








3. Smoothing of the structure of the
spectra beginning with large quahtum num-
bers.

Experiments concerning the optical ab-
sorption in amorphous solids show that the
most characteristic type of absorption edge
is the exponential, i.e., Urbach edge’3’ The
theoretical study of the problem of absorp-
tion for direct transitions in a uniform
electric field by Dow and Redfield’®/ has
shown that the absorption edge is of Urbach
type with the inclusion of the excitonic ef-
fects and of Franz-Keldysh type when neglect
them. Therefore they propose the unified
explanation of the Urbach’s rule by the
broadening of the excitonic line due to in=-
ternal electric field of various physical
origin (phonons, impurities, defects, etc.Y?/
Proceeding from these results Mott and Da-
vis /58/propose the same model for the expla-
nation of the exponential absorption edge
in amorphous semiconductors, too, assuming
the internal electric fields of about 10°% -
107‘ch‘l.They expect the existence of exci-
tons at least in solids with not too high
dielectric constants so that the Coulomb
field €2/¢p could lead to bound states as it
does in crystals.

The theory presented here proposes the
investigation of Wannier excitons in disor-
dered solids by the use of Feynman path in-
tegral formalism. This formalism makes ave-
raging procedure relatively simple, but it
puts the limiting conditions on the probabi-
lity distribution functional of the random
potential and on the correlation functions.
The theory allows us to answer the questions
put by Mott and Davis’/®% and, namely:
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1. The question of stability of the bound
state of the electron-hole pair in a random
field.

2. The shape of the absorption edge.

3. The expression for the mean-square-
root of the internal electric fields in
terms of experimental values.

The theory gives, as we shall see, an
eXcellent agreement with the experiments.

2. TWO-PARTICLE DENSITY MATRIX

The motion of a particle in a random po-
tential is a quantum statistical problem,
and, therefore, we shall proceed from the
quantum statistical density matrix proper to
the problem. The two-particle density matrix
of the mutually correlated motion of the
exXcited Coulomb bounded electron-hole pair
in a thermodynamical equilibrium in a ran-
dom potential nV(r)is a solution of the Bloch
equation

2 2
- gR—z (Eg~ ?m A~ n
B e 2my

A=+, V) g V(E DIRAL)
e]l‘e——rh‘

Here nV(D is a random part of the potential.
The periodic part is included in the effec-
tive masses m, , m, and in the energies E,;,
E2,(Eg=E1—E2) of the bottom of the conduc-
tion band and of the top of the valence
band, respectivqu.'Vﬁ) is a dimensionless
function, having the following properties:
<V({)>= 0,

W(F=1") =< V(D)V(r") > = expi—(P=t")2/L2 } .

The solution of eq. (1) averaged over the
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Caussian distribution functional PIV(D1 can
be written in the form of the double Feynman
path integral

<R> = foDR‘(u)Dﬁ(u)exp(—EgB) x

_Lﬁﬂ 1 :,% i‘B 1 2 2
- du — —fd - -
xexp i : ({ u2 MR (u)— f u( p.p (u) (p(u))lx(z)
T‘ ﬁlB -> - - -
”[W(rc(U')—rv(U")HW(rh(U')—rh(U"))i
+ W(rf_ () =r M.
> > - > e l.7)(’ + My l?h
- -, , R=—5¢ _h'h
Here p r. L "
The sign - (+ ) pertains to parallelly (anti-

parallelly) fluctuating bands, respectively.
The correlation length L is supposed to be
sufficiently large in order to justify the
use of the effective mass approximation in
eq. (1) and the use of the harmonic approxi-
mation of the correlation function

>

W(EE) - 1o ﬁL'—‘;—) (3)

As it has been pointed out in 10/ namely the
quadratic form of the correlation functions
enables one to calculate the Feynman path
integral analytically. (The diffusion lengths

2g.1/2
D=(Jmﬁé)/ of both particles are supposed to

satisfy the relation D<L ),

The arguments of the mixed correlation
functions W(r Lu” )—i(u ") satisfy the inequali-
ty

IF () =r @)l @) =r @)+ I D" +p @) .
Further, we can distinguish two cases:
a)D® +p(u) > L,

b)D +p(u) < L.

If the radius of the exciton p is suffi-
ciently large in order to satisfy the rela-
tion a) the mixed correlation is negligibly

~small,

(Fe(u )= "))
L2

W(r (u)=r (0" )= exp(~ w1,

and we neglect it in eq. (2).
,L

3. THE CASE OF LARCE EXCITON RADIUS,p2L-D_
3.1. The Averaged Two-Particle Density Matrix

For further calculations it is useful to
introduce the mean frequency of the hydro-
gen-like internal motion of the exciton in
the stationary state o. by the condition of
the mechanical equilibrium

The expression for the averaged density mat-
rix can be then written in the form

“R(R,R®,p,p% ) >= Nexp 17282 —E B 1x
| T 2 175376
fo(R(u))exp{— M f R2(u)du—-? (1- __)” du “du” x

(R(u) =R N J(RW), g 5°, B),



where

g - > > hB . Y
J(R(),p,p° B) = [ Dp (wexpi- —;‘Tf (> W +w2p?(w)du
0
.2 RYRY: (6)
- "2_'—(3 +b )f f (p(u)—- P(U )—aR(u )+aR(u )) dudu”.
22 12
Here a—b m b m

T aZip2 TMWM M

The path integrals in (5) separate accurate-
ly, or, in other words, the internal motion
and the motion of two mass center become
independent, if

a) a=0 (m_=m,),

b) R = const (m <<mh = M).
Therefore, the coupling of both motions de-
pends on the relation of the effective mas-
ses. Let us suppose « to be small, a2~0 .,
Then, both motions in the exXpression (5) can
be separated approximately as

I —)O > g 2 > >
<R(R,R®, p,5° ) > = expl-BE +7 B 1<R g(R,R°)> x
x<Rg(§.5°, aR, aR®)>, )

where

S(R,R°, 8 ) }

<RB(ﬁ,_li °)>=N; [ Dﬁ(u)exp{

< RB(p_),_ﬁo,aR,aRo) >:N2f D;(u)expi S(p,p ’aR’ aRO) }.

h
Here, the corresponding actions are
R e . 2 8 18
M 32 -
S(R,R°, )= —— T
(R,R°, B) 2h0fR (u)du— thz a)f f (R(u” )~ (8)

- 2 .
and R(u N<du’du’

- —» B
S(g;p°,aR, aR°, B)=- j'B_;Bz(u) du— rf pZdu ~

2 B (9)
__n 2 b2 - — (0N 2_ o 2
W(a+ )Ofof[(P(U') f(u 1)-2 (P(u’) P(U )) x

«(R(u") =R(u") ) Jdu’du””

. 3.2. Effective Hopping Motion of the Mass

Center

The problem of the center-of-mass motion,
as can be seen from (8) reduces to the prob-
lem of a harmonic oscillator with memory,
which appears at the investigation of a
single particle in a Caussian random poten-
tial. This problem has been solved by Be-
zak/10/, Barta’!l” and Papadopoulos/12/

Proceeding from the principle of the mini-
mum action, Sg(R,ﬁo,B) =0, we obtain the
solution for R(u)

. L. L. sich[ Q(u - LhR)]

R(u) =L (R+R9) + L(R-R9) 2 ,
2 2

sinh(m;l‘8 )

where ﬁzﬁﬁuﬂ,R°=Rﬂn.
The corresponding action is

S(R,R°,B) - zzEM (R-R

where .
M o= $MBhQ wth (4-8hQ), (10)
and )
2 _ayr Byt
Q_'Tf(l -5) (ﬁJ- (11)

Here we have introduced, analogically as
in/10/ the "second effective mass"M; giving



the measure of localization of the mass
center. Namely, if T-0, then Q-4 , Mgoo
(perfect localization); ifToe , -0 (MM
(quasifree motion). © has a meaning of the
mean frequency of the mass centers in the
potential wells. The coupling of the mass
center motion with the internal motion ap-
pearing in the expressions (10) and (11)
through ¢ diminishes the localization (i.e.,

' andM; ) of the mass center (in most
cases «>0 ) and, therefore, contributes to
the scattering of the internal bound state
(conservation of energy).

3.3. Effective Internal Motion of the Pair
in a Quasiclassical Picture

The exact solution for the "classical
path" of the excitation radius can be ob-
tained by a similar way as in the proceeding
section.

It reads
- _L_ 2> 5 _" 1 2 70 —————-Sh(¢U)
PO =567 Fle) lp- 35440 Flo) 1 Zmsi o
[-’})o+—§-(7)+z°) F(o) 1 S(dlu=hp)) | (12)

sh( ¢t 3)

L h(Q(u—- 18 h( s(u— DB
+aw2(R-—R0)[S u 5 )—S é(u 2)) .

2 f_g4? sh(&zﬁ&) sh(E;'_ﬁ)

Here ;-p(hp), é°=5(0),
2 27]26(82 +b )

0 = , (752:0) ~o .,
pl?

w, 1s defined by eq. (4).

(13)
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Further,
w? h ~1
Flo) ~(1- < %E‘E ) for w>w_  (14)
2w
h 21
and ' 2
(1)2 —1 1
~F(w)=(l—_9_2_m__)’ q;:(wi_wz)é (15)

2w %_Q%ﬁ_
for <w, -
The analysis of the function F(w) ,determining

the dispersiop of the internal state (eq.
(12)) shows’? that

lim F(w) » and |[p| e
wow,

IimF(w) =0 and pp -
w >0 ¢

In view of this and of the analysis of res-

pective actions for the regions WS and
w > /Y we can conclude the following:
a) At the resonant frequency W= the

dissociation appears.
b) If the Coulomb interaction dominates,

i.e., if the relations
w2<wf (lGa)
or, equivalently,
2 2 2 2 2
T] B mE +mh <' [ < <
< (1leb)
L M2 ¢ p3w ~ L3

hold, the internal motion keeps a hydrogen~-
like character with the frequency ¢=(m%—w%é
The relations (1l6) give the criteria of sta-
bility of the electron-hole pair, which



complete and precise the criterion of Rice
and Jortner 7 _<rp/13/ 7 ~Vo_ ;o e

c) If w2>w3, the bound state of the pair

is destroyed by the disorder (the Coulomb
interaction is exceeded by the scattering
influence of the disorder). The electron is
localized "during the period of its motion
around the hole 7., 7,>7

Hence, the character of the internal mo-
tion is determined by the dominancy of one
of the two interactions as discussed above.

4, THE CASE OF "SMALL" EXCITON RADIUS,P<L'D‘2/lZ
4.1. Stark Effect Due to Disorder

In this case the mixed correlation func-
tion W(7, -f,) has to be taken into account
in eq. (2). Moreover, the condition p< L-De
makes possible the use of the harmonic ap-
proximation (3) for W(i,"Fh)’ too.

So the correlation term in (2) turns out
to be

2 * -EB D - WEkd nd o,
exp | L— fﬁf du’du”’[W(r (u) =t (u)) + W(rh(u’) -rh(u.’ )

2829 0 e N

2 34 (17)
SN, 7 (i) 1y 2
_2W(re(u)—rh(U))]§=€Xp[Wi§l(dep W |,

where pliXu) , i= 1,2,3 are the components of
the relative coordinate p(u)=f_(u) —mhﬂ.

The expression in the exponential in (17)
can be linearized by the transformation

00 2
_{aexp( -—%— -iMq) dq=2\]7rexp( —Mz) (18)

with
12

! = - hzl_? (Of du p(sku)) Y ’ :1,2,3, (19)

as follows

M

- "
0] \/1—)3 J1 dq,dq, dq pexpl~ %(qf e (hLof sFRIA. (20)
Here

-> T] N
F-
L 1 (21)

(4]

is the induced effective stochastical elect-
rical field depending on the parameters 5, L
characterizing the "randomness" of the solid
and on the stochastical parameters q with
the induced Gaussian distribution function

1
(2\/m)
internal electric field representation" has
been firstly introduced.in this way by
Barta/!l/Hence, the random electric field re-
presentation of the density matrix reads

_l— 2 2 2 . "
exp[ 4(ql+q2 +q3)L This random

R> - _ _)o 1 R 2 2?0
<R > = exp( BEg)R(ﬁ,R B)(Z\/—TT)—;‘ {ﬂ R(3,5°.8,9 x (22)

2 3
xexp(- 1) 11 dq
4 i=1 i
where

M3

RER, ) (M ep(- M__(R_Ry?) (23)
2702 n2g

and
2 g -> - ' lﬁB 1 »2 62 g
R(p, 0% 8,9 = [Dp(w) CXpi——df [?pp (u) - —eF-(u)ldul. -
h e plu)

The last quantity can be interpreted as

a probability density of the density matrix
of the exciton in a random electric field F.
Providing Boltzman statistics it can be
written in a common way as
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R(p 7% B.4) = S 03 (5,9 @, (5°0) exp(-BEXJ) . (25)
Obviously, ®, , E, are the solutions of the
"local” Schroedinger equation
2 2 >
h € ry > > > > -
-2 A - ~eF (p,9)=E.(p,9 ®. (p.q .
[ 2u P e plu eF(d) p](b'(p 9)=E;(p.9 l(p(D (26)

This is the equation describing the hydro-
genlike motion in the electric field F(q) .
So we come to the statement: If the radius
of the exciton p satisfies the relation

p-- L-De, then the effect of the disorder on
the internal structure of the exciton is
equivalent to the Stark splitting of the
excitonic spectra in the crystal due to

the electrical field I'(q) and has to
appear 1in the absorption spectra. This
effect has been/ really observed by
Nikitine et al.’* for the yellow
series of Cu,0, as has been mentioned in the
Introduction. The disorder has been achieved
by the irradiation of the crystalline Cuj0
by protons and neutrons and the characteris-
tic length has been estimated to be ~75A.

As the Bohr radius ofothe lowest exciton
state in Cu20 is ~10A , the condition nee-
ded for the appearance of the effect has
been satisfied. With the increasing intensity
of bombarding particles the structure of

the spectra become less distinct and lastly
disappeared. This smoothing of the spectra
can be explained by the decrease of L with
the increase of the intensity of the partic-
les. Then the radius p becomes comparable
with L,L»p+De and we come to the case of

p> L —De which has been discussed in Sect.3
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This effect of smoothing begins, obviously,
from the large quantum numbers, as it has
been really observed’/3:¥.

4.2. The Density of States

The density of states is given by the
equation

n(B - ; Reo}odu expl GE—)ulZ(iu) ,

where the partition function
Z(iu):_:/_szdnd5<niu(n,*p)>,iu:ﬁ (28)

is expressed through the diagonal elements
of the density matrix (22)
2
q
M /2ex{-E B = -— >
) £ [ffe *Rpq,p dq.
2nh2B (2\7;)3 _{of 79,0 dq (29)

<R,B(ﬁ’$) >:(

The favourable way of finding the quantity
R(p.q, B) gives eqs. (25) and (26).

» The orientation of the electrical field
F(q) is determined by the parameters q,

(21) and, generally, 4,70, i =1,2,3. So we
have to perform a transformation of the
coordinate system in order to have the orien-
tation of the Z-axis along the vector F. For
simplicity and for the possibility of appli-
cation to the case of Cu,0 we shall
choose the lowest excited staten-2, 6 After
rather long calculations (details are given
in/'% ) one obtains finally the following
expression for the density of states
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4 M 3/2 o 1/2
n(E) =\/—?(m) Re[(E—Eg_Ez) 1+

2

(E-E , —E9)
A 5_(_31_2_)3/2 dl/2exp[ - _._4di2.__2}x (30)
37 2rh
172 i(E-E ~E3) . | i(E-E, —E3
_—— B )y — — =<
xRe (i {Dw( 3 )+ 4D-3/2( 1 ;

where d=£g—n » Dy are parabolic cylinder
functions.

The first term in expression (30) is
the density of states related to the free m
motion of the mass center and to the unper-
turbed internal bound state with the energy
£ . It is non-zero if E -E —E%>O. The
second term relates to the eéffect of disor-
der. Its role becomes more evident from the
asymptotic behaviour of the function a(E):

a) For E-E —E%> 2,
g 2 L

we obtain

| 4, M 32 /2 5 M 32
o(B ~-=(——)" " (E-E_-Ej) 2 (=) "
7 2rh> e 2 +3\‘/77 2ah 2)
(31)
1/2 2 2
<(E-E -E) -2 4 (140 )
) ® E-E -E¥? 2
E _-E9) (E-E -E9
g g 2

b) For |E-E,-E§|>> 3_5-7,,13 ~E ,~E3<0

we have a "tail" behaviour as

5 /2 (E-E_ —Eg)
f(B) 3y Z (M2 (- i U
6T o2 2d 2
2 g a2 d? (32)
X{‘E_E _Ezol +g— - (1+0( 9 ))}-
g 013/2 o
|E-E,—E5|” |E-E -El

From the last formula we can conclude the
following:

1. The tail part, i.e., the range of

n(E) #0  for E-E~E%<0 increases with
increasingd=3ap/L. These states take
part in the optical absorption and so
the absorption edge shifts to longer
wave lengths. This shifting has been
observed by Nikitine et al/®

2. In the range E'=E-E, -E§ <0 a new

maximum of the density of states may
appear which will shift to smaller
energies with increasing d This effect
might cause the doubling of absorp-
tion lines’/3%,

The agreement of our results with the
experimental results of Nikitine et al./ 3%
allows us to conclude that the proposed mo-
del (Caussian distribution functional of the
random potential V(Y) and the Caussian form
of the correlation functions) seems to be
reasonable.
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