





1 Introduction

As the experrmental techmques become ever more soplustlcated itis now K

possrble to mvestngate m the laboratorres new. forms of lrght that have‘ ey
R

tuatrons in one quadrature smaller than those a.ssocrated wrth coherent

: never been reahzed before Three most str1k1ng examples are squeezed

' hght sub Ponsson llght and antlbunched llght nght thh quantum fluc-

llght is sald to be squeezed (1- 3] Light whose photon number ﬂuctuatrons :
s ‘are smaller than those of the Ponsson dlstrrbutlon is called sub Porsson i
or alternatlvely, photon number—squeezed llght [4- 7] A good measure of

, the extent to whnch the photon statlstrcs of a state are sub P01sson1an is |

5 tlle Q parameter :
| Q _’k< (An)2
mtroduced by Mandel [8]

i Porssoman are the ﬁeld statlstlcs Another 1mportant charac.teustlc of

'.‘ the ﬁeld statlstrcs is the quantum degree of second order coherence It is.
obtamed by evaluatlng the transntlon rate for a Jomt absorptron of plro- E

' tons at the two space—tlme pomts [9). For a smgle-mode radlatlon field,

' 1f purely temporal correlatrons are of 1nterest the 1elevant correlatron
3 functron in the normallzed form is . |

) = H a4 )t 4 1alt) >

* of photon antnbunchmg Two deﬁmtrons are commonly used in the

The more negatlve Q |s, the more - sub-

e e L s aamaan

< at(t)a(t) >< at(t+ me(t+7)>" , (‘2) k

: The comcrdence rate gm(t t+ T) plays the central 1ole in the deﬁmtlon o

¥.
—

llterature [6,7): the value of g®(t, t + T) at 7 =0 is less than- unlty or

the derivative of g\?)(¢,t + T) as a function of the delay time 7 at =0 -

| 1sposrt1ve. If under antibunching one means the tendency of photons to

distribute themselves separately rather than in bunches so that when a
light beam falls on a photo-detector more photon pairs are detected close
to each other than apart, one must use the latter definition (10]. - R

. In'this paper, we study the sub-Poissonian photon statistics and ‘an- - -

‘tibunching in the Jaynes-Cummings model"(JCM) of a“single tleO—lev'el

atom coupled to a single mode of the cavity radiation field [11]. We un— '

‘derstand'antibunching by the definition based on the positive derivative -

of g®(¢,t+7) as a function of 7 at 7 = 0. It is shown that sub-Poissonian

‘ photon statistics is not associated with 1)hoton-antibunChlng : ‘when the

~'cavity field exhibits sub-Poissonian photon statistics, the photOns can

be either bunched or antibunched and oppositely, photon-antibunching
can be accompanied by super- or >SUb-POissonialT1 field statistics."vEx&f,I‘l‘; |

i'ning the influence of initial atomic conditions on the evolution of Q and

(g®t,t+ T)] fr=0 , we ﬁnd that at exact resonance, when the atom is

1n]ected into the cavrty in its ground state, an 1mtlally coherent field

ﬁrst becomes sub-Porsson However, at later tlmes, the super-P01sson 8

behavrour dommates By contrast with thls, when the atom is mjected o

1nto the cav1ty m the exclted state, an mltrally coherent ﬁeld ﬁrst ex-

. hlbltS super—Porsson behavrour, but for longer times it turns up to be
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| sub-‘Poissanrether- than super'-Poiss‘o"n’. _Thus;* the ground"'state ato'ei
‘case ‘proves to. be more. effective in'predhc'ihg s}ub-Poisson light in the
short-time region but is inferior to the excited atom case at later times:
vae also,ﬁ‘n.d th'at"vright;'a,fter-'tu‘rni‘ngt the interaction on, the excited atom
case shows antibunching while:the ground state atom-case does not. Fur:
ther, we compare the time behaviour of @ and [¢‘?(¢,¢ +7)], |20 for the
. f:v:f:ldlv:}:teingeinitiz’a.‘lly1 in:coherent- and chaotic states. ;It"iVS' found ‘that for
both these‘initial field states photon-antibunching occurs. ‘F inally; the
: effectg\‘of;;caivi’ty.rz(':letpnihgé on statistical prope‘rti‘esk;,Of the»t‘ad’iatiqn-' field
et‘re?,dis'(:l’fssed».?;.-ﬂsa ST DAL T e
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2:Basic  equations i

’ We consider: a:systemiof aisingle two-level atom interacting with:a single-

et

£ o

mdde;of--.th‘e cavity-radidtionfield.. The model Hamiltonian in the electl'ie s

- dipole’and: retdtin'g5Wlive:appr0x‘i'matio‘ns is given by (fi=1)or

e R, T
B U S PP 7o S T SUR DAL SRR e R I ‘

where the operators R* and ‘R* describe the atom.with the. transition
S T '. :h-c,.’R :» YA . TLte L. .. ¥ Lan o AL e B x‘.,. s B 5 ey e

“frequency wo while a* and a are creation and, annihilation operators aof

,fphotons with frequencynw; g is the atom:-field. coupling..*constantfWhibh’

may be treated as real and pos1t1ve w1thout any. loss ;of genexahty

Let us denote by Ie > and Ig > the excited and ground states of the ‘

; Atwo -level atom and |n > the ﬁeld in the Fock state with n photons. We.

assume that the atom and the field are initially dece‘uple’d and the cavity -

field is in an arbitrary state pp = Y.,/ p, ln >< n'|, then the initial - - ;

nn' I

~density matrix-is

B o s - ’ Ca
= E Punltse >< el
n,n'

e

for the initially excited atom and

L

pl0) = ZPnn Ini9 ><"n9| i @b

I

- for the 1nlt1ally une\c1ted dtOln By solving the corresponding equatlons

of motion one ﬁn(ls 7

e"iH?|1l; €> = Dy e > +Bn,e(t)|n“+,'1_;kgh>,"

e Hin 4 i;g_.> = Angr,g(t)In+ 159 > +Bug14(t)]nise >, (5) )

where

—_

5) t] (cosf,,t z-:% sin f,,t)- |

Anc(l) = exp [—-iw (n +

Ans1,4(t) = exp [—iw (n + -512) t} (cos Sl + z-é% sin f,t )
AO,g(‘t) = exp (%) ) : BO,y(’) ‘ 0(6)

)= B = () ] (-9 3

with f,, being the generatlized: Rabi frequency

= /?(n + 1) + AZ/4, L m

G



and A being the detuning pararﬁefer

CA=wy—w. S S | (8)

The quantities we are interested in are Mandel s Q -parameter (1) Wthh

can be rewritten as

' < at(t)at(t)a(t)a(t) > - < at(t)a(t) >?
9= C<at(t)a(t)> ’ ®)

and the derivative of g(z)(i,'t"—i- T)asa fl"mcti'on‘of TatT=0

, o (Z)U t4 7)) o =
{[<a*@at+

- < a*(t)at(t)a(t)a(t) > [< a*(t + r)a(t + 1) >]'T|,=0} (10)

+ 7)e(t + T)a(t) >] |r=0 <a *(t)a(t) >

x < a*(t)a(t) >7°

Ma.king'use' of (5) and (6) one gets

<a+(t —n+Z g n+ sin? fol,
n=0
<a*(t)at(t)a(t)a(t) >=n? —n + f:an—gi(—T}:——l)E sin? f.t,
n=0
' [< at(t+1)a(t + 7 If_o = Z g sm 2fn (11.a)
n=0

[< a*@a*(t + at + 7)alt) >] fpmo = Zi»ng—‘l‘fil)—’l Sin2fut

for the initial condition (4.a) and

Y N

g@(t,t + 1) falls with increasing T from T

< a+(t)a(t =n- an 2 sin fn_lt
n=0 =1
< a+(t)a+(t)a(t)a(t) S=nf—a- pn

n=0 ndl

M_:_u sin f—lt

¢*n
(< a+(t +1)a(t+ 1) >] |r=0 = _anf . sin 2,11,

n=0

(11.b)°

[<a() (t+‘r) (t + 7)a(t) >] If_o——z g——n(n—)s1n2fn_1t

n=0 n—1

fox_'Athe initial condition (4.b). Here for brevity we have used the nota-
tion p, instead of p,,. By substituting expressions (11) into Eqs.(9) and
(10) one easily obtains explicit resulés for Mandel’s .Q-pararneter and the
derivative [5(2)(t,'}t + )], at 7 = 0. Recall that the value Q =0 cor're?
sponds to the Poisson distribution with its variance exactly equal to 'th'e’
mean. Light for which Q>0(<0) hasvﬂuctu’ations'l_arger (Smaller) than
those of the Poisson and is said to exhibit super-(sub-)Poisson b'ehaviee'l';
Q has a lower bound of —1 corresponding to a pure number st;‘at,ve The
photon bunchmg and antibunching are defined by the behav1our of the:
normalized coincidence rate g(®(t,t + T) in the vicinity of 7 = 0.‘ If
=0 (negative derivative), the
light is said to be bunched. If ¢®(¢,t +7) rises as T increases from 7 = 0

(positive deriva.tive), the light is said to be antibunched.

3 Effects of initial conditions

In this section we consider the evolution of the )-parameter and the



derivative [¢gt¥(t,¢ + 7)), at'T = 0 for the cavity field initially prepared \

“in the coherent and chaotic states. Cases of the initiélly excited and
unexcited atom -are compafed for the initial coherent field. We éilppose
for the time being that the atom-field interaction takes place at exact
resonance A= 0. ‘ o
A coherent state field .

The coherent state field has a Poisson photon number distribution

. - - ‘ | -
p'n=ke_x’p(—n);!- T (12)
with </ (An)? >= 7 and @ = 0.  After inserting this weight function
into Egs:(11), direct numerical calculations can be performed for not too

large fi. The results for the atom being initially in the ground state are

-shown in' Figs.l where we have plotted the Q-paramétel' (solid curves)

and thg derivative [g(z?(_t,t+7')]; at 7'=10 (dashed curves) against the di-

mgnsionless ti;ne gt for two values of the mean 7 = 1 (Fig.1a) and 7 =10

(Fig.1b).. As the interaction is switched on,'t"he:' curves representing Q) go
dqwn\_ indicating thvat the field statiéti;s bécome sub-Péiss’onian” . After”;
somé times, these curves go up and Q reaches positive-values, which‘ r’neaﬁ -

'sqper-Poissonian photon statistics. In general, Q oscillates near the ini-

tial zero in the course of time and the field statistics changes cori"espii’nd—

ingly between being the sub-Poissonian and super-Poissonian. However,

as can be seen from the figures, the interacting field spends more its tirfe .

8

%

o

in the state with supcr-Poissonian photon statistics. When the field in-

tensity increases, the magnitude of the oscillations of Q@ decreases. This

supports the conclusion of Hillery [12] that the larger the amplitude of

the initial coherent state, the less sub-Ioissonian (or super-P_oissonian)
the photon statistics can become. '

As soon as ¢ > 0, the value of [¢®(1,t + 7)};];=0 , Which is initially
equal to zero, decreases, i.e.” the cavity field exhibits photon bunching.
As time goes on, [gP(t,t+ 7)],|r=o starts oscillating around zero and
the cavity field undergoes a regime of bunching-antibunching oscillatory
Vtransri,tion. The ficld can be sub-Poisson or super-Poisson when the pho-
tons exhibit antibunching and alternatively, the photons can be bunched
or antibunched wlcn the cavity ﬁel-d shows sub-Poissonian photon statis-
tics. From the ﬁgﬁres one can also see that while the interécting field
spehds more its time in the state with 311pel'—Poissonjan Vstatistics;it dqés
not show such overall time preferencefwith respect to photon-bunching
or antibunching; .

The results for the initially excited atom are presented in Figs.2.. Just V

- after the interaction begins, Q increases which amounts to that the cavity

field becomes super-Poisso'n; Thus in the short time region, an unexcited .
atom is more effective.in producing a field ivith sub-Poisson statistics ,-

than an excited atom. At later times, however, there is a reversal of roles:

. in the case of the excited atom, the maximal extent to which the éavity

)
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field may become sub-Poisson is-deeper; and the time in which the cavity

field is found to be sub-Poisson is longer than those in the case of the /

" unexcited atom. The quantity [¢®)(¢,t + 7)].|,=0 for the initially excited
atom also alternates between pos’itive and negative values in a fashion
similar to that for the initial_ly unexcited atom. Significant discrepancy
appears near t = 0: the excited atom case shows antibunching while the
;,unexcitfed atom case shows photon bunching.

.. When the field intensity gets stronger, collapses and revivals [13] are

observed in the time behaviour of @ and [¢((¢t,t + 7)|’|,=¢ . Taking into.

-account the assumption that a>> 1, the quasi-steady value of @) which
is reached in the time regions between collapse and revival can be found

‘to be
3

Q uasi—steady ™~ T
q v 4n
4

for the initial atomic state |z >= lg > and

[}

1

Y ————

Qquaai-—steady in

“for the initial atomic state Ii.$= le>. In these time l'e'gio‘ns,} [g)t, ¢ + 1;)]",'|1=o

oscillates around zero with amplitude smaller than that in times\'of col-

ivi}ips‘es:and revivals which means a less pronounced character of theiblinch-
mg and éﬂtibUhéhihg effects. It is understandable since in the quasi-
steady r‘e'gime-thé aVéfage photon number almost remains uhchan‘gedv. ‘

A chaotic stdté field
A chaotic state field has a diagonal field density matrix with

10

ﬁﬂ

= (ﬁ_—i—-l)—"“—’ st ;.(.1-3) ~

Pn

< (An)? >=7#(f + 1) and Mandel’s Q-parameter Q = 7. Since Q >0,

‘the chaotic state is super-Poisson and is more and more so as its photon

number increases. It i» natural then to expect that a chaotic field may

‘become sub-Poisson owing to the interaction with the two-level atom at

very low photon number only, and that is the case [12]. In figures 3, where
we have plotted @ andb [¢(t,t —'i—"r‘)_]'f’|’7=0‘ as functiofis of the dimension-
less time gt for the cavity field being initially in the chaotic state and the
atom' in the excited state, one sees that for & = 1 (Fig.3a) sub-Poisson

statistics still occurs but for & = 3 (Fig.3b) it does not. The next pcint

‘one can notice from figures 3 is that while the sub-Poisson behaviour

disappears with increasing the mean photon number, [g(z)(i,t +'T'.)];..|.,-'=o :
stays to alternate between pSSitiVe and 'negétivé values implyilxg‘thét
the cavity field displays oscillatory transition between“‘atntibu'rlélxing—and
bunching. The fact that photon-antibunching persists déspite the broad-
ening’ of the photon number distribution is not surprising becatse in
defining antibunching according to the positive derivative at T=0,it is

important for us to know how the coincidence rate'g(z)(t;.t +7) changes

‘in the viciriity of 7 =0 but not the value of g (t,t+7)at T =0by itself.

| Clearly, the changes of g®(¢,t + T) as a fync’tion—of T are determinéd by

the atom which absorbs and emits photons rather than by the width of

11



the photon distribution. Of course, the photon distribution also exercises

its influence on the time behaviour of [¢(¥)(¢,t 4+ 7)],|;=0 . For example,

one can find from the comparison of TFigs.2 and Eigs.3 (both have been

made for the initially excited atom) that after switching the interaction

on, the chaotic state field gets bunched instead of antibunched as in the

case of the initially coherent state. -

4 Effects of cavity detuning

As is said above, when the atom is sent into the cavity in its excited
“state and the exact resonance condition.is ﬁet, an initially coherent field
becomes sub-Poisson in the large.part of the evolution time. However, it
is not always the case if the detuhing parameter given in (8) has a non-
: yanishing value. Indeed, from Fig.4 where the dependence of @ on the
detuning parameter is graphically illustrated for the cavity field being ini-
tia.ll{y:in the coherent state and the atom in the excited state, one observes
that when the increasing A exceeds a certain value, the super-Poisson
Bgzhas{i_our becvom,es to predominate over the sub-Poisson behaviour.' At
far-off-resonance, the field isb eﬂ'ectively decoupled from the éxt(;m and in
t::pn,se_quc;lce of that, the initial value of Q. ahﬁost' remains unaffected.
The case o% the initially unexcited atom ‘is, .presented'illl, Fig.s.; In. this
case itv is likely that the super-Poisson beliaviour dominates for all values

of &
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Figure 1

‘Evolution of @ (solid curves) and [¢'®)(t,t + 7)]. | ;=0 measured in units

- of the coupling constant g (dashed curves) for the initially coherent state

field and initially unexcited atom. FExact resonance is assumed. The
mean photon number is: (a) i =1, (b) n = 10
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Figure 2 The same as in Fig.2, but now the cavity field is initially prepared in
the chaotic state with the mean (2) i =1, (b) 7 = 3. -
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The same as in Fig.1, except for the initially excited atom.
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' Evolutibn of Q for various values of the cavity detuniﬁ’g. The field is
- initially in the coherent state with ’ﬁ = 10 and the atom is in the excited
| : s'fate. The curves shown are for: A. A = O[Q], B. A= 3g[Q +0.1], C.
A = 5g[Q +0.2], D. A = 50¢[Q -+ 0.3].
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The same as in Fig.4 but for the iﬁitially unexcited atom. The curves-

shown are for
A A= O[Q] B.A= 3g[Q+0 2] C. A =5g[Q+0.4], D:A = 50J[Q+o 6],
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for different values of the detuning parameter.

We have also calculated numerically the time evolution of [_q('”(t yan 1')] |,_o
“The ‘results show that ..
nonzero values of A lead ‘to: ’cha‘ng‘eis‘of the Rabi-type ds‘cil'lat,ion's‘f:inb‘l
a way similar to that for the atomic 'inve‘f's:iofl'[l'3] but db. not Shlft
[9P(t,t + 7)];|:=0 from oscillations’ around zero, lThi's,rme‘a‘ns that t:}.ief
deviation of A from 0 does ‘not ‘cause’ the~ca\1‘i_ty‘ ﬁeld _té ;cxliibf_it:;rr.)gé)‘:ref

bunching or antibunching'in the course of time."" "

5 Conclusions. -

We have investigated the appearance of the‘sul)‘-Poissonién phiotori statls- :

- tics-and photon-antibunching in the JCM under di-ffefeﬁt’irjitiva.l, cond1-

ﬁions.-The property @ < 0 has beén used to define sub-Poisson statlstlcs |

and the preperty [g®)(t,1 +T)]’,.|1—=0> 0 has been used to d'éﬁ'xi(;i a.nti:v-;ﬂ :

bunching . In‘particular, we have discovered tliat the photon antlbunch-

ing, whicli is a non-classical effect, occurs even:when the cavity field is~

‘prepared initially in a chaotic state with l‘al'ge,mean'pllotpri ntzlmb'éi'.;_:This‘-;: k‘

is worth noting in view of the fact that in the JOM driven by "a”chka;‘,(“v)f“i'ci{"'f
state, the sub-Poissonbehaviour occurs at- a-very low photon nfxmber" e

only and the squeezing does not occur at all [14].
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