


1 Introduction

In the last years one observes a renewed interest in investigating the electron-
phonon coupling mechanism for superconducting pairing in the high-tem-
perature superconductors. There are a lot of experimental evidences for
lattice effects in high-temperature superconductors (see e.g. [1]). And also
calculations within the local density approximation (LDA) for the electron-
phonon coupling constants have been recently performed which demon-
strated a strong coupling of electrons with particular phonon modes both
for LasCuQy4-based compounds [2] and for YBasCusO7 ones [3).

But in the LDA strong electron correlations on copper sites cannot be
properly taken into account which questions the results of these calculations.
Intensive antiferromagnetic (AF) spin fluctuations which result directly from
the strong electron correlations play an essential role in the explanation of a
numbef of anomalous properties of copper oxides in the normal state. The
AF spin fluctuations can also bring about superconducting pairing as it was
proposed by several groups (see, e.g. [4, 5, G]). Therefore, a more rigorous
description of electron-phonon coupling in the strongly correlated system
with a consistent account for AF spin fluctuations is desirable to investigate
the nature of high temperature superconductivity.

The electronic structure and the low-lying charge-spin excitations of the
CuOg-planes are most accurately described within the Emery model [7]. By
introducing the Hubbard operators which properly take into account the
nonfermionic character of quasiparticles after the exclusion of doubly occu-
pied d-hole states, one can obtain Eliashberg equations where in addition to
the electron-phonon coupling the exchange pairing is readily observed [8].
But in the Hubbard I type approximation for the d-band in [8] as well as in

the mean field approximation for slave bosons in [9] one cannot properly take



into account the formation of new quasiparticle bands due to the Coulomb
and spin correlations. Namely the formation of singlet states plays an essen-
tial role in the low-energy electronic properties of the CuO;; planes [10]. The
appearance of singlet qi:asiparticle states inside the p-d gap was proved by
different methods based on exact diagonalization [11], cluster calculations
[12, 13}, projection technique [14, 15] and other cal‘culatious.

In recent papers [16, 17] a simple analytical method was proposed which
permits to reduce the two-band Emery model to an effective singlet-triplet
model {see also [18]). Applying the equation of motion method for Green
functions to this effective problem.we found a reasonable description of the
electronic structure which includes the singlet band {17]. Using this for-
malism for the electronic structure we investigai..(r in the 1;1i'eserlt paper the
pairing which is induced by both the electron-phonon and the exchange in-
teraction. |

In the next Sect.2 we briefly formulate the singlet band model [16]. The
resulting electronie structure [17] is shortly explained in Sect.3. The Migdél-
Eliashberg equations for the matrix Green functions arc derived in Sect.4.
The depehdence of the supercoﬁducting transition temperature T on the
hole c;)néentration n is calculated in Sect.5. In the Conclusions we summa-

rize the results.

2 Singlet band model

We consider the Ernery model in the limit of strong corielations at the copper
sites, Uy — co. By taking into account ouly the most important terms it

can be written in-a simple form:-

H=¢y Z a?;‘i’a + & Zp;,;rpma_ + ¢ Z Sin_z (J;t;f)mq. +. h"-c')1 (1)
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where d’h-*' = df (1 — niz) denotes the creation .of a hole on a copper site ¢
provided there is no other hole with spin & = ~o. The operator p},, creates
a hole on an oxygen site m and S, = 21 depending on the position of the
site m in the unit cell 7 in agreement with [10]. The hopping p — d integral
t and the difference between the hole energy levels for oxygen and copper,
A = ¢, — €4, are the only two parameters in the model (1).

To derive the singlet baud it is reasonable to simplify this Hamiltonian
(1) further. For that we follow mainly [16, 17]. Let us summarize the main
steps; Introducing the symmetric combination of oxygen operators p(’)
the unit cell i according to [10],we can define the Wannier states ¢;; by the

equation

ts) _

‘; = 2 ZSuana = ZV'J Cja- (2)
The overlapping parameters

1 I .
Vit = JTV'Z\/I—"2“(003kx+c°5ky)elk(’_” (3)
¥

rapidly decrease with the distance (j —{): vo = v;; =~ 0.96, v; = vy j3,,,, =

—0.14, ete. (see [16]). In the following we will take into account v, 11 and
Vo = Vj jpa,ta, = —~0.02 as it was done in [17]. The lattice constants a;,ay
are taken to be unity in (3). In terms of the orthogonal Wannier states ¢;s

in (2} we can write the [Hamiltonian in the form:

H Z{cd d.’u.,d“7 + ¢ et o + Vo (dwcw + ke )}
io .
+ Z Vi {dchc + h.e}, (4)
i£jo .

where V;; = 21 vy; and Vg = 2t vy. Since |Vj;| € V one can consider the
last term in (4) as a small perturbation to the dlagonal part given by the

first term in (4).



As was shown in [16, 17], the first part can be diagonalized within one

unit cell, For this we introduce the one-hole state
|fo) = cos@y a}|0) —sind, c}|0) (5)

and two-hole states — singlet{y) and triplets |7}, {4, ):

1 . ,

|¥) = cos 8 7 (d?‘cf - dfc?') 10} — sin &y c?cf’ 10}, (6)
1 .

7o) = G (dfef +dfch) 0}, Imo) =dicd 10), . (T)

where tan 26, = 2Vu/A, tan 20, = 24/2V5/A. The corresponding one-hole

£y and two-liole energies £y and £, are given by:

nl 1 1 ) o
Er = glaat )= 5\/a%+ AV,

1 i .
Eﬂ, = §(Ed+3(p)—5 A"'i‘SV‘j.

E. = €g + €p.

The singlet states (6) are the lowest amonyg the two-hole states and have
to be filled first with doping. By projecting the hopping terin in (4) onto
the low-energy subspace (5), (6), (7) oue derives an eflective singlet-triplet
model (for details see [16, 17, 18]).

As was shown in [17], the mixing between singlet and triplet bands is
rather small and will be neglected in the present paper. We consider only
the one-hole states {f,} (5) and the singlet states |9) (6). By imtroducing

the Hubbard operators in this subspace
X77 = fi)fial,  XP¥ =40 (Wnl, NP7 = |9 Uil (8)
we can write the eflfective Hamiltonian in first order of Vij:

Ho=Bp Y XPT4 By 3 X¥Y 4 3T 0(NFPOXY 4 he)  (9)
i i ifje



with the effective hopping integral [17]
tij = VijKyy, where KNy, = 2AY AY
and

I : L ‘
A'f = —— sinty costy, AY =siniy smﬁg_—)- cos ) cosfso.

1

V2 V2
The Hamiltonian (9) becomes active if the mnber of holes n exceeds the
value of one. There 1s a Hamiitoman simtlar 1o (9) which describes the
lower copper band (or the upper Hubbard bhaud in the electron picture)
[17]. In lowest order of Vi; one lias no mixing terins in the Hamiltonians
which correspond to transitions between hoth bands, but the copper band
influences the singlet band (9) by means of the speetral strength as will be

explainéd later on. '

The second order of V,-J-. gives rise to the exchauge interaction:
) - o :
Hew =53 Jy(NTPXJT - NITXTO) - (10)
LS
with the exchange integral Ji; = 2a(V};)?/2 aud where the constant a is
given in [16}]. For A = 2t one gets the lollowing estimations for thie necarest
neighbour hopping and exchange interactions: £;; = 2ty Nyy >~ 0.16A and
Jij ~ 0.05A [16]. However, in our present numwrical calculations, we will
choose the exchange integral Ji; as a parameter independent of the grven
values for the Emery model, whereas we will calculate the hopping integrals
tij from A and ¢ always. That is duc to our crude mean-field-like ApProxi-
mation for the exchange induced pairing which would bring about oo large.
unreasonable, values of 7.

'The effective problem (9,10) looks like the well-known ¢ — J model [10].
However, out procedure allows the determination of the effective hopping

t;; and exchange integrals Ji; from the paramceters of the Emery model in



a much better way than it was originally proposed [10l. Furthermore, we
included next nearest neighbour hopping. But the most serious difference
concerns the inclusion of the lower copper band which allows to take into
account the spectral weight transfer [21] in « first approximation. That
influences the results at least qualitatively.

It should be pointed out that the Hubbard operators (8) describe compos-
ite singlet quasiparticles for a strongly correlated system (/¢ — oo) which
cannot be obtained in the simple one-particle approximation usually used in
the LDA approach.

To consider the electron-phonon coupling we introduce a model nterac-

tion in the form

Hep =) Qigli — )N}, (11)

ij
where lt.he local normal coordinate ¢); = T]A!” 2, @y expligy) describes lattice
vibrations of a particular symmetry. For sunplicity we consider only one

branch of phonon spectra described by the Hamiltonian:
1 5 900 .
Hpn = 5 S AP +w;QY). (12)
q

where w, is a phonon frequency of the norinal inode. The electron-phonon
interaction for singlets g(i — 7} depends on the deformation potentials for
the energy levels for d- and p-holes in the crystal field. Electron-phonon
coupling due to the modulation of the hopping integral ¢;; in (9) is omitted
here since it seems to be much smaller in ionic cuprates in comparison with

crystal field modulation effects due to lattice vibrations (see e.g. [19]).



3 Electronic structure

To discuss the superconducting pairing within the model (9)-(12) we consider

the equation of motion method for the matrix Green function

G ot~ ) =€ U, ()| U], (2') >, (13)
in terms of the Nambu operators:

> S ’
Vs = b ) \I’;; = ('\':PU Xi t:}) ) (14)
X;

where Zubarev’s notation for the anticommutator Green function (13) was

used [20].

Since the exchange interaction Ji; o< {Vi;|? is much smaller than the
hopping term ¢;; « Vi; we can consider the exchange interaction and the
electron-phonon coupling (11) as a small perturbation to the singlet quasi-
particle band energy given by the hopping Hamiltonian (9). Furthermore,
we are interested in the electronic structure of the paramagnetic state for not
too small doping values. Therefore, we calculate the electronic structure by
means of H; (9) only. For that we introduce the zero order Green function

G®. According to [1 7] we can derive the following equation of motion which

desgri_bes the quasiparticle band structure without any pairing effects:
(W7o — €y 73) Gl o (W) = &iirXy + D QGG , (W), (15)
. 3
where ¢, = Ey, — E} and
Xe =To Xus Xy = (NP7 + XP¥). ~(16)

Here we assumed a paramagnetic ground state which implies that yy in (16)

does not depend on the spin and 7y and 73 in (15} are the Pauli matrices. The



frequency matrix Q;’J is defined by the projection of tlie equation of riotion
for the zero-order Green function onto the subspace of singlet quasiparticles

(see [17], [22]):

Xl Q% = 65 T tal NPT N )+

+(1 =85ty ({X27 + XPOXP7 4 NP + (XPPX77)) . ()
The other diagonal element is given by complex conjugation
(Qf)22 = = ()T,

and the off-diagonal elements are zero. Using the Hubbard 1 type approxi-

mation as in [17]:

(XPOXTTy = 0, (X774 XPVUNT + XE9) = X
and neglecting the energy shift oc &;; in (17) we find for the [requency matrix

after Fourier transformation (Qf;)11 — §2(k):

oo 1#j .
Qk) = xyp _ by 0 (18)
: |

The quasiparticle strength x,; and the chemical |.)0L.(.’|'|tial p depend on
the doping. To calculate that we take into account the lower copper band
which has a spectral strength of x = {X79) [17]. Tor a partly filled singlet

band, where the filling Sy = Ni/N is given fron the number of occupied

k-values N, we find from the definition (16) of the quasiparticle strength:

Xy = X + XuSu- (19)

The total number of holes has a contribution from the copper band and from

the singlet band (see also {17])

n= 2%+ xeCyuSy. R (20)



where

Cyu = 2(A7)" + 2%
and where the spectral strength of the copper band decreases with doping
according to x = 1 —n/2 [17]. The solution of eqs. (19) and (20)
determines xy, in the form

B 0.5
T 1= S5u(1 = Cye /1)

Xy

One can see that the spectral strength of the singlet band yy, increases with
the doping in rough agreement with recent cluster calculations [21].

The stmplification in comparison to our former caleulation of the elee-
tronic stricture [17] cousists mainly in the neglection of the singlet-triplet
coupling. However, that has only a minor inllucnce on the results as can be
seen in Fig. 1. There, we present the density of states defined by:

N(c):;;i;ZéS{cuu), G =4+ Q&) —n (21)
k

at the cheiﬁical potential g and comipare it with the full solution. This def-
inition differs from the imaginary part of the Green fuunction by the quasi-
particle weight x,,. We plotted the density of states without the reduction
factor xy since that quantity determines 1. as will become clear later on.
The peak in the density of states corresponds to the half filled siuglet band,
and occurs at roughly n 2~ 1.24. Please note that it would oceur at a higher
value of n ~ 1.33 if we neglected the spectral weight transfer from the lower
copper band. The decrease of the effective density of states for higher dopingl
values is due to the increase of yy and correspondingly the increase of the

bandwidth.
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Fig.1: The density of states at the Fermi level for the Mull singlet-triplet

model (full line) and neglecting the singlc(.-trij‘)lct coupling {dashed line)

4 Eliashberg equations

We consider two éourceé of superconducting pairing, l[l?lll'lely.t]le exc.hange
interaction ch (10) and the electron phonon coupling Hep (11)' Let us
first take into account the pamng due to H” and (_mploy the progectlon
techmque as described in [2‘2] We introduce a pairing mam'{ A" (leﬁned

by the equation
xpAG = ({[Yies Hos) V1, 1),
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where {...,...} means the anticommutator. Taking into account the com-
mutation relations for the Hubbard operators one gets for the nondiagonal

matrix elements

xe(AGh2 = Jij (X7 ""\’f‘”)*(xf"”a"f M, _
(A5 = (AH% - (22)

IY Y9V 5 can be calculated self-

The anomalous correlation functions < X
consistently from the Green function < X/¥]X]¥ ». It should be noted
that we disregard here the so called kmemat]c pamng [23] due to H; in
agreement wn.h recent results [24] whlch showul that it is purely an effect
of the mean field solution and disappears by the inclusion of higher order
terms. .

Now we can write down the equation for the full Green function (13) in
the form

(w7 = €ya) Giir o(w) = 5,,%,, + 3 (9 + AG) Gjiro(w)+
j

+Y gi-i) s € Vi QiVE, > (23)
To obtain an equation for the last term in (23} proportional to the electron-
phonon coupling (11) we consider the equation for the Green function. <
Wi, Q;1¥F (t) 3> by differentiating it over the second time {'. By. adopting
the same approximations for the ¢;;- and the Jij-terms as in eq.: (23) we

obtain the full Green function in (23) i1i the form:
A IS S . . : :
Gijo(w) ™ = o {(wro — eps)di; — QF — A — xu 25 (@)}, (24)

where the self-energy operator for electron-phonon coupling is given by (com-

“pare [8]):

Eph(w) Zg i 1) T3 < "I’sanl\I’ Qf‘ Pw T3 g(] - l) (25)
i ‘
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In the Migdal approximation we can neglect vertex renormalization for
the electron-phonon interaction and obtain the loltowing equation for the

sell-energy operator in momentum-representation:
2 Tk =1 Y K ke L G, (k 26
X (fl,w)—'ﬁzk: » vEplg—-klw.rv)n {;—T- mG,(k,v)] 4, (26)

where the electron-phonon interaction kernel is given by:

e dz 1 v z s
= ——— = (tanh-— + coth—) a*F{g,z). (2
Eonta [00) = [~ 52— 2 (a4 coth ) 0P (g, ) o)

In the harmonic approximation (12) we get for the Eliashberg function:
l g r : p i .
a’F(g,2) = |g{q) (m-Im < QG- >] = lata)f i B(=* — wy),

where g{g) is the Fourier transform of tle electron-phonon interaction g(i--j).

Now we can write down the Eliashberg equation for the quasiparticle
weight Z(q,w) and the gap function A(y,w) = by, w}/Z{q,w) by introduc-

ing the usual notation for the self-energy operator:
Xu 2PMg,w) = w(l = Z(g,w))10 + 6, (w)7s + 6(g,w)m). (28)

The full gap function is equal to ®(g,w) = A{¢) + é(q, w), where the Fourier
transform of the matrix (22) defines the spin-exchange coutribution to the
gap function (A%{q)}12 = 20A(q), 20 = £1.

The ansatz (28) solves the set of equations (24) and (26). Neglecting, as
usual, the quasiparticle energy shift Sl we can write down the eguation

for the gap function ®(q,w) in the form:

¢{g,w) = v Z/ dv{J{g — k)l.nnh%—, + Ry — & | w, )} *
P *

. Ly ko)
_—— vEZAk, vy — G — Pk, v)

L (29)
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where the quasiparticle energy ¢; was given in (18). Reserving the full
solution of the Eliashberg equations for a further study we will adopt in the
following the weak coupling approximation Z{q.w) — 1 where the clectron-

phonon kernel will be approximated by:

. |
Kpnlg |w,v) = 3U(g) tanh%—,,'(“)(wg ~ |wl) O(wo — ). (30)

The linearized equation for the gap ®(g,w) ~ A(q,w) takes the form:

Algw) = 5 S0 - B0 - [0~ lalh +  (31)
k _

o

20

+2J (g ~ k)}= :\'i;(‘—“ tanit
k

To calculate numerically the superconducting transition temperature T,
from this equation we should consider sottie model interactions for the electran-

phonon coﬁpling Ulq).

5 Numerical determination of 7.

Let us consider the following model for the electron-phonon interaction in

eq. {31):'
Ulg) = Ug + Uq(cos g, + cosgy). . (32)

Since U(q) =~ |g(q)|2/w$ > 0 one has {20/, < t/g. ‘That restricts the possibil-
ity of anisotropic pairing caused by the clectron-phovnon coupliig. As was
already mentioned, in the numerical calculations. we will take the coupling

constant U, of the exchange interaction
2J(g) = Uy{cos g + vosqy) (33)

as-a’parammeter.

13



Now, we derive the gap equations for different synumetries dealing with
both pairing mechanisms in paratlel. The gap function in cg. (31} will be
decomposed into the isotropic Ag(w), extended s-wave Ai(w) and d-wave

Ag{w) gap functions according to
Alg,w) =D wilg)Ailw), (34)
i
with
oo = 1, a,4(q) = cosqe + cosgy. (35)

To obtain the equations for the gap function A;(w) one should multiply
eq. (31) by the corresponding function {35) and integrate over ¢. As a result,

the gap equations for different symmetries decouple:

tanh —£_ {36)
X

' 1 ' | i
Bo(w) = UoBlwa = [wl) 57 > Aolex)Olwn ~ Jex])5—tanh 2%
I <

Agpglw) =
1 _ c oK) .
=U10(wy — M)ﬁ ZAs/d(fk)e(Wu - |fk|)*ﬂ2(—)mta"h ;;“C"F
ﬂv/a(f»)' 1 € o
+ U, 0(w, — jw})-— ZA,N(Q wy — o)) L —zf—ktanhﬁ. {37}

We introduced, as an additional parameter, the cut-off spin-fluctuation en-
ergy ws in (37) which is of the order of the singlet bandwidih, Eq. (37) can

be easily solved by a step-wise gap function:
Bupa(w) = Apr®(wo — w) + Ay O(w — we)O(ws —w), w >0,  (38)

To determine T, of the isotropic s-wave pairing one obhtains a BCS-like equa-
tion:
ZO(wo - |q|) rmh T. (39)

14



Obviously, the isotropic pairing s caused by the electron-phonon coupling
only. The exchange interaction drops out, due to its special g-dependence

(33). For the extended s-wave or d-wave pairing eq. (37} takes the form:

. _ 1 . U1K palwo)
I\,/d(w,) — Ua {1 UJI\J,'d(wD) 1 — UI I{sfd(wﬂ) (40)
where
1 aya(k) 1
Kojaloj) = 37 2Ol — e ~5mstanhore. (1)
k

Since the density of states has a very strong energy dependence

0.008 7 T .
0.006 .
Te/t 0.004 I -
0.002 -

0 ' 1 |
1 1.2 1.4 1.6 1.8

hole-number

Fig.2: T.(n} dependence for the isotropic s-wave pairing

and cannot be approximated by its value at the Fermi energy, eqs. (39,40)
have to be solved numerically. The results of the calculations are shown in

Fig.2 for the isotropic s-wave pairing and in Fig.3 for the extended s- and

15



d-wave pairing. In the calculations we take the following parameters:

Up=02 U =0,201 U,=02

wo = 0,035, w,=10.2, A=2

All the energies are given in units of £

] ¥ 1
0.02 + i
0.015 -
T./t .
0.01 |- -
0.005 k - -
0 a 1l .
1 1.2 1.4 1.6 1.8

hele-nuinber

Fig.3: T.(n) dependence for d-wave pairing (full line) and extended s-wave

pairing (dashed line) for different values of U/; (£0.1 and 0)

Let us first discuss the dependence of T, on the nunber of holes n for
the isotropic s-wave pairing. The peak in the density of states at n ~ 1.24
(see Fig.1) gives rise to a more rounded peak for T, (Fig.2) at a shightly
smaller doping value n >~ 1.2. The anisotropic part of the electron-phonon
coupling {for {/; > 0) gives a solution of (40) for d-wave or extended s-wave

pairing even in the absence of the exchange interaction ({/, = 0). However,

16



that solution is not stable since it has a lower 7. than the isotropic case.
That is due to the restriction Uy < Uy/2. We can conclude that the pure
electron-phonon coupling prefers isotropic s-wave pairing. .

We can realize d-wave or extended s-wave pairing by the exchange inter-
action. That is shown in Fig.3. The suppressiou of extended s-wave pairing
near to the half filled singlet band can be cxplained by the factor a,(k)
which is zero at the Fermi level for hall filling. Depending on the sign of Uy

the anisotropic part of the electron-phonon coupling enhances or suppresses

T..

6 Conclusion

In the present paper we study the superconducting pairing in the Emery
model (1) for the CuQ4 plane when the Fermi level moves through the singlet
band. We consider both the electron-phonon and the exchange mechanisms
of pairing. To describe the electronic structure, including the strong corre-
lation effects, we followed our former work [16. 17] and dertved an effective
t — J-like model. The zero order Green function. describing the elecironic
structure, was obtained by the equation of motion method following {17].
The lower copper band influences the singlet band by means of the spectral
welght transfer.

We derived the Migdal-Ehashberg equations lor the matrix Green func-
tion it terms of Hubbard operators which correspond to singlet quasiparti-
cles. It is interesting to point out that the clectronic quasiparticle weight
X (16) for the singlet Green fuuction drops ot from the gap cquation
(31). Therefore, T, will be determined by the density of states defined as
in (21} which is enhanced due to the bandwidth narrowing caused by the

strong correlations. This brings about lLigh values of T, ~ 0.01¢ even for

17



weak electron-phonon (Ug ~ 0.2¢) and spin-exchange {({/; ~ 1.2¢) coupling
(t ~ 1.5eV for the p-d model). | _

The main task of the present work was the _chermitmLionu of the dﬁp-
ing dependence of T, for different syminetries of the gap function. The
peak for the T,(n) dependence at n ~ 1.2 hoth for the isotropic s-wave
and d-wavé pairing (see [igs. 2,3) resembles the universar Te(n) depen-
dence of the copper oxides. The T{n) curve for the cxtended s-wave pairing
has its maximurm at a much smaﬁér density of holes, n ~ 1.05 {sec Fig.3}
and seéms to be incompatible with the experimental results. The isotropic
and the anisotropic pairings are caused by different mechanisis: Flectron-
phonon coupling prefers isotropic s-wave pairing, whereas the exchange in-
teraction seerns to give rise to d-wave pairing which can be influenced by
the anisotropic part of the electron-phonon interaction. Therelore, an ex-
perimental verification of the gap symmetry would give some hints for the
{yet unknown) underlying pairing mechanisn. .

One should be aware that cur approximation for the electronic structure
cannot be the final answer. It surely does not correctly describe details of
the order of the exchange energy J. So our approach does not distinguish
between the coherent and the incoherent parts of the spectra which is known
to be very important at least in the extremely sinall doping region [25]. Our
results become more reliable for larger doping values n > 1.2. However, our
curves show a quite reasonable overall shape of the T.(n} dependence. That
gives us the hope that a refined electronic structure calculation does not
change t.hé‘main features of our present picture. o

The next open question of this paper concerns t]l.f: absolute values of
T.. Here, we consider only the weak coupling approximation (30) for l;hé
electron-phonon kernel (27) in the Eliashberg cquation. As it is well known,

the weak coupling approximation overestimates the value of 7c. The mean-

18



field-type approximation {22) for the spin-exchange coupling also greatly
overestimates T.. The. effects of strong coupling and pair breaking eflects
due to spin-fluctuation scattering which should suppress 75 will be discussed
elsewhere,
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