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1 Introduction 

In the last years one observes a renewed interest iu investigating the electron­

phonon coupling mechanism for superconducting pairing in the high-tem­

perature superconductors. There are a lot of experimental evidences for 

lattice effects in high-temperature superconductors (see e.g. (I]). And also 

calculations within the local density approximation (LDA) for the electron­

phonon coupling constants have been recently perforrned which demon­

strated a strong coupling of electrons with particular phonon modes both 

for La,CuO.-based compounds [2] and for YBa,Cu307 ones [3]. 

But in the LDA strong electron correlations 011 copper sites cannot be 

properly taken into account which questious the results of these calculations. 

Intensive antiferromagnetic (AF) spin fluctuations which result directly from 

the strong electron correlations play an essential role in the explanation of a 

number of anomalous properties of copper oxides in the normal state. The 

AF spin fluctuations can also bring about superconducting pairing as it was 

proposed by several groups (see, e.g. [4, 5, G]). Therefore, a more rigorous 

description of electron-phonon coupling in the strongly correlated system 

with a consistent account for AF spin fluctuations is desirable to investigate 

the nature of high temperature superconductivity. 

The electronic structure and the low-lying charge-spin excitations of the 

Cu02-planes are most accurately described wit.hiu the Emery rnodel {7]. By 

introducing the Hubbard operators which properly take into account the 

nonfermionic character of quasiparticles after the exclusion of doubly occu­

pied d-hole states, one can obtain Eliashberg equations where in addition to 

the electron-phonon coupling the exchange pairing is readily observed [8]. 

But in the Hubbard I type approximation for the d-band in [8] as well as in 

the mean field approximation for slave bosons in [9] one cannot properly take 
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into account the formation of new quasiparticle bands due to the Coulomb 

and spin correlations. Namely the formation of singlet states plays an essen­

tial role in the low-energy electronic properties of the Cu02 planes (10]. The 

appearance of singlet quasiparticle states inside the p-d gap was proved by 

different methods based on exact diagonalization [11], cluster calculatious 

[12, 13], projection technique [14, 15] and other calculations. 

In recent papers [16, 17] a simple analytical method was proposed which 

permits to reduce the two-band Emery model to all effective singlet-triplet 

model (see also [18]). Applying the equation of motion method for Green 

functions to this effe.ctive problem we found a J'(-'asonoblc description of the 

electronic structure which includes the singlet band (17]. Using this for­

malism for the electronic structure we investigate in the present paper the 

pairing which is induced by both the elcrtron-phonon and the exchange iu­

teraction. 

In the next Sect.2 we briefly formulate the singlet hand rHode! (16]. The 

resulting electronic structure [17] is shortly explniued iu Scct.3. The Migda]­

EJiashberg equations for the matrix GJ·een functions arc derived in SectA. 

The dependence of the superconducting trausition tern perature 7~ on the 

hole concentration n is calculated in Sect.5. rn the Conclusions we sunnna.-

rize the results. 

2 Singlet band model 

We col1sider the Emery model in the limit oF strong correlations at the copper 

sites, ud --+ 00. By taking intO account only the IIIOSt ilnportant terms it 

can be written in a simple form: 
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where J"t:;::;: dt(l- »iu) denotes the creation of a Jiole on a copper site i 

provided there is no other hole with spin U :;::;: -a. The' operator p;t;.
17 

creates 

a hole on an oxygen site m and Sim :;::;: ± 1 depending on the position of the 

site min the unit cell i in agreement with [10]. The hopping p- d integral 

t and the difference between the hole euergy levels for oxygen and copper, 

.:1. = Cp- fd, are the only two parameters in the model (1). 

To derive the singlet band it is reasonable to simplify thiS Hamiltonian 

(!)further. For that we follow mainly [16, 17]. Let us summarize the main 

steps: Introducing the symmetric combination of oxygen operators p~~) in 

the unit cell i according to [10], we can define the \'Vannier states Cia by the 

equation 

t>J 1~5' ~ 
Pia = 2 L....t imPma = L Vij Cja· 

· nt j 

(2) 

The overlapping parameters 

1 ~ j 1 k( I) 
Vjl = N L., 1- 2(cosk, + cosky) e' · ,_ 

k 

(3) 

rapidly decrease with the distance (j- /): v0 = Vjj ::e 0.96, Vt = v; j±a,,, ::e 

-0.14, etc. (see [16]). In the following we will take into account vo, Vt and 

v:a = Vj i+ar+ay ~ -0.02 as it was done in (17]. The lattice constants. ax, ay 

are taken to be unity in (3). In terms of the orthogonal \Vannier states Ci 17 

in (2) we can write the Hamiltonian in the form: 

jq 

(4) 

where Vii = 2t Vij and Vo = 2t vo. Since JI.-iil << Vo one can consider the 

last term in (4) as a small perturbation to the diagonal part given by the 

first term in ( 4). 
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As was shown in [16, 17J, the first part can he diagonali~:cd within one 

unit ce1l. I<Or this we introduce the one-hole state 

(5) 

and two-hole states -singlet!¥>) and triplets lro), ha): 

IV>)= cosO, ~ (djcj- djcj) IO)- sinO, cjcj IO), (6) 

iro) = ~ (dj cj + dj cj)IO), (7) 

where tan2B, = 2V0 / tl, tan 20, = 2v'2V0 / tl. The corresponding one-hole 

Ej and two-hole energies Et~; and E7 arc giveu by: 

The singlet states (6) are the lowest arnong the two-hole states and have 

to be filled first with doping. By projecting the hopping term in (4) onto 

the low-energy subspace ( 5), ( 6), (7) one derives an elfecti vc si nglet-tri plct 

model (for details sec (16, 17, 18]). 

As was shown in fl7], the mixing between singlet and triplel bands is 

rather small and will be neglected in the present paper. \Ve consider only 

the one-hole states lfa) (5) and the singlet states [~) (fi). By introducing 

the Hubbard operators in this subspace 

we can write the effective Hamiltonian in first. order of Vii: 

H, = E, LX;""+ E~ L xt'' + L lij(X,""Xj" + h.c.) (9) 
i:!-jo 
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with the effective hopping integral [17] 

and 

A~ 
X 

The Hamiltonian (9) becomes active if the nHrnhcr of holes 1l exceeds the 

value of one. There is a Ilamiltoniau si111ilar to (9)· which describes the 

lower copper band (or the upper Hubbard h<tnd in the ·electron picture) 

(17). In lowest order of Vii one has 110 I nixing· tenus in the Hamiltonians 

which correspond to transitions between both bands. but the copper band 

iufluences the singlet band (9) by mean~ of the ~pcclral strength as will be 

explained later 011. 

The second order of \lij gives rise to the l'Xchange interaction: 

( 10) 

with the exchange integral Jij = 2a( ~-;j f / ~ and \\'ltew the constant. a is 

given in [16). For~= 2t o11e gets the followirrg csti1nations for the ucarest 

neighbour hopping and exchange interactions: lij ':':' '2/1/1 1\tt'l.{' ':':' 0.16L\. and 

JiJ -:= 0.05~ [16]. However, in our prc:w11t. Hlllllt:rical calculations, we will 

choose the exchange integral JiJ as a parauJl'l.t'l' independent of the giveu 

values for the Emery model, whereas Wt' will calndalL' the hopping illtegrals 

tij from~ and t always. That is due to our cn1tlv nwan-ficld-like approxi­

mation for the exchange induced pairing which \rotdd bring about too large, 

unreasonable, values of 1: .. 
The effective problem (9,10) looks like the \\(•11-kllo\\'11 I- J 111odel [10]. 

However, out procedure allows tlte detenninat.iun of the effective hopping 

tij and exchange integrals Jij from the paraiiH'It'rs of lilt' E111cry tnodcl iu 
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a much better way than it was originally proposed [10]. Furthermore, we 

included next nearest neighbour hopping. But the Iuost serious differeuce 

concerns the inclusion of the lower copper baliCl which allows to take into 

account the spectral weight transfer [21] in a first approximatiotJ. That 

influences the results at least qualitatively. 

It should be pointed out that the Hubbard operato1·s ( 8) describe cornpos­

ite singlet quasiparticles for a strongly correlated system (Ud __,. oo) which 

cannot be obtained in the simple one-particle approximation usually used in 

the LDA approach. 

To consider the electrou-phoHOII coup! in!!, \\T i11trudun-· a I!JOdel int.erac-

tion in the form 

H,p = L Q;y(i- j).l:/', (II) 

'1 

where the local normal coordinate Qj = }N L<f (Jq exp(iqj) describes lattice 

vibrations of a particular symmetry. For sitnplicil.y we consider only oue 

branch of phonon spectra described by the Hamiltonian: 

I """ , ., ., 
Hph = 2 L..)Pi + w,;Q; ). (12) 

q 

where Wq is a phonon frequency of the llOI'lll<-d mode. The electron-phonon 

interaction for singlets g(i- j) depends on Lite deformation potentials for 

the energy levels for d- and p-holcs in the crystal field. Electron-phonon 

coupling due to the modulation of the hoppiug integrallij in (9) is omitted 

here since it seems to be much smaller in iouic·cuprat.es iu comparison \Vith 

crystal field modulation effects due to lattice vibrations (see e.g. [19]). 
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3 Electronic structure 

To discuss the superconducting pairing within the model (9)-(12) we consider 

the equation of motion method for the matrix Green function 

(13) 

in terms of the N ambu operators: 

(14) 

where Zubarev's notation for the anticomrnutat.or Green function (13) was 

used (20]. 

Since the exchange interaction Jij ex I Vii 1
2 is much smaller than the 

hopping term ti; ex ~j we can consider the exchange interaction and the 

electron..:_ phonon coupling ( 11) as a small perturbation to the singlet quasi­

particle band energy given by the hopping llarniltonian (9). Furthermore, 

we are interested in the electronic structure of the paramagnetic state for not 

too small doping values. Therefore, we calculate the electronic structure by 

means of Ht (9) only. For that we introduce the zero order Green function 

G0 According to (17] we can derive the following equation of motion which 

describes the quasiparticle band structure without any pairing effects: 

(wro- <~r3)G?;•,o(w) = b;;·;\~ + 2:=nriaJ, .. o(w), (15) 
} 

where <~ = E.p- Et and 

(16) 

Here we assumed a paramagnetic ground state which implies that X¢ in (16) 

does not depend on the spin and To and T3 in ( 15) are the Pauli matrices. The 
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frequency matrix {lfi is defined by the projection of tli'e eqUati'On of ri10tion 

for the zero-order Green function onto the subspace of siuglet quasi particles 

(see [17], [22]): 

x.p(rlf;)n = 6;; I:1 t"(X;'" x,""')+ 

+(1- 6;;) I;; (((Xf" + x;"'~')(Xj" + x;'"')) + (X/'"XJ")). (17) 

The other diagonal element is given by complex conjugation 

and the off-diagonal elements are zero. Using the Hubbard I type approxi­

mation as in [17]: 

(Xi" Xj") "'0, ((Xf" + xt")(Xj" + X7~l)"' x~ 

and neglecting the energy shift ex {jii in (17) we find for the frequency rnatrix 

after Fourier transformation (Of; )11 - fl( k ): 

l;tj 

O(k) = X.p L !1; eil·(j-li_ ( 18) 
j 

The quasipartiCle strength xw and the chewical potential Jl depend on 

the doping. To "calculate that w·e take into aCcou·ut. the lower cOpper band 

which has a spectral strength of x = (Xf") [17]. !'or a partly filled singlet. 

band, where the filliug Sw = Nk/N is given front the number of occupied 

k-values Nkl we find from the definitiou (lG) or t.hc quasiparticle strength: 

(I D) 

The total number of holes has a coutrihution frotn t.ht' copper band and frotu 

the singlet band (see also [17]) 

(20) 
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where 

and where the spectral strength of the copper band decreases with doping 

according to X = I - n/2 [17]. The solution of 

determines X¢ in the form 

eqs. ( 19) and ( 20) 

0.5 
X.p = . 1- s,.(l- c, . .,/4) 

One can see that the spectral strength of the singlet band \~i~ increases with 

the doping in rough agreemeut with recent clus).er calculations [21]. 
The simplification in cornpariso11 \.o our furnll'r calculation of the elec-

tronic structure [17) cousists mainly iH the lll'g:krt ion uf I lw siHglet-triplct 

coupling. However, that. has onl)' a 111i11or inltllt'Hrc ull the results a::; can be 

seen in Fig.l. There, , .... c preseut the dcHsit-y or slates defined Ly: 

I ". N(<) = N L, b(c- ck), 
k 

q. = <, + fl(k) _,, (21) 

at the chemical potential Jl and co111pare it. \\'itl1 t.lw full solut.iou. This def­

inition differs from the imaginary part of the c;rcen function by the quasi­

particle weight X¢· We plotted the density of stales without the reduction 

factor X~.P since that quantity determines '/~ as will beco1ne cil~ar later 011. 

The peak in the density of states correspond:-; to the half filled singlet. band 

and occurs at roughly n ~ 1.24. Please not.e that it would occur at a higher 

value of n ~ 1.33 if we neglected the spectral weight transfer from the lower 

copper band. The decrease of the cfl"ect.ivt-' density ur st.ai.{'S for higlwr doping 

values is due to the increase of\ ti' cwd rorre:::;pondiugly I lte increase of the 

bandwidth. 
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Fig.l: The density of states at the Fenui level for the full siuglet-triplet. 

model (full line) and neglecting the singlet-triplet coupling (dashed liue) 

4 Eliashberg equations 

We consider two sources of superconducting pairing, namely the exchange 

interaction H,. (10) and the electron-phonou coupling fl,p (11). Let us 

first take into account the pairing due to II a and employ the projection 

technique as described in [22]. We introduce a pairing matrix Aii defined 

by the equation 
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where { ... , ... } means the anticomrnutator. Taking into account the com­

mutation relations for the Hubbard operators .one gets for the nondiagonal 

matrix elements 

(22) 

The anomalous correlation functions < x;w Xft/J > can be calculated self­

consistently from the Green function< X;'"IXf" ». It should be noted 

that we disregard here the so called kinematic pairing (23] due to H, in 

agreement with recent results (24] which showed that it is purely an effect 

of the mean field solution and disappears by the inclusion of higher order 

terms. 

Now we can write down the equation for the full Green function (13i in 

the form 

(wTo- <.pTJ)Gii',u(w) = b;;•X.p + L(O)j +A[;) G;i',u(w)+ 
j 

+ L g(i- j) T3 < lf!;,Q; Jlf!t, »w · 
j 

(23) 

To obtain an equation for the last term in (23) proportional to the electron-

phonon coupling ( 11) we consider the equation for the Green function.< 

IJ!;,Q;Jif!t.(t') »by differentiating it over the second timet'. By adopting 

the same approximations for the lij- and the Jii-terrns as in eq. (23) we 

obtain the full Green function in (23) iti the form; 

~ -1 1 . '• (! (! 'ph 
G;;,,(w) = XV> {(wTo- <,pT3)6;;- rl;;- A;;- X>i>l::ij (w)}, (24) 

where the self-energy operator for electron-phonon coupling is given by (com­

pare (8]}: 

X~ Ef;"(w) = Lg(i -I) T3 < lf!;,QIJIJ!f,Qt• »w T3 g(j -I'). (25) 
II' 
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In the Migdal approximation we cau ueglect vertex reuonnalization for 

the electron-phonon interaction and obtain tl1e fo!Jowing equation for the 

self-energy operator in momentum-representation: 

1 100 1 x~ f;Ph(q,w) =-L dv [(ph(q-k I w,v) r;, [-lmG.(k,v)] r3 , 
N k -oo 7T 

(2G) 

where the electron-phonon interaction kernel is given by: 

1
00 ~ 1 v z • Kph(q I w,v) = - (tanh-;c; + coth

21
,) u-F(q,z). 

-oo Z + V- W 2 21 . 
(27) 

In the harmonic approximation (12) we get for the Eliashbcrg functiou: 

where g( q) is the Fourier transform oft. he clcct.ron-phouoB i nteractiou g( i- j ). 

Now we can write down the Eliashberg equation for the quasiparticle 

weight Z(q,w) and the gap function L'>(q,w) = <~(q,w)/Z(q,w) by introduc­

ing the usual notation for the self-energy operator: 

The full gap function is equal to ct>( q, w) = A( q) + ¢( q, w), where the Fourier 

transform of the matrix (22) defines the spiu-cxchauge contribution to the 

gap function (A"(q)) 13 = 2uA(q), 2u =±I. 

The ansatz (28) solves the set of equations (~4) aud (2()). Neglectiug, as 

usual, the quasiparticle energy shift bEq, we can write down the equatio11 

for the gap function Cl>(q,w) in the form: 

<l>(q,w) ~ L j"' dv{J(q- k)lanh ~~ + l\1,,(q- k I w, I/)}* 
• -00 

[ 1 1 <~(k,v) . J (2") 
-- lTI • '(k ) ., ,_., k . " 1r v-Z- ·,v -(t-<v-(-·,t/) * 
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where the quasiparticle energy <k was gin-n in ( l.S). Reserving the full 

solutiOn of the Eliashberg equatious for a furthl'r study we will adopt in the 

following the weak coupling approXimatiou Z{q,..,;)- 1 where tlie electron­

phonon kernel will be approximated by: 

The linearized equation for the gap <l>(q,w):::::: ~(q,w) takes the form: 

1 
l>(q,w) = N ;;:{U(q- k)El(wu -!c.i!)El(wu- !<d)+ (31) 

+V(q- k)j .l(k.<d I '' 
'l lanL:y--

1 
.. 

L( ~· .,. •: 

To calculate uumerically the :mperronducting transition t.cmpcrat.urc 'I~ 

from this equation we should consiJcr sOIILC 1nodcl inlt•ract.ious for the elcctrou-

phonon coupling U(q). 

5 Numerical determination of Tc 

Let us consider the following model for the ckclrou-phouon interaction in 

eq. (31): 

U(q) = U0 + Ut(ws-,,. + ""'<fy). 

Since U(q) ::= !g(q}ffw: ~ 0 one has !~(!d S t:o. That restricts the possibil­

ity of anisotropic pairing caused hy the clcetrou-phouon coupling. As \V:t.':i 

already mentioned, in the numerical calrulatiun:;. we will take the coupling 

constant U, of the exchange interaction 

2J(q) = U,(cosq,. + <'O'</y) 

as a para111eter. 
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Now, we derive the gap equations for difl'crcut :-;yuunetries dealing with 

both pairing mechanisms in parallel. The gap function in eq. (31) will be 

decomposed into the isotropic Ao(w), extended s-wavc .6-s(w) and d-wave 

Ll.d(w) gap functions according to 

with 

ll'o = 1, CXsjd(q) = COSfJJ_· ± cosqy. {35) 

To obtain the equations for the gap function ~;(w) one should multiply 

cq. (31) by the corresponding fuuctio1\ (:fJ) aud integrate over q. As a result. 

the gap equations for different symmetries decouple: 

1 '\' 1 ,, Ll.o(w) = UoE>(wo -lwiJ-; L.../>o(<.)(-)(wu- hll-. -tanh-,-
h ~.. 2~ 

k 

(36) 

1 '\' "·•fd(k)' 1 . ,, + U,E>(w, -lwl) N L.. Ll.,fd(<.)E>(w., -I< til 
2 2

,, tanh 27 ~ · 
k 

(37) 

\Ve introduced, as an additional paranletcr, t.h<' cut~ofr spin-fluctuation en-

ergy w., in (37) which is of the order of tile si11glt't. ln111dwidth. Eq. (37) can 

be easily solved by a step-wise gap function: 

To determine Tc of the isotropic s-wave pairing one obtains a BCS-like equa­

tion: 

1 1'\' 1 " - =- L.. G(wo -hi)-, -tanh-.-, . 
~ N 2<t 2~ 

' 
14 
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Obviously, the isotropic pairing is caused by the electroa-phonon coupling 

only. The exchange interaction drops out, due to its special q-dependence 

(33). For the extended s-wave or d-wave pairing eq. (37) takes the form: 

where 
I L u,/.J(kf I '• K,1d(w;) =- 0(w; -lck!) 

2 2 
tanh-T. 

N fk 2 c 
k 

Since the density of states has a very strong energy dependence 

0.008 

0.006 

0.002 

0 
I 1.2 1.4 1.6 

hole-number 

Fig.2: T,(n) dependence for the isotropic s-wave pairing 

(40) 

( 41) 

1.8 

and cannot be approximated by its value at the Fermi energy, eqs. (39,40) 

have to be solved numerically. The results of the calculations are shown in 

Fig.2 for the isotropic s-wave pairing and in Fig.3 for the extended s- and 
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d-wave pairing. In the calculations we take tilt: following para111eters: 

U0 = 0.2, U1 = 0.,±0.1, U., = 0.2 

w 0 = 0.035, u~, = 0.2, ~ = 2. 

All the energies are given in units oft. 

0.02 + 

0.015 

+ 
T,jt 

0.01 

0 ·. 

0.005 

oL-~~~----~~~----L-----~ 
1 1.2 1.4 l.G 1.8 

holc-m!Jnber 

Fig.3: Tc(n) dependence ford-wave pairing (full line) and extended s-wave 

pairing (dashed line) for different values of U1 (±0.1 and 0) 

Let us first discuss the dependence of 7~ on t.he IIUillber of holes n for 

the isotropic s-wavc pairing. The peak in tlw dc11sity of states at n::::: 1.24 

(see Fig.l) gives rise to a more rounded peak for Tc ( Fig.2) at. a .slightly 

smaller doping value n ::::: 1.2. The anisotropic part of the elcctron-phouon 

coupling (for ul > 0) gives a solution of (10) for J-wave or extended s-wave 

pairing even in the absence of the exchange illkract.ion ( U,, = 0). HOwever, 

16 



that solutim1 is not stable since it ha:-:~ a lower 1:. than t.hc isotropic case. 

That is due to the restriction ul < Uo/'2. \\'e Call conclude that the pure 

electron-phonon coupling prefers isotropic s-wavt: pairing. 

\.Ye can realize d-.,.,·ave or extended s-wavc pairing by the excha11ge inter­

action. That is shown in Fig.3. The supprcs:o>ion of extended s-wave pairing 

near to the half filled singlet band can be L'Xplaincd by the factor ns(k) 

which is zero at the Fermi level for half fillin~. Depending on the sign of U1 

the anisotropic part of the clectron-phouou coupling enhances or suppresses 

T,. 

6 Conclusion 

In the present paper we study t.he superronduct.ing pairing iu the Emery 

model (1) for the Cu02 plane when the Fcntli level move~ through the singlet 

band. \Ve consider both the electron-phonon and the exchange mechanisms 

of pairing. To describe the electronic structure, including tllf' strong corre­

latiou effects, we followed our former work [!G. 17] aud derived an effective 

t- J-like model. The zero order Gree11 function, dc:-)cribing the electronic 

structure, was obtained by the ('q\IHtion of n1ot.iou I!Ict.hod following [17}. 

The lower copper baud influences the singkt h;-llld by nwans of thf' spectral 

weight transfer. 

We derived the Migdal-Eliashberg equations for the mat.I·ix Green fuur­

tion in terms of Hubbard operators which correspond to singlet. qua.siparti­

cles. It is interesting to point out that the ekctronic qua~iparticle weight. 

XtP ( 16) for the singlet Green fuuctiou drops uut l'ro111 t.hc gap equation 

(31). Therefore, 7~ will be detennin(•d by tht' deusity of states defined as 

in (21) which is enhauced due to the bandwidth Harrowing caused by the 

strong correlations. This brings about high \"alues of rr:. ~ O.Ult CVCil for 
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weak electron-phonon (Uo :::::: 0.2t) and ::;pln-(·xciJaJJgc (l/.1 

(t:::,: 1.5eV for the p-d model). 

0.21) coupling 

The main task of the present work was the detcrmiuatiou of the dop­

ing dependence of 1'~ for different symmetrie:--; of the gap function. The 

peak for the Tc(n) dependence at n :::::: 1.2 both for the isotropic s-wavc 

and d-wave pairing (see Figs. 2,3) resembles the universal 7~(n) depen­

dence of the copper oxides. The Tc(n) curve for the extended s-wavc pairing 

has its maximum at a much smaller density of holes, n :::::: 1.05 (sec Fig.3) 

and seems to be incompatible \vith the cxpcrinJCatal results. The isotropic 

and the anisotropic pairings arc cau:-;ed by dd!'t:r('lll nwchauisJJJs: El(~ctron­

phonon coupling prefers isotropic s-wa.ve pairing:, whcn·ns t.hc cxcha.ngc iu­

teraction seems to give rise to d-wavc pairing which can be influenced b)· 

the anisotropic part of the electron-phollon inU'ractiou. Therefore, an ex­

perimental verification of the gap syrrunetry \\'ould give sonw hints for the 

(yet unknown) underlying pairing rnechanisn1. 

One should be aware that our approximation fOr the electronic structure 

cannot be the final answer. It surely does not. correctly describe details of 

the order of the exchange energy J. So our approach docs not distinguish 

between the coherent and the incohercut parts of the spectra which is known 

to be very important at least in the extremely s1m~ll doping region (25]. Our 

results become more reliable for larger doping. values n > 1.2. However, our 

curves show a quite reasonable overall shape of the '/~(n) dependence. That 

gives us the hope that a refined electronic structure calculatiou does not 

change the main features of our present picture. 

The next .open question of this paper concerns the absolute values of 

Tc. Here, we consider only the weak coupliug approximation (30) for the 

electron-phonon kernel (27) in the Eliashberg equation. As it is well known, 

the weak coupling approximation overestimates the value of Tc. The mean-
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Held-type approximation (22) for the spin-(•xchangv coupling abo grCat.ly 

overestimates Tc. The .effects of stroug coupling and pair breaking efrects 

due to spin-fluctuation scattering which slwu!J suppress 1~ will be discussed 

elsewhere. 
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