





- The coherent bose—osc1lla.t01 sta.tes are usua.lly used as a model of the

coherent radiation in the laser theory, the Poisson distribution for the -
- occupation number of which is interpreted as a light quantum number. .
The oscillator states with the sub-Poisson  statistics of the occupation |
number are investigated in recent time in connection with the experi-
- mental observation of weak fluctuations This statistics corresponds to -
~ the variability of the occupation number which is smaller than that in-
the case of the Poisson’statistics.' This effect is relative to the squeezed
light. The criterion of the sub-Poisson effect existence is that the average
occupation number n exceeds its dispersion D(n) [1]- [3]. A mathemiat-
ical problem is to find the evolution of the initial statistical d1str1but10n'
of the system with Hamiltonian H. It is reached by the calculation of
the average occupation number and its dispersion as the time function
according to the formula for the average value A

<A>= Tr(U+AUR0), U= Texp( /dTH( ))- | (1) |

0.

** Usually, in the theoretical works Ry is taken as the Poisson distribution
[2, 3] po = |20 >< 2|, where the dimensionless parameter zg deﬁnés co-
- herent states of the oscillator. The parameter z; is associated with the
.- laser field , the transition of which to the sub-Poisson statistics regime
. takes place at the same evolution law U. To estimate the limits of the
_ criterion of - the sub-Poisson . statistics D(t) < n(t) one should find the
. connection between the parameter z, and dimensional physical values..
It s interesting to investigate a more general than pgo initial distribu- -
" tion. In the present paper, the problem of the sub-Poisson statistics has
~ been solved for the initial distribution Ro, which is a superposition of the
~signal and noise in the case of Hamiltonian H describing the paramet-
- ric excitement of a bose-oscillator. The parameter z is expressed over .-
~ observables according to Ry — pp at low temperatures. '
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1. The parametnc amphﬁcatlon of the 51gnal
' and n01se superposition

. The Hamiltonian of the bose-oscillator ,
=ty Qe 4 e ()

' descrlbes the parametrlc excitement on the frequency 2w (pumpmg) of
the field w1th the frequency w of the fundamental wave, @ s a pumping
phase g is a pumping amplitude multiplied by the interaction constant.
The initial distribution is assumed to be Gibbs distribution:

= —p=Blwvtytivt ) ‘¢)
RO

_expil/@B) _ g g g |
Q=T on(ewg) =~ TR B=T7, (3)

describing the radiation with the frequency w in the state , which is

a superposition of the coherent signal with the intensity j and of the .

thermal noise at the temperature T'. The average photon number for the
distribution (3) is the sum of its equilibrium number ng and the number
caused by coherent signal

6‘?1“ %) = nok < >< Pt >=< P >,
no= (e’ ~1)7",  <yp>= é

. In the coherent basis the matrix elements of the operator Ro are shown
to have the form: : ’

< z|Rol|2' >
< z|z' >

~(1- e-wﬂ>exp<<e-wﬁ -0+ Dy f}))e

4

s |G -,
p4 Z :
4
< Z|zl > - <Zl—j-><'_"L|Z'> , s ( )
—s T—0.

It follows that the Poisson distribution py = |29 >< 20| is the limit of
the initial distribution (3) at the zero- temperature and the parameter 2
is connected with the distribution parameter (3) by the formula zo = L
At high temperatures distribution (3) is the Plank distribution. The
competition between these distributions leads to the formation of a new
distribution. Our aim is to define this distribution which corresponds to
the evolution with the Hamiltonian H.

2. The matrix transition elements and
generating function

It is convenient to define the average photon number n and its dis-

persion D(n) for the problem of the sub-Poisson statistics of the model
~.(2) with the initial condition (3) by the generating function

P =Tr(Ute V" URy),

P
n=——_

65 e=0

One should calculate P in the coherent state representation

D(n) ; (?;12) —n? | (5)

. P= /d,u < z|Ut]' >< Ze V" >< U2 >< 2| Rolz >,
v d,u — 7r"4d2zd2z'd2z”d2z"'.

In formula (4) the dotproduct of the coherent states for the matrlx ele-
ments of the operators Ry and exp(—e3*) is equal to
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2 12
< z|2' >=exp(— l I |_22_|__

+ z*z.').‘;

Let us describe the matrix element of the evolution operator with the

functional integral method
l2]* |2 _ T

2 )
eiSo+z"Po(t)

\/Det6250’4 ;
iSo + 2*1/)0 = ‘(I),

<z|U|z >= Jexp(
1J=/DWDWﬁwwﬁ=

=971, 2 =9(0),

. where the subscript 0’ means that the action S and the determinant
of its second variation are calculated on the extreme path o, 5. The
equation for these pa.ths : i

PWFW% %wWW%—o
| ﬁiz;fl)o Wi = %o geTmiv = 0,
po=p—wt

with the boundary conditions for 1 and 1* have the solutions:

- upo sh(gT)

7—) =z (ch gT) - Sh(gT)th(gt)) h(gt)

" Lch(g7)
ch(gt)

o = ,‘Z;e—iw‘r, 1/’8 = 1/;1!61:(;}(1‘—-1).

PH(r) =

The phase of the it;lt\é‘:‘gra.lﬂ J on t‘h‘e‘ extreme p_a.‘ths'(G) is équa.l to

4.
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Fidem (sh(gr) — ch(gr)th(gt),  (6)

~I7te—1wi

-~ t 2 —vp 2 i{wo—wt) .
SATD) 2 h(gt)((' (s )6. 7 )

The calculation of the determinant of the second variation operator

RV
S—i(w)h<w)

«n, . may be reduced to defining the inverse operator K1 w1th the zero bound-
S ary condltlons

Det8?S, = DetK,

oK

In(DetK), . iln(DetI&) Tr(K™ %~ 3

dg

. oK
DetK = exp (/ dgTr(K™! 61; )) ,

B s

» By means of the substitution

RN : Q)Z’ _ ‘_G_i“';.'.' ) 0 )
S (@)el) e ()

_the new unknown operator is introduced Ky

n A . g —ig ' -
K, = Ke=1 . dr | , (T
()= () w=(& ) g

10K .40
K 1‘87 = UI\O I%I\QL[+,

Tr(lnK) =

) =o.

i The solution of the differential equations system (7) with the zero bound-
ary conditions is equal to



" t
Uj L[ A f o,
(TI") =K, ! (A') = —z/dr'{e(r — T')e"’-""" )y
0 0 A\
iogr
+e | (0 a)}U(A‘)7

(4 1): e

The calculation of the dia.gona.l part of the operator

Tr(K‘ —) = /dr [(Ko)u + (Ko)n] =t th(gt)
‘ vres'ults in: 4 v
DetK =exp(t/dg th(gt)) = ch(gt),
1 2| ) |
< z|lU|2 >= ————— _ d, ). S
Wl >= e (-5 - 0 (®

It is necessary to note that the functional method of the integral calcula-
tion involved here is distinguished by the compactness and an universal-
ity compared with the finite - multiplicity approximation method used
earlier [5] for deriving formula (8). . A |

Now, formulae (4) and (3) are substituted to the function P and
the four-fold integral is calculated in the complex pla.ne of the coherent
states. Using consecutively the formula -

d?
/-Tzexp( |22 + az + bz* + cz +d(z)>=

_ 1 ox (db'-}-cb"’v+‘da2 g » : (9)
Sl—ded P\" 1—4cd ) .

one can obtain

B “? et

P= (1 —'e-“ﬁ> exp ((e'wﬁ'—; 1)'—’f> VEx
X exp (—%th(gt)e'iw(l - e-“f)zga:) F, ' (10)

1
ch?(gt) — e #sh¥(gt)’

E= =(1—€e*E) 5,00,

F= /——exp{—lzl (1—e*“PE)+ z"e"’\(e""ﬁ - I)Z—JE+

+2 ((e-wﬁ'— 1)’; i th(gt)e™oP(1 — e""ﬁ)i-:t>+

‘+(z*)2%th(gt)e"% - zzéth(gt)e"i‘p”z“’ﬁx}.

As all preceding mtegrals the integral (10) is also Gauss which is calcu-
lated by the formula (9). To simplify the dlﬁ'erentlatlon P w1th respect
to ¢, it is convenient to decompose the phase and normalization quantity
of the functional P in the series on the function z(¢). The nonvanishing
contribution as € — 0 to n and D is determined by the expression

22

1=e?)" (i (1—eE
X exp {——-——( ) <—‘7,(——_e—wﬁ 1 +

Y w

i(G) i _ 35 o) Tine
+2(Vw2.e A )y )

y=1=exp ““PE.

n‘D = (1-e“P) —‘C ( + ——th2(gt)e—2“’ﬁ) x

’ 2e-wﬁ 'h2 "
+z P t (g)



Using the definition (5) for the function obtamed we derive the following
result:

<n>= |sh¥(gt) + '”

5 (ch(gt) + sh(?gt)szn(go 200 + < n>p, (11)
< n >g= nech(2gt),

shigt) .

- ~ |J|2
D— <n >=sh(gt sh(3g t)

) [sh(3gt)2—

2. : ; :
+2l]| ch(3gt)sin(p — 20)} +(D-<n>),, (12)

(D— < n >); = njch(4gt) + 2nosh(gt)sh(3gt)+

+2n0u (ch(4gt) + sh(4gt)szn(go 20))

0 = arg(a),

which is the exact solution of the problem w1th the quadratlc Hamlltonlan
and 1n1t1al dlstubut]on

3. Dispersion and average occupation number

- The sub-Poisson photon statistics of the field with the frequency w is
said to take place if the inequality D —n is fulfilled. ‘At zero temperatures
in formulae (11,12) the terms < n >4 and (D— < n >); are equal to zero

and these formulae coincide with the well known one [2] which is obtained
for the initial distribution pg. The inequality D < n is fulfilled when the -

- relation between the phases is equal to » — 20 = —Z. With increasing
temperature the positive addend (D— < n >)s describes the influence
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of the thermal noise and prevents-the establishment of the sub-Poisson

" photon statistics. Also, this is prevented by the first terms in the square.

brackets (12) which are independent of the initial field j and describe
the quantum noise. It can be noted that the thermal fluctuations are
important at a very small evolution time. On the contrary, the quantum-
fluctuations are important at large times.

For a more detailed research of the Sub-Poisson ﬁeld statistics the.
numerical calculation was undertaken. The points of sign-change of the

" function D— < n > were determined by the use of the net of three.

variables gt,j,w, values. A special indication of the change of the
D— < n > sign from "plus” to "minus” and vice versa showed the
existence of two surfaces with such a change. The scale of the step in the
net of values was determined by the requirement of ”smoothness” for the
function D— < n >. The calculation shows that the region of the param-
eters gt,w, and § admitting a sub-Poisson process when j is constant,
is embedded between two surfaces drawn in the figure. This figure shows
the case < n > << 1 and the interval 1 + 0,1 for the parameter cw™!
which corresponds to the optical region of frequencies. At the frequency
w 2 10a the disappearance of this effect is caused.by the quantum noise.
It is necessary to emphasize that the frequency threshold is eroded as
the temperature rises. When a frequency is small- w ~ 0, the disappear-
ance of this effect is explained by joining two surfaces because of thermal
fluctuations. For this reason the time delay exists. In decreasing the -
pumping « the shape of the surfaces is not changed but they are brought
together, thus reducing the volume admitting the sub-Poisson photon
statistics. One may find a short statement of this result in the work [6]
of the authors. ‘

Thus,. the quantum as well as thermodynamic fluctuations destroy
light states with - the sub-Poisson statistics. The latter may exist only in
the region of finite values of pumping, frequency, temperature and evo-
lution time. Suppression of this effect is caused by thermal fluctuations

.in the long-wave region:-and manifests itself in the delay of the effect. In

the short-wave region.the suppression is caused by the quantum noise

. and manifests itself in-the presence of the frequency threshold at low

temperatures. : -
~ The increasing of the sub P01sson effect was found [7 ] in the niodel
(2) with the growth of the temperature. The photon statistics and



- waiting-time distribution were investigated in [8]. The cross- correlation
of two modes associated with the two-photon process of more general
type was treated in- [9). -~ -~ = - o ~

In conclusion let us note, that in the mathematical aspect the Hamil-
tonian (2) corresponds to the Hamiltonian of the bosons excited above
the condensate in Bogolubov’s superfluidity theory [1'0]. We suppose
that the investigation of the occupation number statistics in this case
can give new information about the condensate. So, the "squeezing”
theory in the sphere of light may be extended to the condensed matter
physics. '

The authors are thankful to N.N.Bogolubov for the discussion of this
“aspect of their work and for the support.
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1. The range of parameter values admitting - the sub-Poisson
distribution is embed‘ded between two surfaces. The interval of
the parameter w(sed)1 + 10 corresponds to the frequency inter-

val 103 = 10'* when the pumping « is equal to 10'?, the interval -
8 — 1 corresponds to the temperature interval

of values B
120 =+ 1200°K.
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