








of doubtless role of phonons in the interpretation of the
Urbach’s absorption edge at higher temperatures it
persists at low temperatures as well with temperature
independent slope but depending on the structure. The
semiclassical theory of optical absorption by Bonch-Bru-
jevich/10/ and by Esser/1l/ including phonons, as well
as the theory of absorption by Efros/12/ lead to the ap-
proximately exponential absorption edge.

The theory proposed in this paper (the preliminary
version is given in /13/ ) yields the derivation of the
representation (1) of the absorption coefficient for the
amorphous solid characterized by the Gaussian random
potential with large correlation length L and with
the Gaussian form of the correlation function. Sect. 2
is devoted to the derivation of the random field repre-
sentation of the two-particle (electron-hole) density
matrix. In Sect. 3 the exact derivation of formula (1)
for the exciton absorption is presented and in Sect.4 the
same for the interband absorption. Further, the absorption
edges have been found for both cases and the mean-
square-root of the internal fields has been estimated.
The used formalism permits a simple inclusion of the
Coulomb interaction, if the exciton radius p satisfies the
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relation p<L-D,.,D. = 1‘[1"‘_@)1/2 is a diffusion length of the
electron.This condition quarantees also the relative stabi-
lity of the internal state of the exciton/!#16/Moreover, the
center of mass is not influenced by the disorder. in this
case;itexhibits a free particle-like motion/16/. The assump-
tion quoted above limits the range of validity of the formula

(1) for amorphous solid. The use of the effective mass
approximation is also consistent with the supposal of the

large correlation lengths, L >50A which is reasonable

for number of cases.

2. RANDOM ELECTRIC FIELD REPRESENTATION

The absorption coefficient a(w) = -%Z-Réa((u) in amor-
phous solid with sufficiently large Correlation length
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(in order to justify the effective mass approximation)
can be written in the form
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Here o, , =¢""* P, and <R, _h(;, X3Ysy s t) > is the

averaged two-particle (electron-hole) density matrix.
The last quantity can be expressed by means of the
Feynman path integral formalism/!6/ as
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Under the asgumption of a Gaussian distribution of a
random potential V(7), the correlation term is
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The sign in the last formula depends on whether the
valence and conduction bands are parallely (-) (n,=-75= 1)

or antiparallely (+) (9,=7n5 = 9) fluctuating. Further,



for large correlation lengths L the harmonic appro-
ximation of the Gaussian correlation function

_> N 2 e 2 _,"__,” 2
W(r’ -1’ =exp(——£ r2 ) =1 - _|_r__ onmnl
L L

can be used in eq. (4). Due to the condition |p(u) |<L - D,
the electron-hole correlations W(7 (u")-r}(u"")) are
important in the formula (4) as well /16/. Then, for the
usual case of parallelly fluctuating bands, the correla-
tion (4) turns out to be
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By means of the transformation of the formula (5)
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with M ;= ——‘—-2—(1 dup ''(uw))”, which has been introdu-
heL® 0
ced in/17/ (see also /18/ ) we can go over to the "’elect-

ric field representation’’ of the density matrix <R éf}?>

e S (.3 [N
( /__);m dge * R Zh(x%y,y 56 9)(T)
2\ )
Here we have used the notation

R Ry 0>

e

i .
2 > >, > > - L - -
Ri_)h(x,x', ,y>tgq) =Ne h gffDreDrhx (8)

ot .
x exp{-il—fdu[ é—m’f.ri (u) + —ém*2
0

2 - .
2 (o) 6 ;(u)+eF(q)-p(u)n.

The electric field F (q) occuring in the probability density

of the density matrix Re_)h (X575 t, Q) represents
a random function introduced by Barta/17/
F(q) = 14,
o 7 €))

with the Gaussian distribution
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el
is a mean-square-root of the electric field l::(q) . In what
follows we shall distinguish two cases:
1. The exciton absorption which realizes by the
inclusion of the Coulomb term in (8).
2. Interband absorption.

3. THE EXCITON ABSORPTION

The usual formula for the density matrix
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R(p,pitq) =2 (p, q) ®¥(p’q)e h , (11)
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together with the formula (8) introduces the local dyna-

mics of the internal exciton motion. Evidently, eqs. (8)

and (11) imply the Schrodinger equation
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together with R(;,;',t,;) given by eq. (11) into
eq. (2), we obtain for the absorption coefficient the
formula
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Here,
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are the solutions of eq. (12).
Hence, the ’local’” absorption coefficient a®*¢ (w0, q)
has the same form as the absorption coefgiciegt of
a crystal in the external uniform electric field F = F(q).
So the formula (14) is identical with the ’’uniform micro-
field approximation’” by Dow and Redfield /4/ for the
case of amorphous solid with Gaussian distribution of
the random potential, Gaussian correlation function and
large correlation lengths.
Using the results for the exciton absorption coeffi-
cient in external electric fields forlarge A =E
have
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c is a constant, a = €¢pg-ao is a radius of the

exciton. Numerical calculation of the last integral yields
0,8cA
eFa
The formula (16) expresses the following fact: The in-
ternal random electric field with the mean square root
F has the same effect on the absorptionin the edge range
as has an external electric field F_ , ~F/0,86 ~n/eL - 2,85
on the absorption edge of the respecuve crystal. The
value of F can be estimated from the experimental
values of 1':
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The value of ¢ is determined by the dependence of the
absorption on the external fields in crystals/5/ c= 2.

For [1'=17 (eV)— ) o= m and ¢g =10 we obtain the
value F = 1.7.10° ch ' (The Esser’s estimation/ 11/
gives the value F = 10°Vem 01 , too ). This value

takes place, e.g., for L= (50-100) A and 7 = (0,5-1) eV.
4. INTERBAND ABSORPTION
If we neglect the Coulomb term in eq. (8), then

the density matrix separates on the electron and the hole
part. Using the same method as in Sect. 3, we obtain the
’1ocal’’ Schrodinger equations

12 s e e
(- XA (900 @ ~E@ -0 (@,
m
! (18)
2
(-—)"—A J+eF(@) -7 o\ -E,(q - o\" (.
2m
9



For not too strong fields the interband matrix elements
are exponentially small so that the solutions of eqs. (18)
are Airy functions. For the absorption coefficient we
obtain the formula (14) again, with the local absorption
coefficient

alw,q) = (2e)? -wln—zJ <@{ X 125108 B> 17
xd(ho -, +E;(@ +|E ;@] . (19)

The ’’local’”’ absorption coefficient (19) is identical
with the interband absorption coefficient of a crystalin an
external electric field. Then, we can use the standard

results for the Franz-Keldysh absorption given by the
known formula/19/
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The integral in eq. (20) can be calculated approxima-
tely by the saddle point method *. It yields
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Here
f= 126
LR

The formula (21) gives Urbach type of the absorption
edge again. So the ’’statistical’’ Franz-Keldysh effect
given by eqs. (1) and (19) results, after averaging, in
exponential absorption edge.
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