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On the Theory of Absorption Edges in Amorphous 
Solids 

The derivation of Redfield's "uniform microfield 
representation" for absorption coefficient of amorphous 
solids with Gaussian random potential, Caussian correla
tion function and large correlation lengths is presented. 
The exponential behaviour of the absorption edges in both 
cases with the inclusion of the Coulomb interaction 
(excitonic transitions) and neglecting that (interband 
transitions) has been found. The mean-square-root of the 

internal random electric fields F = 
1 

c 
0
1
• 86 has been 

m !1E 0 ao 

expressed in terms of experimental quantities. 
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1. INTRODUCTION 

The theory of the optical absorption edge proposed by 
Redfield / l, 2/ and by Dow and Redfield /J, 4/ results in the 
unified theory of Urbach's absorption edge. The theory 
bases on the assumption of the existence of random internal 
electric fields of various physical origin (phonons, impu
rities, defects, etc.), which can ionize excitons . The 
electric fields are supposed to be uniform in some 
macroscopic but sufficiently small ranges so that the 
absorption coefficient can be expressed as an average 
of the local absorption coefficients over all fields 

... .... ... 
a ( <o) = fa ( w, F) P (F) dF. (1) 

This formula is the principal assumption of Dow's and 
Redfield's theory. Proceeding from the results for ab
sorption coefficient in homogeneous electric fields Dow 
and Redfield / s/ deduce Urbach ' s absorption edge in 
cases with Coulomb bound of the electron and the hole 
and Franz-Keldysh absorption edge in cases with the 
absence of this bound / 3, 4/ . In view of these theories 
Mott and Davis / 6,7/ suggest the possibility of explana
tion of Urbach's edges in amorphous semiconductors by 
the existence of internal random electric fields and 
they ask about the origin of these fields. Indeed, it has 
been shown by many authors (e.g., /s, 9 I ) that in spite 
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of doubtless role of phonons in the interpretation of the 
Urbach's absorption edge at higher temperatures it 
persists at low temperatures as well with temperature 
independent slope but depending on the structure. The 
semiclassical theory of optical absorption by Bonch-Bru
jevichl1 o I and by Esser I nl including phonons, as well 
as the theory of absorption by Efrosll2l lead to the ap
proximately exponential absorption edge. 

The theory proposed in this paper (the preliminary 
version is given in 1131 ) yields the derivation of the 
representation (1) of the absorption coefficient for the 
amorphous solid characterized by the Gaussian random 
potential with large correlation length L and with 
the Gaussian form of the correlation function. Sect. 2 
is devoted to the derivation of the random field repre
sentation of the two-particle (electron-hole) density 
matrix. In Sect. 3 the exact derivation of formula (1) 
for the exciton absorption is presented and in Sect.4 the 
same for the interband absorption. Further, the absorption 
edges have been found for both cases and the mean
square-root of the internal fields has been estimated. 
The used formalism permits a simple inclusion of the 
Coulomb interaction, if the exciton radius p satisfies the 

• 2 

relation p< L- De, De= ( 
2~ {3)112 is a diffusion length of the 

electron. This condition quarantees also the relative stabi
lity of the internal state of theexciton114

•
16!Moreover, the 

center of mass is not influenced by the disorder in this 
case;it exhibits a free particle-like motioni16/.The assump
tion quoted above limits the range of validity of the formula 
(1) for amorphous solid. The use of the effective mass 
approximation is also consistent ~ith the supposal of the 
large correlation lengths, L > 50 A which is reasonable 
for number of cases. 

2. RANDOM ELECTRIC FIELD REPRESENTATION 

The absorption coefficient a ( w) = ~ R~u ((u) in amor
phous solid with sufficiently large c~orrela tion length 

4 

(in order to justify the effective mass approximation) 
can be written in the form 

00 

e 2 1 ic:ut -+ -+ 
Reaaf3(w) = (-2 ) -Re J dte JJ dxdy x 

m <iJ 0 

xfim (a* +a,) (a +a*,) <R( 2 )hG,~',y,y',t)>. (2) 
.... , -+ x a xa Yf3 y {3 e-
X -+X 

.... , .... 

y -->y 

ik·; (2 ) ( ........ , ........ , ) . 
Here axa =e Pa and <Re-h x,x,y,y ,t > 1s the 
averaged two-particle (electron-hole) density matrix. 
The last quantity can be expressed by means of the 
Feynman path integral formalism1161 as 

( 2) .... .... .... .... it .... .... 
<Re-h(x,x',y,y', t) >=Nexp (-hE g) JfDre(u) Drh(u) X 

t * • * . 2 i m 1 -->2 m2 -> 2 e 
xexplhf(yre(u) +Trh(u) + -> .... )dulx 

0 f I r e ( u) - r h ( u) I 
. t 

x < exp 1- 1;-[ du [ 1] 1 V 1 ( ;e ( u) ) + 1] 
2 

V 
2 
(; h ( u) ) ]! >. (3) 

Under the assumption of a Gaussian distribution of a 
random potential V (1) , the correlation term is 

2 t t 
1] .... .... 

< exp I I> = exp 1--- J J du 'du " [ W ( r ( u ') - r ( u") ) + 
~2 0 0 e e 

+ W ( ;h( u ') - ; ( u ") ) ± 2W (; ( u ') - ; ( u ") ) J I. ( 4) 
h · e h 

The sign in the last formula depends on whether the 
valence and conduction bands are parallely ( -) ( 1J 1 = -7] 2 = 1J ) 
or antiparallely (+) (7] 1=7] 2 = 7]) fluctuating. Further, 
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for large correlation lengths L the harmonic appro
ximation of the Gaussian correlation function 

( .... , .... ,)2 1;:.>•'_-,:"12 
W ( 

-•, --> ") ( r - r ) ] ~~ r - r = exp - 2 "' - 2 - ' 
L L 

can be used in eq. (4). Due to the condition I p .... (u) I< L - De 
the electron-hole correlations W Cre (u ')- rh(u")) are 
important in the formula (4) as well 1161. Then, for the 
usual case of parallelly fluctuating bands, the correla
tion ( 4) turns out to be 

< cxpl 
2 3 t 

TJ ( ') 2 
l> = expl- ~.2 (f dup l (u)) l, 

h-L t= 1 o 
(5) 

where p =; p - ;h · 
By means of the transformation of the formula (5) 

00 2 
fexpl-3_-il\:ljqjldq.=2,J;exp(-M~), j= 1,2,3, (6) 

--oo 4 J 
2 TJ 2 t ( ') ') 

with M . = --- ( j du p J ( u) ) -, which has been introdu-
J h 2 L 2 il 

ced in/ 171 (see also /lB/ ) we can go over to the "elect
ric field representation" of the density matrix <R !_:~> 

(2) ->->,--> -~, l _foo' -~ (2) (--> .... , ..... , -->)(7) 
<Re-h(x,x.y,y,t)>=---=:--J Jdqe RP-h x,x,y,y,t,q. 

( 2\/ 17)3 -oo 
Here we have used the notation 

i 
(2) -->-->,-->-->,-+ -htF:g -+-+ 

Re-h(x,x,y,y,t,q) =Ne fJDreDrhx 
(8) 

t • • 2 
i 1 -->2 1 -+ 2 e -+ -+ 

xexplll~du[ 2 mr.re (u) + --zm*2 rh (u)+ E p(u)+eF(q)·p(u)Jl. 

--> 
The electric field F (q) occuring in the probability density 

f th d ·t t . R ( 2) ( ........ ' ........ , .... ) ts o e ens1 y rna rlX e-h x,x ,y,y ,t, q represen 
a random function introduced by Barta/I 7 I 

-+ TJ -+ 
F(q) = -q, 

eL 
(9) 

with the Gaussian distribution 
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l 

l 

P(q) 

where 

q2 

1 -T 
---- e 
(2v-;) 3 · 

1 
- e 

( 2 ,; 17 ) 3 

3 F 
2 

-2-p-

F = y<F 2> = _!!_y6, (10) 
eL -+ 

is a mean-square-root of the electric field F ( q) • In what 
follows we shall distinguish two cases: 

1. The exciton absorption which realizes by the 
inclusion of the Coulomb term in (8). 

2. Interband absorption. 

3. THE EXCITON ABSORPTION 

The usual formula for the density matrix 
i 

-+ -+ -+ -+ -+ -+ -+ - hF: i(<f) t 
R ( p, p ', t, q) = ~ <1> i( p, q) <1>; ( p ', q) e , ( 11) 

I 

together with the formula (8) introduces the local dyna
mics of the internal exciton motion. Evidently, eqs. (8) 
and (11) imply the Schrodinger equation 

(- ~;\ -~ -eF (<lJ •p) .<t>~xc(q)=E~xc(qJ·<llPjxcCq). (12) 
2fl p ( p I I 

Inserting the equation 

i 
( 2) -- F: t 

4 -+ -+ -+ -+ h 'i -+ -+ 
<Re-h(x,x',y,y',t) >= e R(R, H',t) x 

q2 (13) 
l oo - T 

x f e 4rrq 2 dqR(p,p',q,t) 
(2Jrr)

3
0 

where 

-+ -+ 1 -+ -+ -+ "t -+ 
R(R,R',t) = -y-~exp[ ik(R-R')- -1;--E(k)], 

k 
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together with R (p, p ', t, ~) given by eq. (11) into 
eq. (2), we obtain for the absorpti.on coefficient the 
formula 

00 _<( 
exc ( ) l JJJ 4 exc ( ->) a w = ---==.3 dq 1dq 2 dq3 e a w, q 1 

(2yrr) -oo 

(14) 

where 

exc ( ->) (2lTe)2 1 "'I""' (->) j ik•t ->->\O 12 a w, q = -- ---..., <<¥-> tt e f ·p > x 
m wen ki 

exc 
xo(hw- Eg-Ei (q)), 

or, in dipole approximation, 

exc -> (2rre 2 1 ->_,_,-> 2 
a (w, q) = --) --I< vk \£ ·p\ ck 0 >\ x 

m wen 
(15) 

-> 2 exc 
x~\<l>i(O,q)J o(tw-Eg-Ei (a)). 

1 

Here, 
-> -> 

"' ( -> ... 1' ik • R "" ( _, _,) 
'¥->k . R, p) = --::--=.e '¥. p, q 

1 vv I 

and <I> (-> ->) Eexc (->) 
. p, q ' . q 
I I 

are the solutions of eq. (12). 
Hence, the "local" absorption coefficient aexc (w, q) 

has the same form as the absorption coef~icie_!}t of 
a crystal in the external uniform electric field F = F ( q) . 
So the formula (14) is identical with the ''uniform micro
field approximation" by Dow and Redfield / 4 / for the 
case of amorphous solid with Gaussian distribution of 
the random potential, Gaussian correlation function and 
large correlation lengths. 

Using the results for the exciton absorption coeffi
cient in external electric fields for large ~ = E g-hw/5.\ve 
have c~L 

exc 
a 

Then, 

8 

-> 2rre 2 l I -> ~-> -> I -> I 2 - 7Jaq 
(w, q) =(--) -- <ck 0 f • p vk 0> e • 

m cnw 

a exc 

c is 
exciton. 

exc 
a 

q2 c~L 
a oo -----

(w) = -- J dqq2 e 4 a7Jq 
2'./-;- 0 

a constant, a = •o; a o is a radius of the 
Numerical calculation of the last integral yields 

exc ( 0,86c~ ) exc ( ['A) 
( w) "" a 

0 
• exp - =a 0 exp - u • ( 16) 

eFa 

The formula (16) expresses the following fact: The in
wrrial random electric field with the mean square root 
F has the same effect on the absorptiol!_ in the edge range 
as has an external electric field F ext"" F/0,86"" 11/eL · 2,85 
on the absorption edge of the respective crystal. The 
value of F can be estimated from the experimental 
values of I': 

F- c 
m 
/l<oao 

0, 86 [ y em - 1 ] ' 
[' 

(17) 

The value of c is determined by the dependence of the 
absorption on the external fields in crystals /s/, c"" 2 . 
For 1'""_17 (eV)-1 171, Jl ""m and <o ""10 we obtain the 
value F"" 1.7.106 vcm-1 (TheEsser'sestimation/ll/ 
gives the value f "" 106 V cm- 1 

, too ). This value 
0 

takes place, e.g., for L"" (50-100) A and 1J "" ( 0,5-l) eV. 

4. INTERBAND ABSORPTION 

If we neglect the Coulomb term in eq. (8), then 
the density matrix separates on the electron and the hole 
part. Using the same method as in Sect. 3, we obtain the 
"local" Schrodinger equations 

• 2 h -> -> ( e) """\ -> ( e) -> 
(- -~ - eF ( q) • x) <I> · ( ql = E · ( q) ·<I> · ( q) , 

2 * X I 1 1 
ml (18) 

( t2 .... ( .... ) ->) (h)(c:'l () (h)(_,) - -- ~ + eF q • y <I> . q1 = E . q ·ell . q 
2m* Y l J J 

2 
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For not too strong fields the interband matrix elements 
are exponentially small so that the soJ.utions of eqs. (18) 
are Airy functions. For the absorption coefficient we 
obtain the formula (14) again, with the local absorption 
coefficient 

a(w jj =(2rre)2 __ l_I l<ll>~e)(317->lll>(.e)(->)>12 x 
' q m wen · · 1 qJ P J q 

I,] 

xo(hw-Eg +Ei(cV + IEi(q)l). (19) 

The "local" absorption coefficient (19) is identical 
with the inter band absorption coefficient of a crystal in an 
external electric field. Then, we can use the standard 
results for the Franz-Keldysh absorption given by the 
known formula/19/ 

f l/3 
a ( w , q) "' --- ( I A i ( z) I 2 

- z A 2i ( z) ) 
4rr 

f -- e ( 4 3/2 
32 rr 2 E xp - 3 ~= I f) for large E. 

Here is 
f= ~!!. E _ ~ 2 R' -R,R= e z- E 

Putting F = ..!L _. 2f o a 0 ' ·- £273- · 
eL q' we have 

a(w) 
rya l 00 

- f d 3 

2 

2·.;::: q q exp (- ~ A yrrO 4 --), q 32 rr2 ~L 

where 

10 

A= ~ LRE3/2. 
3 rya 

(20) 

The integral in eq. (20) can be calculated approxima
tely by the saddle point method*. It yields 

E 1/2 
a(w) 12·73 2 expl-2(2._)2/3 v 

77 
- El 2£ • (21) 

Here 
f = !e_..;6. 

LR 
The formula (21) gives Urbach type of the absorption 
edge again. So the "statistical" Franz-Keldysh effect 
given by eqs. (1) and (19) results, after averaging, in 
exponential absorption edge. 
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