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1 Introduction 

A sta.rting point in the ordinary path-integral approaches to quantum Spin systems 

is that to write down the spin operators in terms of boson (fermion) creation and 

annihilation operators. Once the spin hamiltonian is transformed into many- boson 

(fermion) problem, one can just use the well-known expression for the partition 

function as a path integral (PI) over the flat d~ical phase space associated with 

the oscillator boson (fermion) group (supergroup), whose Lie slgebrBB consist of 

generators 

(1) 

respectively. The standard commutation (a.nticommuta.tion) relations &Je aa follows: 

[a,af]= !Jf,J}= I. 

An important point is that the oscillator group (supergroup) appears as a group 

of motion of the phBBe plane of a harmonic Bose (Fermi) oscillator and acts in 

this phase space as a group of linear shifts, canonical transformations of a complex 

ordinary (Grassmann) plane. These canonical transformations provide a natural 

basis for calculating appropriate PI's. That is, let the oscillator group he a dynamical 

group for a hamiltonian H, e.g., H belongs to iiB Lie algebra (I). Then, PI for the 

-partition function 

can be evaluated with the help of the linear shifts of integration variables. 

It then follows that PI over the phase plane of harmonic oscillators turns out to 

be very convenient for quantum systems, provided their onperlurbed hamiltonians 

look as the sums of uncoupled oscillators (Bose or/and Fermi). For perturbation 

theory based on tl1e harmonic oscillator approximation to be effective, the originally 

fiat phase 'space is to be only slightly deformed by an interaction. This is not the 

case for spin systems. As is known, the classical phase space for a. single spin is a 

curved one, in fact a two-dimensional sphere SJ. Accordingly, the "flat" PI turns 

out to be rather "unnatural" for spin systems. This results in the fact that even 
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for the simplest linear spin m~el the corresponding "flat" PI requires tiresome and 

lengthy colculations [1] . 

.As SU{2} group is the dynamical group for linear spin system, it seems to be 

quite na.t.ural to use the PI representation for spin systems starting from the SU(2) 

Pl. AB is known, the SU(2) PI can be constructed as a PI over SU(2) coherent 

states (CS's). The CS's basis provides an "internal" PI representation for a large 

variety of Lie groups G whose coset space G/ K with respect to the maximal compact 

subgroup K is hermitian symmetric. The relevant phase spa,ce appears as the orbit 

of the coadjaint representation. Note that the important c~ of the SU(J, 1) group 

and the OSP(Ii2) supergroup have recently been discussed [2, 3]. 

The purpose of this paper is that to show that the SU(2) PI representation when 

combined with SU(2) canonical transformations of the integration apace turns out 

to be very convenient for quantum spin systems. This should come 88 no surprise 

since the SU(2) PI is the most appropriate one fOr quantum sys\ems that could be 

expressed through the S'U(2) generators. 

2 SU(2) coherent states and the path integral 

Let us consider the quantum variables of a single spin J±, J0 which span SU(2)

algebra: 

[Jo, J±] = ±J,.. (2) 

SU(2) CS can be represented then as follows [4, 5, 6] 

Ia; j) =(I+ lal2)-i exp(aJ+) li, -j), (3) 

where the lowest weight state li, -j) is annihilated by the lowering operator ]_, 

The complex number a belonga to the coset space SU(2)/U(!) which is isomorphic 

_to the complex projective space-GP1 ~ SJ. Note that CS (3) de~nds upon the 

repreeentation index J. = n/2 (n = 0, 1, 2, ... ) - the eigenvalue of the quadratic 

Casimir operator P. The overlap of two states jo/; j) and ja; j) is given as 

(4) 
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An important properly of these states is that they satisfy the completeness relation 

J ja;j)(a;jj dl',(<>) = Ii = t jj, m)(m,jj, 
m=-J 

where the SCT(2)-inva.ria.nt integration measure looks as follows: 

2j + 1 d'a 
d!';(a) = -~- (1 + 1<>1 2 ) 2 · 

It is easily seen that 

TrF= 2)m,j!Fij,m) = J dfl1 (a)(a;J!Fia;j). 
m 

The averages over SU(2) CS's look as follows 

(a; jj( J_ )"Ia; j) 

(2j)! &' = (2j- p)! (I+ iai')P' 
(2j)! a" . 

= (2j p)! (1 + lai')P' p = 0' 
1

' "' 21' 
.1 -)aj' 

-J 1 + 1<>1'. 

(5) 

(6) 

(7) 

(8) 

We proceed now to the path integral over SU(2) CS's for the partition function 

where ihe Hamiltonian H belongs io ihe SU(2) enveloping algebra. Due io Eq.(7) 

one has 

Z = J d!';(a)(a;jje-PHja;j). 

Defining i as {3/N and using F_,q.(5) we write in the usual manner 

Z = J d!';( a)(a; jja<N; j){<>N; jje-"'j<>N-1; j)(<>N-1; jje-df 

... e-"'lao; j)(<>o; jja; j) d!'j( <>N ) ... dfl;( no). 

Up to the second order in E one has 

where 
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The integration over OJ.Ii(a) in accordance with Eq.(7) yields 

so that 

J dJ.L;(a)(a;jlaN; j)(ao; ila; j) = Tr laN;j)(ao; il 

= {ao;)I<>N;j), 

Z = J g dJ.~;fi{a,l<>o-1)(a0 laN)exp ( -€ t,'lt;(&,,a,_1)), 

where th~ use has been made of the notation 

(9) 

Note that the reproducing kernel (a; jjp; j) acts a.a a. delta function With respect to 

the measure dJlj(a). Due'? this the integration over dJ.l<> in (9) ca.n be carried-out. 

explicitly to yield 

With a,_1 = a,; - 6, it then follows 

In( I ) . .,,s, - &,6, 0( '') 
Cl'j a,_l = J I I' + o, . l+ Q'j 

In the continuous limit this yields 

z =f. v,.,(.,)•xp (-jlp "'"' 1 ~:a. -lp 'lt,(a,a)ds). 
o(O)=o(P) o I + " o 

where the following normalization holds: 

/. 
Dl';(a)exp (-jlp &C.~~~ ds) = Tr I,= 2j +I. 

cc{O)=a(,B) o 1 + Ci 

3 Evaluation of the path integral 

(11) 

(12) 

In order to illustrate how the general formula (12) works) let us take H to be the 

linear function in the spin variables 

H = 2wJ0 + ).J+ + >.L, (13) 
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where wand ..\ are real and complex c-numbers, respectively. The hamiltonia.n (13) 
describes a single pB.ra.magnetic spin in a constant field. For the partition function~ 
in a.ccorda.nce with Eqs.(l2), one obtains 

Z; = /. Di-<;(a)exp (- {p C;(&,Oi)ds), 
a(O)=a-(,6) Jo 

(14) 

where the quantity 

_.&6!-&a . l-jtYj2 .- 5 . a 
C;- J I+ /01/2 - 21wl + /aj' + 21 \ + jaj' + 21 ,\ I+ jaj2 (1S) 

can be defined as the· Lagrangian. The EuleT-Lagrange equations lead to the equ&-
_tions of motion 

,;= {7t;,OI}, 

where {,} is a Poisson bracket defined by 

{A B} = (I+ /~/2)2 [8A 8B _ 8A 8BJ. 
' 2J 8a 8& 8& {}a 

This indicatet1 that the classical phase space spanned by a and a is curved - in 
fact the complex projective line C P 1 "' S' [7]. 

SU(2) being the dynamical group for the hamiltonian (13), PI (14) ca.n be eval
uated by mea.us of SU(2) transformation of integration variables. The SU(2) group 
element can be taken to be 

( 
u 11) SU(2) = _ _ , 
-v u 

where juj2 + jvj2 = 1. SU(2) acts in the integration space SU(2)/U(1) through the 
following canonical (projective) transformations: 

""+" Q'-+Q'= I 
-fJtY + U 

(16) 

where the group parameters u and v are kept constant. The integration measure 
dJ.'.j(a) is invariant under transformations (16). The same is true for the kinetic 
term, for example 

p p 

I aa d I a. aa+vd 
I + /a/2 

8 
-+ 1 + ja/2 -va + u 

8 = 
0 0 
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j 1 :~1' ds + j 1 :lal' (a _u:" +,_"u 
0 0 

~ ~ ~ 

J 1 :~al'ds-J dln(va- u) = J 1 :~<>l2 ds, 
0 0 0 

where the total derivative can be dropped since a(O) = a(fi). 

Upon taking 

w{X !Xn 
u= lwiVf>.TcosB, v=-yf>,T"no, 

coo 0 = ~(I+ lwi/ll)1i', sin 0 = ~(I - lwl/ll)112
, 

{) = .jw' +!>.I', (17) 

one eliminates the teriDB linear in ). and X in the the exponent of Eq. (14) which 

results in 

( ~ . ~ ) 
f · . J aa - aa . J 1 - 1<>1' 

Dl';(a)exp -J l+lal' + 2J!l l+lal'ds · 
a(O)=o(~) 0 0 

The latter integral can be evaluated directly through the definition (10): 

N 

Z; = limN-ro f d1'1 ... d!'N n (a,le-""J'I<>i-1)· 
•=1 tlro=al\1 

Namely, taking into account that 

one gets 

{18) 

N 

Z; = e'iPnJimN-ro f dp.1 ... dp.N n ("'•l"'•-1·-""). (19) 
i=l ao=aN 

By using decomposition of unity (5) the integration over df-'1 ... df.LN _1 can be carried 

out explicitly. This yields 

Z; .-~m; = J dp.N(<>NI<>oe-:m"') = J dl';(a)(C>Iae-2~n) 
. fro (1 + •)2j 1 - e-2.8n(2j+l) = (2. I) -2,6n(2J+l) dx - :._....::.__=~ 

J + e (e-2.8D + x)2i+2 - -} _ e-2.80 , 
0 
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which gives 

z. = sinh,tJ!l(2j +I), 
' sinh pn 

which_is the correct expression. 

PI (18) is straightforwardly generalized for. time-dependeD! !l's. The ...ue cal
culations as that above immediately yield 

J D,u,(a)exp 
<>(O)=<>(P) 

( 

p . p ) . j aC.- aa . j I - lal2 

-J o l+lal' +2J o !l(s)l+lal'a's = 
p 

sinh(2j + l)JU(s)a's 
0 

p 
sinh J !l( s )ds 

0 

(20) 

Formula (20) can directly be applied in the parasupersym.metric quantum me
chanics. Let us consider the lD pa.rasupersymmetric hamiltoni&n [8] 

where the order pofparaquantization is fixed by the spin f: p = 2f. The ha.milionian 
H describes ID motion of a particle with spin p/2 in a particular potential V(z) 
and magnetic field B(z) related to this potential (see for details [8]). With the help 
of Eqs. (8) and (20) one gets 

Z = Tre-/3H 

-J Dx(t)D.u,.12(a)exp (-~ j z2ds- j V(x)a's 
0 0 

ft . p ) . J aci> - Qoo . J 1 - jaj2 -; 1+1<>1' +2; B(x)l+lal'ds 
0 0 

p 

( 

P P ) sinh(2; +I) J B(x)ds 
= J Dz(t)exp -~ J i 2a's- J V(x)ds p 0 

o o smh f B(x)a's 
0 

(21) 
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In the supersymmetric case (p = 1) this reads as 

( ~ ~ ) ~ 
Z ~I Dz(t)Dexp -~~ z2d$- I V(x)ds cooh I B(x)d$. 

0 0 0 

This formula is usually derived in the framework of the fe-.rmionic PI technique [9J. 

4 SU(2) group contraction to the oscillator group 

As is known, the U(2) algebra with generators 

J+, J_, Jo, I, 

where I is ident.it.y operator, can be contract.ed to the harmonic-oscillator algebra 

where 

This ill done under the identification [5] 

(22) 

In this limit, the Bloch sphere surface contracis io lhe phase space of the har

monic oscillator, the ordinary complex pla.ne. The spin CS goes over into the ordi

n&ry (Glauber) CS [5, 6]. The physical me&lling ofthe U2 algebra contraction can 

be easily read off the. Holstein-Primalroff representation for spin operators (10]: 

to: t ( at a) t to: ( at a) t 
J+ = y ~Ja 1 - 2J , J_ = y 2j 1 - '2J a, 

~=~+~ ~~ 

The transition from Eq. (23) to Eq. (22) implies in particular 

(at a) 
-.-<1, 

J 
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where ( ... ) means the averaging over an unperturbed wave function. 

Under the contraction procedure the PI (12) turns into the "flat" one with the 

measure DaDa. This is easily seen with the help of the substitution 

a-+ a/V2J, j--+ oo. 

For example, PI (14) is readily seen to take the form 

;jrl(•l<•/ (If,. 
Z; = e • Dc.Daexp 2 (a01-aa)ds 

o(O)=o(P) o 

-I U(s)i01i2ds- ,fijI Xads- ,fijI Aads), (25) 

where the parameters .\ and Q can he viewed now to he time-dependent. The 

limiting flat forms of the SU(2) PI's might be of some use in studying the spin

field interaction models with high spins. There should be mentioned, for instance, 

quantum-optical models based on the hynes-Cummings and Rabi hamiltonians [11]. 

5 Quantum Heisenberg model and SU(2) local 

transformations 

In this section, we will show that local linear fractional transformations (16), with u 

and v being time dependent, turn out to be very helpful for the PI representations of 

spin systems effectively interacting with the external fields. The tiresome procedure 

of disentangling spin operators out of the symbol of the T-ordering operator looks in 

the SU(2) PI technique as a. simple algebraic operation. As an instrudive example 

we will consider here the quantum Heisenberg model. 

A partition function for quantum Heisenberg ferromagnet 

where !, a.re SU(2) generators of dimensionality 2J + 1 and K;; is the pooit.ively 
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defined symmetric matrix of the excL...,. interaction can be written as (12] 

z = f If JJl.(t)up (-~I ,f;(t)K;;'i;(t)dt) 

X Tr [Tup (-i j,(t)J;(t)dt) 1 , (26) 

where the symbol T stands for adol•4,P. al product and summation over repeated 
indices iB 388Umed. 

In ordt>.r to proceed any further 1!ritll Eq.{26), one has to disentangle the operators 
lout of the T-ordering symbol. 11oio lma been done by Kolokolov [12] by lhe direct 
identification 

Texp (-I f(s)l(•)ds) =up(J+.P-(t))exp (Jo f.' .P,(s)ds) 

X exp [J_ f.' V>+(s)up(f¢o(s')ds') ds] exp(-J+.P-(0)). (27) 

Eq. (27) implies 

TrTexp (- ~~ ¢(•)J{•)ds) = sinh(J + 1/2) Jt .P,(s)ds. (28) 
0 

sinh Ht .P,(s)ds 

The set of auxiliary functions f/J.,a = 0, +,- are to be determined by comparing 
the time-derivatives of lhe left- aadligld-hand sides of Eq. (27). Proceeding in 
this way one finally arrives at BOJDe IIOidiBear differential eqUations on functions t/Ja, 
which play a key role in the di.oeutawgling procedure [12]. 

Let us see now how the SU(2) PI "M:Rb in the qu~tum Heisenberg model. Using 
ave~ages (8) one easily finds 

z = /fi D¢~'l~~exp (-2 j ¢~0l(t)K,j'¢)'l(t)dt 
• 0 

-2/ ,P,(t)KiNi(t)Jt) ZJ(i)' (29) 
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where 

In the ordinary PI formulation of the quantum Heisenberg model one- should take 

care of fixing the value of spin J a.t every lattice cite. This is- usually done "by 

hand" inserting in a PI the product of appropriate O¥functions. This trick leads in 

turn to the additional integration over a. set of auxiliary fields (13]. In the SU(2) 

PI formulation (29) tlJe ]·dependence of the partition function a.ppea.rs in a. natural 

way due to that of the SU(2) OS's. 

In order to calculate PI (30) we use linear frac\ional substitution (16) with the 

SU(2) group parameters u and v being now considered time-dependent: 

u(t)or + v(t) 
a--+a= , 

-v(t)a + u(t) 
(31) 

where we have dropped for the moment the index dependence of the functions en

tering into Eq. (31). We proceed further by choosing u and v to cancel the terms 

linear in ~and¢ in the exponent in Eq.(JO). After some algebra, one finally gets 

where 

The funclions u( t) aud v( t) must he ta.ken to satisfy the following nonlinear dilfer

enUal equation': 

(33) 

and the conjugate one 

(34) 
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with the boundacy conditions 

u(Q) = u(/1) and v(Q) = v(f'). 

In gelling Eq. (34) there should be kept in mind that the conjugation operator 

changes the sign of the time derivatives. By setting z = Ufv in Eq. (33) one is led 

to the equation 

i- 2¢(')z- </>z' +¢ = 0, z(O) = z(/1), (35) 

which is of ihe R.iccati type. Eq. (34) then reads 

(36) 

Consequently, par&Dleier n entering Eq. (32) becomes 

Eq. (35) coincides exactly with the Kolokolov)s disentangling condition. This is 

easily seen under the identification 

,pH= -2¢, ,p(+) = </>, ,p(•) = 2¢0 , 

If- = 2z, lf+ = </>, t/Jo = 2¢0 + 2</>z, 

wherein the left-hand sides of the equalities are referred to the Kolokolov's n~tation; 

and the right-hand sides, to ours. It could also he checked that the product of traces 

(28) over the lattice sites coincides with expression (32). AU this proves that the 

SU(2) local linear fractional transformations (31) lead to the very same result as 

that of the direct SU(2) disentangling procedure. 

Inserting then Eq. (32) into Eq. (29), with the supplementary conditions (33,34) 

being in mind, one arrives a.t the PI representation for the Heisenberg partition 

function. To proceed further one could try to express the integration variables i in 

(29) through the complex functions u and v. To e.valuate the jacobian J(u, v) ofthis 

transformation one should take into ·account Eqs. {33,34) and the SU(2) relation 

juj2 + lvl2 = 1. The resulting expression is a PI over two interacting scalar Bose 

fields [12]. This and related problems will be discussed elsewhere. 
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There should be pointed out thai Eqs. (33,34) h&ve obvious time -indepen

dent solutions in the form of Eqs.(17), provided the functions ¢ do not depend 

upon time. This means nothing but the mea.n-:fieJd appro:ximat.ion for the PI (29). 

Indeed, assuming the Hubhard-StratonoVich functions ~ to be constant, we have 

from (17,29,32) 

The saddle-point equation reads 

(38) 

where 
2J+I 21+1 I z BJ(•) = --coih(--•)- -coth(-) 2J 2J 2J 2J 

is the Brillouin function. If we assume 1.ranslational invariance for the sya1.em, it 

becomes 
Jk 

<$ = TBJ(2JfJ,P), (39) 

where ,1/J denotes the modulus of~, and 

Eqs. (38,39) at J = 1/2 coincide exacily with those obtained by Liebler and Orland 

in the framework of conventional peth- integral technique [14]. 

Note in conclusion that the SU(2) PI bea.re oil the "internal" SU(2) group struc

ture. This makes it to be very convenient in applications to in4erading spin-spin 

or spin-field syslems. In particular, the SU(2) linear fractionallransfonn&tions put 

into consideration the set of new functions ut(t) and vi(t) subjected to the con

straints luol' + lv;l' =I. The latter seem to be important in attempts to reveal the 

connection between the interacting spin systeiDB and nonlinear u-models. 

- This work was supported by lhe"Hubbard" project No. 91112 of the RUI!Sian 

State Program on high-temperatwe superconductivity. 
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