase 1s not compensated w1th

decréasing charges g, (s), @(s) for s — 0

6. Conclusions

Using the'RNG approach it has been shown that small anisotropic terms
(~ a;)-in the random forces two-point correlators play the role-of cor-
rections ‘in ‘the kinetic-regime only for a <0.65: In:the: interval 0.65 <

a< 1.16 these anisotropic forces give corrections only at-strongly limited

values of their amplitude: a; < sgfn .130)5, where sm,,;, > Re™3/%. For

the magnetic regime the same situation occurs when a >:1/4.and the
restrlctlon is o < s‘r‘n?,ll“f. In case of the fully developed turbulence the
relation Re > 1 implies 5mm <1. A quantltatlve analys1s is requlred to
find ‘more precise restrictions:on & 'If the restrictions are not satisfied
the linearization in the anisotropic terms is not.valid-even for a; <1
and they must be cons1dered as relevant terms JIn, the l\metlc reglme
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this relevancy is probably connected only with Lorentz force terms since
namely their increase for a — 0.65 that leads to. the kinetic fixed point
destabilization.

Therefore in MHD turbulence the critical regimes stability is sensitive
to small departure from isotropy what i is quite a dlfferent case from usual
turbulencc [11 12]
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Appendix I: Evaluated propagators con-
taining anisotropy Parameters T

The anisotropy is considered as a hlgher—order effect in the propagators,

which has in momentum - time (k, t) representatxon the followmg form :

AYY'(k,t) = exp(=vok)6(t) ([1 = y1ovo(kn) t]P,a i
= xaovok*tPymnnPg), 0 . (44)
AR (k1) = exp(—vouok)8(t) (1 = xaovouo(kn)*) P, "
: — X400tk t Pnunn Pus ) |
AL (k1) =AY (=k, 1), A¥P(K, 1) = AP (=K, —1),

vv ]‘
AYY(k,t) = -2-cgvouo ug exp(~ ~vok?|t])2- ~2c~d

k 2
X <[1.+0‘1(kn) —'\10(1+V01v2|1‘l)( )]Pjs-_

+ [a2 ~ XQO(I + ’/0k2 l t l)] le"l”le.Q) '
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| 1 V 2 12-2ae—d -
A_‘i)sb(kjt) = §Cgb'01/02uo?exP(—uou0k2|t|)k2 2ac—d

, kn) k 27

X

) + [CY4 - X4O(1 + VOUOI‘ | t |)] ]lnlnums)a“ S

where H(t) denotes usual step function. The propagators A"" (k, t)
A}’sb (k,t) are retarded, and propagators A;’s",(k t) A;’s’b(k t) advanced.

Appendlx II: Calculated coefﬁments C’]”,C’J”
lncomlng to Z], V5 and ,ij functlons

‘This section reviews constants C7, C" involved in expressions (16), (17).
They were derived from d1vergent parts of the one particle irreducible
functmns vV, TP and TP, S s

Using definitions d = d + 7 uJ =u+ j 1t is strzughtforward to verlfy
~ that: ’

O = wlo(dds +2) +andy — 251(dads +7)
b xa(2 = 3d) + dyd_yd] [ 4dy,
o1 [o3(dady — ds) + cuds + 2x3(d7
= dads) — xadio + d4d2d-1 — 2d,] / 4ds;
C; = [oauidi + agur = x1diug — Xoug — X3ud) — Xatt + dod _1u] / 2ui,
Cs = [agwd_1 + euus — xad-1 — x2 — x3(1 + 2u)d_y — X4(1 + 2u)
— Auog + de(doyiy — 2) = Agur+ dound3) / 2ud,
[2ui(es — a1+ 2x: —2x2+ X3 — X4)
— (A1 + Ao)dau + 2Xqu — 2dgui] / 2dguy,
Ch = [2ui(os — oy ~ X1 +x2 = 23+ 2Xa)
(A + Ag)da(2u + 1) — 2X3(2u + 1) + 2dawy] / 2dqus,
u [~ dond-s + 20(dadsd_q + 10ds — 12) + 4x1(3d — 2)

+

9!
I

Q
I+
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) -— 4/\3ud2] /4/\1d4u1,
= [4u1(2013 + oudy — 2x1 — X2d2 4X3 - 2X4d2)

~ Xa(3ddads — 13dydy + 38d + 96)] /8xads, |
[ - dasds + 20u4(dadad-2 + 4) + 4xsdyo - X4(d2d4(3d 5)—6d)
2M1dy(dpd_y - 2)] /8X1d4, )
u[-8md + 8a2d1 + 8X1(2d +1)
Xz(d2d4d_5 + 26d + 48)] /8x2d4, ,
[—8a3— 4a4d2 +24x3 - x4(d2d4d 1= 10d - 16)
2A3d4(d2d 1=2)] [ &xada, ‘
[- 2C¥1u1 + azu1(d2d-2 + 2) + 2)(1112 :
- ’quz(dzd—z Y 2) 4 2x3t — xqud) /2X3u1,
= [ 203u; + a4u1(d2d_4 + 4)+ 2x1 +.x2d2 4+ 2x3(2u + 1)
- xa(2u + 1)(d2d_4 +4)+ /\1(dd2u1 — 2d2u2 + 2u4)

o+l

il

I

4+ A(3douy — dd2u1 + 2d 4u — 6) — Agdu /2X3u1, |
L= —=U (4 + d2d_3)/2u1, . )
i [ - 4&3111 - 2a4u1 +4x1 — Xﬁ(dgd_;} -+ 2) ‘

+ 4xs(2u+1) + 2xa(2u + 1) — 22, (2u + 3)

o= 2Xqu + /\3u1(d2d_‘1?,— 4)] /.2)(411%,

= [4u1 (=201 — agdp + dx1 + 2x2ds + 23+ xads)+
+ Ai(dodgu — 2d4(3u + 2) + 8u) + Au(d_sdy + 8)

- 1((d2d4 +8)(2u + 1) — 2d4(6u + 5))

— Ag(2ut 1)(d_zds + 8) + 4/\3d2(2u + 1)] [4hdguy,
= ([2u1[ 2a1 + ag(dd4 + 2) + 4X1 - 2X2(dd4 + 2} + 2x3
- »X4(dd4 + 2) + 2/\1(d2d4 - d4u1 + 2u) + /\2(d_1d2d4

— ' 2dgu + 4u) + 2X3(ddsuy +dy + 2u)) / 2Xadguy,

= (2wf203 - oy (ddy + 2) = 2x1 + x2(dds +2) —4x3

+ 2X4(dd4 + 2)] + 2/\1(-d2d4k + 2d4’u1 —4u — 2) + /\2(—d2d4d_1
+ 2dp(2u + 1)) + 2X3(—2dadetis + dy(4u + 3) + 1)) [ 2adgur,
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Cly = [4u1( 2a1 - a2d2 ¥ 4X1 + 2X2d2 + 2x3 + X4d2) + /\lu(d_4d4 + 8)
U Nudyd — g(uds 4 2)] / dhedgur, )
Ch = [4u1(203 + cyds — 2x1 — Xa2d2 — 4x3 - 2x4d2) - /\ (2u + 1)
X (d_gdy + 8) — Xo(2u + 1)dd2 + 8,\3(d2u1 + 1)] /4/\3d4u1
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Anxeman JL.I1. u gp. E17-93-429
HeycroitunBoctu B MI"II-Typ6yJIeHTHoc1'H, '
reHepupyeMeie cJ1aboif aHn3oTponueit

MeTomoM peHOpPMaIM3aMOHHOM TPYTIHEL HCCJIEAYETCS MOEIb aHH30TPOTI-
HOM MAarHUTOTMApONMHAMHUUECKO# TypOynentHoctn. I[lokasano, uro Masag
aHU30TPONUS YBEJHUYHBAET BAUAHUE CIUTH JlopeHna. DT0 MOJHOCTHIO OTIHYA-
€TCS OT M30TPOIHOrO CIyyas, rae cuaa JIopeHua He BAMAET Ha KpyHoMAacmTat-
HE1e CBOiicTBa MIJI-Typ6y IEHTHOCTH M MATHMTHOE TOJIE BEAET Ce6s KAk MacCHB-
Has GPUMECh B CTyYaiiHOM nosie ckopocreit. B anusorponHoit MI'M genuneitHo-
CTH TEHEpPUpPYIOT MoamdUUHUpPOBaHHHE <«aHHM30TponHHE cwiH JlopeHuas,
KOTODHIE TPH OIipeAeieHHOHM (hopMe BHEMIHEIO MArHUTHOIO OIyMa BEOYT K He-
YCTOMYHBOCTH OGHYHOIO KOJIMOTOPOBCKOIO PEXMMa, H MATHUTHOE T0JIe 6om>me
HE SBIIETCS MaCCHBHOM MPUMECEHIO.

PalGora snmnonuena s JlaGoparopuu Teoperuueckoit dpuszuxku OUAU,

Coobutenne OfbeanHeHOr0 HHCTUTYTA SIEPHBIX MccnenoBanmit. My6ua, 1993

Adzhemyan L.Ts. et al. E17-93-429
Instabilities in MHD Turbulence Generated
by Weak Anisotropy -

The model of anisotropic magnetohydrodynamic turbulence is investigated
by a renormalization group approach. It is demonstrated that including of small
anisotropy into the model leads to increasing of the Lorentz force influence. It
is quite different from the isotropic case where the Lorentz force has noinfluence
on large scale properties of magnetohydrodynamic turbulence and the magnetic
field behaves like a passive admixture in random velocity field. In the anisotropic
MHD, nonlinear interactions generate modified «anisotropic Lorentz forces»
which lead to instability of known Kolmogorov regime for given external
magnetic noise and the magnetic field does not behave as a passive admixture.

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.
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