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1 Introduction 

For the last years, a considerable attention in quantum optics has been paid to a 

class of optical field states that are called squeezed states {for a recent review see, for 

example, special issues of two optical journals [1} devoted to this subject). These states 

can be produced in parametric down-conversion and similar two-photon processes. In 

the degenerate case, where a single output mode plays the role of both signal and idler, a 

squeezed minimum uncertainty state may be produced with reduced quantum fluctuations 

in one of the output quadratures [2]. The situation is somewhat more compli~;ated for non­

degenerate processes, where the signal and idler modes are distinct. Here the individual 

output modes display isotropic, phase insensitive Gaussian fluctuations similar to those 

usually associated with chaotic or thermal Bose--Einstein fields [3]-[5]. However, the 

combined two-mode state is a non-classical state of light exhibiting squeezed fluctuations 

in modes formed by superposing the signal and idler modes. 

There is a good reason to believe that number states of the electromagnetic field will 

be generated in the near future. Filipowicz, Javanainen and Meystre [6] have shown that 

if inverted atoms with a well-defined velocity are injected inside a micromaser cavity, it is 

possible for the field to evolve towards a number state. The precisely defined two-mode 

photon number state IN+ q, N) can be used as an input field in a squeezing device, such 

as a. parametric amplifier. The model involves a signal and an idler mode driven by a. 

classical pump. The Hamiltonian for the two coupled modes is taken to be [4, 7] (we set 

h = 1) 

where w is the pump frequency and g is the effective·intermode coupling constant. If we 

consider exact resonance w = w,. + Wb then the Hamiltonian may be transformed into the 

interaction picture 

ih = -i{gab- g"b1a1). 
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ln this picture the time-e;·olution opcra.tor is 

and is immediately identifiable as a time- dependent two-mode squeezed oper<ttor: 

\vit h squeezing parameter ~ 

squeezed nu mbcr state 

cxp( -ifiii) = S(gt), 

gt. The output state a.t time l will be the two-mode 

!() = exp( -(ab + cbW)IN + q, N). 

The properties of t.bis state are phase dependent <:1.nd it should be interesting to study 

them. Note, thn,t the statistical properties of one.-mode squeezed number states have 

alrrady been investigated i11 [9]-[12L while their phase properties-· in [22] and [23]. 

The prohkm of the quantum description of the opticn.l field phase ha~. been the sub­

jed 0[ considerable study fer mil.lij yc'"'.rs [13]. This is connected with the difficulty iri 

constructing a. Hermit.iow phc .. se operator. \Vithin the p<J.st few years the not.iou of phase 

variable-: in fj11<1.ntum system5 has beeu greatly clarified. Pcgg and Barnett [UJ-·[16] have 

shown how such ·an operator can be defined for quanl.i~ed clcctrorna.gnetic fields. This 

BC\V formalism ma.kes it possible to describe the quantum propcrLic::; of optical phase in a 

direct way within qua.ntl1m mechanics on tltc basis of the Heunitian phase operator and 

its eigensta.tcs. 

A quite different approach \.o the concepts of the phase va.riaPlc has a.iso been widely 

used in qn<-mt.um optics [17]-[19] aud which involves quantum quasiproha.bility distribu­

tioBS such<'-~ the Q function and the \Vigner function rather than Hermitian operators and 

their cigenstates. These quasiprobability distributions depend upoH Lhe complex eigen­

value o of the ~-..on-Ilermit.ia.n annihilation operator, which can be expres::;ed in terms of a 

ra.dia.l variable iol arid a "phiise" (}both of which are real. If \\'e integrate ovc:r the rarl.ins, 

the resulting distributions are periodic in the phase angk and, for the most of .states 

they sa.t.isfy all properties required by a proper phase distribution. In recent pa;wrs, the 
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Pegg-l3arndt phase distribut,iml have been compared witl1 those distributions obtained 

from the Wigncr and Q functions by integrating them over the radius for the multi­

photon down-conversion [20], displaced number states and displaced thermal tita.tes [21], 

squeezed n11mbcr states and sqtwezcd thermal states [22]. In this paper we extend such 

comparison onto two--mode case. 

The purpose of t.his paper i.s to study photon statistics as well as pb<~sc properties of the 

two-mode squeezed number st-ates which can be considered as a natural gcneraJizat.ion of 

two-mode squeezed vacuum states- the output states of an ideal two- photon device [5]. 

2 Photon number statistics 

Consider two modes of the electromagnetic field, which have annihihttion op(Ta\.ors 

& and l1. A two--mode squeezed number state (T1-1SNS) is defined by n.ct.in,e; with l.lw 

sqneeze operator S'(r,YJ) on the two-mode number state IN+ q,N), thctt is 

(I) 

where q is the difference in the number of photons bet\veen two modes and 

(2) 

In problems in whiclt photons are either created in pairs or destroyed in pairs the vahw of 

q remains const.cmt. Note that in many applications where pair creation occms ~ta.rting 

from vacuum, the parameter q wil1 be zero. The number stat.c decomposition of TMSNS 

can be written as 

where 

b,. 

LIn+ q, n)(n + q, niN + q, N)(>.e) ~ 

(tanh r)jV+n 
( )' (N'(N + q)'n'(n + q)!)'i' 
cosh r +q 

min(n,N) 

X I: 
k,:;;Q 

(-I )n-k ( sinhrt" 

k!(n- k)'(N- k)'(q + k)' 
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and 

'Pn = (n- N)<p (5) 

with <p being an angle which describes the orientation of the quadrature phase uncertainty 

ellipse. The ahove amplitude is obtained by using the factored _form of the two-mode 

sqtleeze operator [5] 

. (cosh r )-1 exp[ -ati>tc2;' tanh r] 

x exp[ -(ala + b1b) In( cosh r )] exp[abe_,;, tanh r]. (6) 

The mean number of photons in the TMSNS is 

(7) 

The joint probability to find na photons in mode a and nb photons in mode b is given by 

(8) 

Using (3) and (4), we get 

(9) 

where 

P(n + q,n) "'P2 (n) = [bn]2
. (10) 

As we can see in Fig. 1, p~oton number distribution Pq(n) has an oscillatory behaviour. 

Such a behaviour is a consequence of interference in four-dimensional phase space [SJ. VVe 

would like to emphasize a presence of (N + 1) peaks in the photon number distribution. 

The similar behaviour of the photon number distribution was observed for the displaced 

number states [10]. It should be stressed that such a peak structure for TMSNS can be 

revealed only for those values of the pararileter q greater than a certain number. This 

number depends on the value of N and for large N we ought to choose large values for 

such a number. Otherwise, some adjacent peaks in the photon number distribution might 

overlap and thus (N +I)-peak structure cannot be certainly discerned . 
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3 Quasiprobability distributions 

In this section we examine the representation of TMSNS by quasiproha.bilit.y pk-tsc-­

spacc distributions. For convenience we choose the squeezing parameter to be rca.!,~= r. 

The t\VO:-mode quasiprobability distributions arc formed by a natural genera.li7,aJion of 

those f~r the singlc-.. mode fields [27]. The Glauber-Sudarshan P function, the Wigner 

function and the Q function are obtained by evaluating the Fourier transforms 

from the characteristic functions 

where s = 1 ifV = 'P, .5 = 0 if V = lV and S = ~1 if·Y = Q. We wo,tld like to. notice that 

there no exists well-defined· Glauber-Sudarshan P function for states under consideration 

owing to their nonclassical nature [:3, 27]. 

According to ref. [28], the Q function t:a.n alternatively be defined a.s 

Q( a, (3) = 2,(a, f3lpla, f3) 
~ 

(13) 

From this dcfmition we sec th~t the Q function is always non-negative. Using the definition 

of the density matrix of TMSNS 

p = S(r)IN + q, N)(N + q, Nl.~1 (r) (14) 

and the £adored form of the squeeze operator (6), we obtain 

Q( a, (3) = ~'(cos~";;:~+''+' eJ<p[~( af3 + a • !3') tanh r] cxp[ -( lal2 + 1/31 2
)] 

N N (~sinhr)"+'Nl(N + q)!(a"f3")N-"(afl)N-k 

x ~ t; n!k1(N- n)!(N ~ k)'(N + q- n)!(N + q- k)! · (IS) 

As to the Wigner function) it cah also be represented as [28] 

(16) 
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where 0"(1) ;mel Db(/) nrc tl1c displncen;cnt operators for modes a and b rcspecti\·ely. 

It is straightforward to evaluate the \Vigner function using cq. (14) and tbe operator 

tnu•sformations [·1] 

( 17) 

~·t( r)b.~'(r) = bcosh r- ii t sinh r, ( 18) 

and their Il1•nnitian conjug<~tf.•s. \Vc find a. quite simple analytical form for the Wigner 

fuJJct.iou 

W(n,;i) 

x LN ({2 sinh rlnlf + ("l cosh rl/1'1 )2 + 2 sinh 2r(a,8 + ok W)) 

X LN+y ((2coslt rlnlf +(~sinh rl/11) 2 + 2sinh27·(a,B + n·.8~)), (19) 

where /,n(x) is t.hc Laguerre polynomi<:d of order 11. Frc_:'m eqs. (15) and (19) one can sec 

that the Q function and the Wigner function depend Oil the sum of t lw ph<l.':('S 0,. +of:, 
only. This L-td. clearly exhibits the corn•latC'd nature of the two-mode sqt!C'I'Zcd number 

st.ates. Tn the nex~- section we will employ the quasiprobability functions in consid('ration 

of phase properties of these states. 

4 Phase distributions 

Now WP t'lllploy the two--mode P(•gg Barndt. pha:o;c formalism [2,!], [2(ij t.o find the 

phase distribut-ion function for such states. This formalism is based on tlw ohs('n·ation 

tl1a.t the Hermitian phase operator can be defined in ·a finit.c-dirncw;ion<-d stat(• :o;pare, 

spanw~d by the ~umber states. Tlw main idea of t.hc Pcgg-- Barnett formalism is to <"valuate 

all necessa..ry expectation values on this flnit.c--dinwnsi(mal sta.t.c space, a.nd mlly a.fter 

that t.he dimension of the space is allowed to tend to infinity. Having the nmnbcr slate 

decompositiou (3) of TMSNS we can determine the continuous joint. ph as(' proha.bility 
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distribution for the continuous pltase variahles oil and ob, which is given h,y 

(20) 

where b71 are given by Eq. (4). The distribution (20) is normalized such that. 

(21) 

One important phase property ofTl\ISNS is seen directly from the fonn of formula (20). 

It is clear that the joint probability distribution depends on the sum of the 1.\vo phases 

only 

(22) 

This means the strong correlations of the two modes. Integrating P( 0," Ob) over one of the 

php,ses gives a marginal phase distribution P(O,,_) or P(Bb) for the phases ()f,l. or Ob, which 

are uniformly distributed 

I 
P(O;) = P(O.) =-

2K 

(23) 

(24) 

Thus the phases Oa or Ob of the individual modes are uniformly djst:r;ibuted, and the only 

nont,t.niformly distributed: phase quantity is the phase sum 0+ = Oa + (h. 1n Fig. 2 we 

plo~ the Pegg.:...Ba.,::n~tt I?h.ase distributioJ! for T~rf;SNS in potar coordinates. for djfFerent 

values of pa.:amcter q. ]for nonzero values of q the phase djstriQu.ti:on shows (N + 1}-lobe 

structure, and th~ ~reater q, the rnore distinct lobes b~come. H.o-\Y:evcr, when~ q = 0- the 

phase distribution has ,only one lobe for alkN. It is impprtant to, notice_ a I:cma.rkable 

resc~blance i.n a b~haviour of the phase distribution and th~ phot_qn number distd,bu.tipn 

for TMSNS: they both djsf?lay t.he (N +.1 ),-peak str.uJ:tup:~ ... Anoth~r, .. signifi~ant fei).tqr,c of 

the joint phast:: dist.ributjon is_ a property of the ph~se locking.- thf'! ph<:~.sG sum, is lockeQ, 

to the argument of the squeezing parameter in the limit of l~.rge squeezing [24, 25]. 
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Now consider phase quasi probability distributions which call be obtained hy integrat­

ing quasiprobahility distribution fum:tions (11) over the radial variables [17], [18]. As we 

·have noticed above; P function is not well-defined function for the states under consid­

eration and therefore it is impossible to determine corresponding phase quasiprobability 

distribution. As a result of integration of Q(a,f3) and f.i!(a:,{J) over Ia: I and lf31. we arrive 

to the following formula: 

piVI(O+) = (Z:)' {I + 2 L b,b~ cos[(n- k)O+]GIVI(n, k)GIVI(n + q, k + q)} , (25) 
. n>k 

wh(~re the coefficients G(Vl(n, k) distinguish betwe--en two distributions, and they are: 

(i) for the Q function 

GIQI(n k) = f[(n + k)/2 +I] 
' y';;fkf ' 

(26) 

(ii) for the VVigncr function 

m=O 

x Jr-(~~) ~~~~ m-)GIQI(m, [n- k[ + m), (27) 

where .\ = min(n, k), v = max(n, k). An the coefficients- G(Vl(n, k) are symmetrical, 

GWI(n, k) = GIVI(k, n), and G(VI(n, n) = I. Note, that such expressions (20), (25) for the 

phase distributions are valid for all- two-mode states with the number state d·ecomposition 

like in (3). In Fi-g. 3,_ w.e show the plots of the thl'ee pha-se dis-tribUtions in polar coordinates 

for 'FMSNS cakuJ,.,ted, according to formulas (20)' and (25) with the mefficients (26) 

and; ~2_7) for different valwi!s of N and nonzero q. .. It i's- seen· that the PCgg-Ba·rnett phase 

diSt-r:ihution. and: p(.W)( 0+} are simila·J; and· have the N + I lobes,. while pV~l( 0+) is· rhuch 

br.oader and. has only· one lobe; In. the· case· qc = 0 all three distributions have the same 

form of one lobe; So,. as_ in the-case of displaced number states [21J; there is all' essential' 

difference in t'he· phase· information. carried. by p(Q.){Of.) and. p(W)(O+)• Because of the 
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FIG. ] . Photon number distribution for the two-mode squeezed number state with r = 
0.5, q =50 and (a) N = 0, (b) N =I, (c) N = 2. 
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averaging procedure with t.he "probabilities'' G(Ql(n, l:)G{Ql(n + q, k + q) some phase 

inform<~.tion is lost in p(Ql(O+)- The Pt.>gg--BarneH phase distribution is \TTY dose to the 

distributioo Jl(W)(O+), although it is rwt identical to it. The phase peaks of p(ll"l(O+) are 

slip;ht.ly narrower than those of p{PB)( 0+ ). The greater the difference in numhcr of photons 

q the closer these two diStributions. Basically they c;nry the snmc phase infonn<lt.ion. This 

~irnilarity is in agreement with the area of overl<~p ill plrn.sc space arguments, \\·!rich are 

t.hat tire \Vigncr function reprcs('nts qu<tntum statC's in the phase space [18]. Ilmn.>n'r, the 

Wigrwr funct iott CitH tilkc 011 negn!.iw• v<llnes <tnd the posit.i\·c definite11css of p!Wl(O+) is 

not autornat.ically guaranteed, while t.lwrc are no such problems with the Pegg-Ihrnett. 

pha.sc distribution. 

lH 
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FIG. 2. Pl1asc -distribut_ion-_p(PB)(O+)" for .the two--modC squeezed number s\.il\.c with 

r = 0.5, N = 2 and q = 0 (solid line)j·q = 3 {long d<~shcd Iitle) and q = 6 (slrort--dashod 

line). 
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FIG. 3. P~a.se distribution p(PB)(O+) (solid line) and phase qua.siproba.bility distributions 

p(W)(O+) (short-'-dashed line) and p(Ql(O+) (long-dashed line) for the two-mode squeezed 

number state with r = 0.5, q = 6 and (a) N = 0, (b) N =I, (c) N = 2. 
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5 Conclusions 

We have discussed photon statistics alJd phase properties of the two ·n1ode squeezed 

number states sl1owing that the pl10ton Ultmbcr distribu1ion and the Pcgg Barnett pha.sc 

distribution for such staks exhibit the similar N + 1 peak structure for nonzero values 

of tl1c JiJTCrcncc in the t;·umbcr of photous q between modes. \Ve hilvc compared the 

Pegg-Uarnctt phase distribution with tlw phase qu?.siprobability dislrihntiotlS p(Q)(O+) 

and p(ll'l(O+) obtained by intcgr<ttilig the Q function and the \Vigner fllndion over the 

radial coordina!.<'s. \Vc h<~n~ shown that the Pcgg-Barnett pha.se distribution and the 

distributioll J-'{II')(O+) carry bi1sically the s;1.me phase information, while the distribution 

p(Q)(O+) loses an esscnt.i<l.] part of the pha.sc illforma.tion. 
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