


1 Introduction

For the last years, a considerable attention in quantum optics has been paid to a
class of optical field states that ‘are called squeezed states (for a recent review see, for
example, special issues of two optical journals [1] devoted to this subject). These states
can be produced in parametric down-conversion and similar two-photon processes In
the degenerate case, where a single output mode plays the role of both signal and idler, a
squeezed mintmum uncertainty state may be produced with reduced quantum fluctuations
in one of the output quadratures [2]. The situation is somewhat more complicated for non-
degenerate processes, where the signal and idler modes are distinct. Here the individual
output modes display isetropic, phase insensitive‘ Gaussian fluctnations similar to those
usually associated with chaotic or thermal Bose-Einstein fields [3]-[5]. However, the
combined two-mode state is a non-classical state of light exhibiting squeezed fluctuations
in modes for;ned by superposing the signal and idler modes.

There is a good reason to believe that number states of the electromagnetic field will
be generated in the near future. Filipowicz, Javanainen and Meystre {6] have shown that
if inverted atoms with a well-defined velocity are injected inside a micromaser cavity, it is
possible for the field to evolve towards a number state. The precisely defined two-mode
photon number state |N 4+ ¢, N} can be used as an input field in a squeezing device, such
as a parametric amplifier. The model involves a signal and an idler mode driven by a

classical pump. The Hamiltonian for the two coupled modes is taken to be [4, 7] (we set
E=1)

H = woita + wibld - i{gabexp(iwt) — g"b'a" exp(—iwt}},

where w is the pump frequency and g¢ is the effective intermode coupling constant. If we
consider exacl resonance w = w, +w; then the Hamiltonian may be transformed into the

interaction picture

H; = —i{gab — g"blaty.



in this picture the time—evolution oporalor is

exp(-ﬁ!zi}t) = exp{ﬁvgtdg + g*tnbfaf},
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and is immediately Identifiable as a time- dependent two—mode sgueezed operator:
exp(—i i) = S(gt),

with squeezing parameter £ = gi. The oatput state at time { will be the two-mode

squeczed mumber state

The properties of this state are phase dependent and it should be intereéting to study
them. Note, that the statistical properties of one-mode squeezed number stales have
already been investigated in [9]-[12], while their phase properties — in [22] and [23].

The problem of the qua‘nt'uﬁl description of the optical field phase has been the sub-
jecl of considersble study for many years [13]. This i3 connected with the dilficulty in
constructing a Hermitian phase operator. Within the past few years the notion of phase
variables in quantum systems bas been greatly clarified. Pegg and Barnett [14]-{16] have
shown how such -an operator can be defined for quaniized electromagnetic fields. This
new foermalism malkes it possible to describe the quanium properties of optical phase in a
direct way within quanium mechanics on the basis of the Hermifian phase operator and
its eigenstates., :

A quite different approach to the concepts of the phase variable has also been widely
used in guantum optics {17]-[19] and which involves quantum quasiprobability distribu-
tions such s the @ function and the Wigner function rather than Hermitian operators and
their eigenstates. These quasiprobability distributions depend npen the complex cigen-
value o of the nou-ilermitian annihilation operator, which can be expressed in terms of a
radial variable |a| and a “phase™ 8 hoth of which are real. If we integrate over the radius,
the resulting distributions are periodic in the phase angle and, for the most of states

they satisfy all properties required by a proper phase distribution. In recent paners, the



Pegg-Barnelt phase distribution have been compared with those distributions obtained
from the Wigner and @ functions by integrating them over the radius for the multi-
photon down-conversion [29], displaced number states and displaced thermal states [21],
squeezed number states and squeezed thermal states [22]. In this paper we extend such
comparison onto two-mode casc.

The purpose of this paper is to study photon statistics as well as phase properties of the

{wo—mode squeezed number states which can be considered as a natural generalization of

two—moile squeezed vacuum states — the output slates of an ideal two- pheton device [3].

2 Photon number statistics

Consider two modes of the electromagnetic field, which have annihilation operalors
& and b, A two-mode squeezed number state (TMSNS) is defined by acting with the

sqieeze operator S(r,) on the two—mode number state [N+ ¢, N}, thal is

“N + 4, -N)(T,n,c) = *&(Ta‘;’)'N + Q:‘N)'? q2 0, ' (1}

where ¢ is the difference in the number of photons between two modes and

3(r, ) = explr(abe 2 — blale® ). (2)
In problems in which photons are either created in pairs or destroyed in pairs the value of
q remains constant. Note that in many applications where pair creation aceurs starting
from vacaum, the parameter ¢ will be zero.. The number state decomposition of TMSNS

can be written as

IN4 Ny = Donbgniin+gnlV +q, N, =

S bl + g,m), (3)

,
where

tanh r)Vin 7 ,
B, = ((?;s-ﬂ?)m (NN + g)tnl(n + q)!)”

min{r,N)

o (=1 *(sinh r)~ |
” %a Elin — BN ~ B + k) (4]




and

P =(n—~ N)g (5)
with ¢ being an angle which describes the orientation of the quadrature phase uncertainty
ellipse. The ahove amp!itude is obtained by using the factored form of the two—mode
squeeze operator [5]

S(r,0) = - (coshr) ™" exp[~a'b'e® tanh r)
x exp[—(ata + btdy In{cosh )] exp[abe~2*¥ tanh ], {6)
The mean number of photons in the TMSNS is
: (&iaﬂ—aib) =(2N + g4+ 1leosh2r — 1. ‘ (7}

The joint probability to find », photons in mode ¢ and n; photons in mode & is given by

P(nmnb) = |(nusnb;-N + ¢, N){".w)lz' V ) (8)

Using (3) and (4), we get

Pln, gy = Pln +gq, n)bn, ntgOnsns i (9)

where
- P(n + g,n) = Py(n) = |b,)% (19}

As we can see in Fig. 1, photon number distribution Fy{n) has an oscillatory behaviour,
Such a behaviour is a consequence of interference in four—dimensional phase space [8]. We
would like to emphasize a presence of (V + 1) peaks in the photon number distribution.
The snmalar behaviour of the photon number distribution was observed for the displaced
nurnber states [10]. Tt should be stressed that such a peak structure for TMSNS can be
revealed only for those values of the pararieter ¢ greater than a certain number. This
number depends on-the value of N and for large N we ought to choose large values for
such a number. Otherwise, some adjacent peaks in the photoﬁ number distribution might

overlap and thus {N + 1)-peak structure cannot be certainly discerned.



\

3 Quasiprobability distributions

In this section we examine the representation of TMSNS by gunasiprobability phase-
space: distributions. For convenience we choose the squeezing parameter 1o be real, £ = 7.
The two-mode guasiprobability distributions are {formed by a natural generalization of
those for the single-mode fields [27]. The Glauber-Sudarshan P function, the Wigner

function and the @ function are ohtained by evaluating the Fourier transforms

VO, ) = o Eneexplon el - FOCURO. D

from the characteristic functions

0O, 6) = exp (1 + 1) Tr {exptral —niyespl@hl — B} o

where s = 1 iV =P, s =0ilV = Wand s = -1V = Q. Wc_woul-tl like' to notice that
there no-exists well—defined: Glanber-Sudarshan P funciion for states under consideration
owing to their nonclassical nature [3, 27]. .

According to ref. [28], the ( function can alternalively be defined as

© Qe f) = (Q Blpla, B)- - (13}

‘From this definition we sce that the @ function is always non-negative. Using the definition

of the density matrix of TMSNS

o= SN g NN g NIEN) | (14)

and the factored form of the squeeze opérator (6), we obtain

0,8) = 1 pl~(of + av6) tanh r] expl—(jaf + A1)

rz(co'qh ryiv+g+2

Lsinhr)" ¥ NN + g){a*f" }N_’*{aﬁ)N‘k
x Z Z n’k‘ ‘N = )N = k(N + g - n)EN +g— &) (15)

n=0 k=0

As 1o the Wigner function, it can also be represented as [28]

a;ﬁ):%Tﬂ{ﬁﬁa@a-)bb(zﬂ)cxp[iir(@f&+f)t&)]}, 7 o 18)



where D (v) and Dy{) are the displacement operators for modes @ and b respectively.
It 3s straightforward to evaluate the Wigner function using eq. (14) and the operator

transformations [

$'r)aS(r) = dcoshr — btsinh r, (17)
$1(r)hé6r) = beoshr — &' sinhr, : 8

and their Hermilian conjugates. We fid a quite simple analyvilical for for the Wigner

function

4 . .
Wi, 3) = —{=1)exp|~2cosh 2r(|a® + |#*) — 2sinh 2r(af + o d37)
x La ({2s5inh rla])? + (2 cosh 241 + 2sinh 2riaf 4 o™ %))

x L 2eosh #|n])® + (Zsinh |31 + 2sinh 2 (e + a™37)), (19
+q

where I,,(x) is the Laguerre potynomial of order n. l*‘rgm eqs. (15) and {19) one can see
that the @ function and the Wigner function depend on the sum of the plazes 8, + 6,
‘onty. This [act clearly exhibits the correlated nature of the two-mode squeezed number
states. In the next soction we will employ the quasiprobability functions in consideration

of phase properties of these states.

4 Phase distributions

Now we emiploy the twe-maode Pegg- Barnett phase formalism [21], [2G] to find the
phase distribution function for such stales. This formalism is based -on the observation
that the Hermitian phase operator can be defined in a finite-dimensional stale space,
spannéd by the number stales. ‘The main idea of the P ge-Barnett formalism is to evaluate
all necessaty cxpectation values on this ﬁr;it('f—dim(—'nsim.lal state space, and only after
that the dimension of the épa.ce is allowed to lend te infinity. Having the number state

decomposition (3) of TMSNS we can determine the continuous joint phase probability



distribution for-the continuous phase variables @, and 8, which is given by

O

P = s {1 +23 bubycos[(n — k)0, + 90)1} Q (20)

n>k

where b, are given by Eq. {4). The distribution (20) is normalized such that

/ " / P, 85)d0,d0, = 1. (21)

One important phase property of TMSNS is seen directly from the form of formula (20).
It is clear that (ke joint probability distribution depends on the sum of the two phases

only . —
P(0,,0,) = P8y =0, +&). .- {22)

This means (ke strong correlations of the two modes. Integrating P(f,,8;) over one of the
phases gives a marginal phase distribution P(#,) or P(8,) for the phases 8, or s, which
are uniformly distributed

POy = [ P00 = 3 - 23)

_',
- 27

P} = P(#a) = (24)

_1_
27
Thus the phases #, or 6 of the individual _mpdes are uniformly distributed, and the only
nonu.niforr.nl& distributed: phase guantity is the phase sum &, = 8, +6,. In Fig 2 we
plot the Pegg-Barnett Phase distribution for TMSNS. in [_)oliar coordinates. for different
v_i_ﬂues of pa.ra,rnct_er q. For ﬁ_onzero values of ¢ the phase distribution shows. (N + I)-lobe
structure, and the greater ¢ the more distinct lobes bgcome. However, when, ¢ = 0 the
phase distribution__ ha.slonly one lobe for all- N. I;tr is impg;taqt- to. notice a remarkable-
resemnblance in a b_ehaviour of. the phase diétribu_tion and the photon number distribution
for TMSNS: they both dj_sg]ay the (N +‘l_):.—pea.1k_ structure, A_n_ob_hgr;_s_igniﬁgqnt featurc of
the joint phase distribution is a property of the phase locking — the phase sqm‘is__ locked,

to the argument of the squeezing parameter in the limit of large squeezing [24, 25].



Now consider phase quasiprobability distributions which caii be obtained by integrat-
ing quasiprobability distribution functions (11) over the radial variables [17], [18]. As we
“have noticed above;, P function is not well-defined fu.nction for the states under consid-
eration and therefore it is impossible to determine corresﬁondiﬁg phase quasiprobability
distribution. As a resuli of integration of Q(a, 8) and W(a, 8) over |a| and ||, we arrive

to the following formula:

n>k

PY9,) = (91)2 {1 +2)  baby cos|(n — £)0,]GV(n, k)G (n + ¢,k + q)} (25)

where the coeflicients G™Y)(n, k) distinguish between two distributions, and they are:

(i) for the @ function

T[(n + k)/2 + 1]

G, k) = AT,

(26)

(ii) for the Wigner function

5 .
G(W)(n,k) - Z(_l),\—mg(ln-kH?m)/?

m=0

(Q) (,,_"-m)-cr_“q"(m,z-ﬁ — k|4 ), (21

where A = min(n, k), v = max{n, k). All the coefficients G((n, &) are symmetrical,

G, k) = Gk, n), and 6 (n,n) = 1. Note, that such expressions (20), (25} fot the

X

phase distributions are valid for zll two-mode states with the number state decompesition
like in {3). In Fig. 3, we show the plots of the three phase distribitions in polar coordinaies
for TMSNS calculated according to- formulas (20} and' (25} with the coefficients (26)
and: (27) for different. values of N and nonzero. q,'... It is seen that the Pegg-Barnett phase
distribution and: P8, ) are similar and: have the N + 1 lobes, while P@)(0,) is runch
broader and: has only one-lobe. 1a the case g-= 0 all three distributions lave the same
form of one lobe. Sb, as.in the case of displaced number states [21}, there is ait éssential

difference in the phase information. carried by P@0,) and PM)(0;): Because of the
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FIG. 1. Photon number distribution for the two-mode squeczed number state with r =

0.5,¢="50and (a) N=10, (b) N =1, (c) N =2.
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averaging procedure with the “probabilities” G'(Q)(n,.l:)(}i(m{n + g,k + ¢} somc phase
information is lost in 2900, ). The Pegg-Barnett phase distribution is very close to the
distribution PH(0,), althougly it is not identical to it. The phase peaks of P8, are
slightly narrower than those of PIPE)(#,), . The greater the difference in number of photons
g the closer these two diéirilﬂnltions. Basically they carry the same phase information. This
similarity is in agreement with the area of overlap in phase space arguments, which are
that the Wigner function represents quantun states in the phase space [18]. However, the -
Wigner function can take on negalive values and the posilive definiteness of P 0,) is
not autonratically guaranteed, while there are no such problems with the Pegg-Barnett

phase distribution.
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FIG. 2. Phase distribution. PEBYO ). for the two-mode squeezed number state with
r =05, N =2 and ¢ =.0 (solid line),.¢ = 3 (long-dashed hue) and ¢ = 6 (short--dashed

line).



I

0.0 4 |

-0.2 {

0.2
0.9 A

—-0.2 1

—-0.4 T
-1.5

0.4

~0.2 -

-0.4 - . -
~15 -1.0 -05 00 0.5
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5

Conclusions

We have discussed photon statistics and phase propertics of the two-mode squeezed

number states showing that the photon number distribution and the Pegg- Barnett phase

distzibution for such states exhibit the similar N -+ T-peak structure for nonzero values

of the diffarence in the rumber of photons ¢ between modes. We have compared the

Pegg-Barnett phase distribuiion with the phase quasiprobability distributions P@RYO)

and PUY)(6,) obtained by integrating the @ function and the Wigner function over the

radial coordinates. We have shown that the Pegg-Barnett phase distzibution and the

distribution PMI0L) carry basically the same phase information, while the distribution

PN Y loses an essential part of the phase information.
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