
◄ 

q_J~~ 

L.A. Siurakshina, V .S. Yarunin 

0 ti b e A M H e H H bl M 
MHCTMTYT 
RABPHblX 

MCCnBAOB3HMM 

AYtiHa 

E17-92-58 

STATISTICS OF THE PARAMETRIC OSCILLATOR 

IN THE THERMOSTAT 

Submitted to 11 TM<l> 11 

1992 



CiopaKW"1Ha n.A., ApyH"1H 8.C. 

CraT"1CT"1Ka napaMeTp"14eCKOro OCU"1/1/1ATOpa 

e repMocrare 

El 7-92-58 

OnpeAeneHbl o6naCT"1 3Ha4eH"1M 4aCTOTbl, TeMneparypbl, OnT"14eCKOM Ha­

Ka'IKl,1 1,1 epeMeH"1, AOnycKatOIU"1X cy6-nyacCOHOBCKYIO CTaT"1CT"1Ky '1"1Cen 

3anonHeH"1A AllA napaMerp1,1<1ecKoro ocu1,11111Aropa, MMet0iuero Ha<ta/lbHOe coc­

TOAH"1e e BMAe cynepno31,1u1,11,1 cMrHana 1,1 wyMa . noKa3aHo, '!TO JaAep>t<Ka cy6-

nyaccoHoecKoro 3q>cpeKTa Bbl3blBaeTCA rennOBblMl,1 cpnyKryaU"1AM"1 B A/1"1H­

HOB0/1HOBOM A"1ana3oHe, noAaeneHMe :noro 3<p<peKTa npOAB/lAeTCA B np1,1cyT­

CT8"1"1 nopora no <1acrore np1,1 H"13K"1X TeMneparypax, o6ycnoeneHHoro KBaH­

TOBblM WyMOM. 

Pa6ora BbinonHeHa e na6oparop1,11,1 reoper1,1<1ecKoM cp1,131,1K1,1 O111All1. 

npenpHHT Om.e'AHHeHHOro HHCTHyYTa 11.!lepHblX HCCJie;ioeaHHH . Jly6Ha 1992 

Siurakshina L.A., Yarunin V.S. 

Statistics of the Parametric Oscillator 
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The range of values of the frequency, temperature, optical pumping and 

time admitting the sub-Poisson statistics of the occupation number for the 

parametric oscillator with the initial superposition of the signal and noise is de­

fined. The delay of sub-Poisson effect is caused by the thermal fluctuations in 

the long-wave region and the suppression of this effect manifests itself in the 

presence of the frequency threshold at low temperatures caused by the quan­

tum noise. 

Tne investigation has been performed at the Laboratory of Theoretical 

Physics, JINR. 
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The coherent hose-oscillator states are ustially used as a model of the 
coherent radiation in the laser theory, the Poisso~ distribution for the 
occupation number of which is interpreted as a light quantum number. 
The oscillator states with the sub~Poisson statistics of the occupation · 
number are investigated in recent time in connection .with the experi­
mental observation of weak fluctuations This statistics corresponds to 
the variability of the occupation number which is smaller than that in 
the case of the· Poisson statistics. This effect is relative to the squeezed 
lighL The criterion of the sub-Poisson effect existence is that the average 
occupation number n exceeds its dispersion D( n) [1 ]- [3]. A rnathemat~ 
ical problem is to find the evolution of the initial statistical distribution 
of the system with Hamiltonian H. It is reached by the calculation of 
the average occupation number and its dispersion as the time function 
according to the formula for- the average value A 

t 

< A>= Tr(U+ AU R-c,), U = T~xp(-i J drH(r)). 
0 

,t Usually, in the theoretical works R-o is taken as the Poisson distribution 
[2, 3] p 0 = lzo >< z0 1, where the dimensionless parameter z0 defines co­
herenf states of the oscillator. The parameter z0 is associated with the 
laser field , the transition of which to the sub-Poisson statistics regime 

· · takes place at the same evolution law U. To estimate the limits of the 
criterion of · the sub-Poisson.· statistics D(t) < n(t) one should find the 

. connection between the parameter z0 and dimensional physical values .. 
· It is interesting to inv~stigate a more general than p0 initial distribu- · 

tion. In the present paper, the problem of the-s~b-Poisson statistics has 
been solved for the initial distribution R-c,, which is a superposition of the 
signal and noise in the case of Hamiltonian H describing the paramet-

. ric excitement of a hose-oscillator. The parameter z is expressed over 
.observables according to R-c,-+ p0 at low temperatures. 



1. The parametric· amplification of the signal 
and noise superposition 

The Hamiltonian of the hose-oscillator 

H = w'l/J+'l/J + f('l/J2ei2wt-irp + ('l/J+)2e-i2wt+irp) (2) 

describes the parametric excitement on the frequency 2w (pumping) of 
the fiel<l°with the frequency w of the fundamental wave, <p is a pumping 
phase, g is a pumping amplitude multiplied by the interaction constant. 
The initial distribution is assumed to be Gibbs distribution: 

Ro'= _!_e-.B(w,t,+,t,+j,t,++j•,t,) 
Q ' 

exp(lil
2
/(w,8)) = Tr Ro, 

Q = 1 _ exp(-w,8) 
,a= r-1 , (3) 

describing the radiation with the frequency w · in the state , which is 
a superposition of the coherent signal with the intensity j and of the , 
thermal noise at the temperature T. The average photon number for the 
distribution (3) is the sum of its equilibrium number n0 and the number 
caused by coherent signal 

_ olnQ _ + _ + 
n - o(-w,B) - no+ < 'ljJ >< 'ljJ >-< 'ljJ 'ljJ >, 

no= (ew,6 - 1r1
' < 'Ip >:::C: !.... 

w 

In the coherent basis the matrix elements of the operator Ro are shown 
to have the form: 

< zlRolz' > = (1- e-w.B)exp((e __ , - i)(z' < )(z' + ~)), 
< zlz' > 

2 

J 
\ 1' .... 

~ 

l 
r 

< zlRolz' > -{ (1- e-w.B)exp[z*z'(e-w.6 -1)], 

< zlz' > <zl-L><-:-Llz'> 
<zlz'> · T ----+ 0. 

j - 0 
(4) 

It follows that the Poisson distribution p0 = lzo >< zol is the limit of 
the initial distribution (3) at the zero- temperature and the parameter z0 

is connected with the distribution parameter (3) by the formula z0 = t. 
At high temperatures distribution (3) is the Plank distribution. The 
competition between these distributions leads to the formation of a new 
distribution. Our aim is to define this distribution which corresponds to 
the evolution with the Hamiltonian H. 

2. The matrix transition elements and 
generating function 

It is convenient to define the average photon number n and its dis­
persion D( n) for the problem of the sub-Poisson statistics of the model 

.. (2) with the initial condition (3) by the generating function 

P = Tr(U+e-,:,t,+,t,U Ro), 

8PI - , 
n = - 8c: t:=O 

. a2pl -n2. 
D(n) = &2 t:=O. 

One should calculate P in the coherent state representation 

P = j dµ < z1u+1z' >< z'le-e,t,+,t,lz" >< z"IUlz"' >< z"'IRolz >, 

dµ = 1r-
4 d2 zd2 z' d2 z" d2 z"'. 

(5) 

In formula (4) the dotproduct of the coherent states for the matrix ele­
ments of the operators Ro and exp(-c:1f;+'1jJ) is equal to 
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lzl2 lz'l2 
< zlz' >= exp(-2 - 2 + z*z1 

Let us describe the matrix element of the evolution operator with the 
functional integral method 

- lzl2 lz'l2 
< zlUlz'· >= J exp( - 2 - 2 ), 

J = Dtf,* Dtf,eiS+z*,t,(t) = e - , f 
iSo+z~,J,o(t) 

✓Detli2So _ 

z* = tf,*(t), z' = tf,(0), iSo + z*t/Jo ~ <I>, 

where the subscript '0' means that the action S and the determinant 
of its second variation are calculated on the extreme path tf,0 , t/J~- The 
equation for these paths: 

it 1/'o - wt/Jo - tp~ge-iwT~icpo ~ 0, 

d - . . -
· i- ·'·* w·1·* · •1• ge•WT-•cpo - 0 - dr 'f-'o - 'f-'O - 'f-'O - , 

'Po= c.p -wt 

with the boundary conditions for 'if, and 'if,* have the solutions: 

~ - · : sh(gr) 
tf,(r) = z'(ch(gr) - sh(gr)th(gt)) - iz*e'"'0 ch(f!t), 

~ ch(gr) . 
'if,*( T) = z* ch(gt) + iz' e-•cpo ( sh(gr) - ch(gr )th(gt)), (6) 

1/'o = {;e-iwT, 0 /,* _ .i.• iw(T-t) 
'f-'O - 'f-' e- • 

The phase of the integral J ~n the extreme paths (6) is equal to 

4 

~' .,,•e-iwt i 
<I>o = ... ~ _ - -th(gt)((z'}2e-iv, + (z*)2ei(v,o-wtl). 

ch(gt) 2 . · 

The calculation of the determinant of the second variation operator 

~ Det82 S0 = Detl(, s = !("")/(("") 2 tp* tp* 
I} 

~'\ may be reduced to defining the inverse operator I<-1 with the zero bound­
ary conditions 

r' ~ 

7 

Tr(ln /() = ln(Detl(),. 
a 

Bg ln(DetI<) = Tr(l<_ 1 8I< 8g ), 

Detl{ = exp(! dgTr(W 1 
~; )) , 

(tp) =I<-1(A) tf,• A• , 
1/,,(0) = 0, - tf,*(t) = 0. 

By means of the substitution 

' ( :~) = V C;'.), ( 

-1WT O ) u = e - - -0 elWT 

the new unknown oper~tor is introduced I<i; 1 

I<o(T/) - (A) 
T/* A• ' Ko= ( i~ 

dr 

·d) -~dr 
1 

r.,-1 81( = [f r.-'-l !!_}-' [f+ 
1i 8g 1\o 8g \o , 17(0) = 0, 1,.(t)= 0. 

(7) 

The solution of the differential equations system (7) with the zero bound­
ary wnditions is equal to 
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(:.) = l<O' (:.) = -i j dr'{ 0(r - r')e'••l•-•'l+ 
0 

+e''" ( ~ ~) }{:.), 

· ( 0 1) 
u = -1 0 ' a= -(ch(gt))-1

• 

The calculation of the diagonal part of the operator 

t 

Tr(I<- 1 ~!) = J dr [(Ko)1/ + (Ko)2n 
0 

results in: 
'T='T' 

= t th(gt) 

Det]< = exp (t j dg th(gt) )_ = ch(gt), 

< z!Ulz' >= . 1 exp (- lzl2 - lz'l2 + <I>o). 
Jch(gt) 2 2 

(8) 

It is necessary to note that the functional method of the integral calcula­
tion involved here is distinguished by the compactness and an universal­
ity compared with the finite - multiplicity approximation method used 
earlier [5] for deriving formula (8). 

Now, formulae (4) and (3) are substituted to the function P and 
the four-fold integral is calculated in. the complex plane of the coherent 
states. Using consecutively the formula· 

j ~z exp(-1zl2+ az + bz* + cz2 + d(z*)2) = 

. ~ 

! 

1 ,, 

1 (ab+ cb2 + da
2
)· = --;::== exp 

Jl - 4cd 1 - 4cd ' 
(9) j 

one can obtain 
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P = ( 1 - e-w/3) exp( (e-w/3. ~ 1) 1~~
2
) ~x 

X exp --th(gt)e-i"'(l - e-wf3)2 Lx F ( 
i ·2 ) 

2 w2 ' 
(10) 

E- 1 
. - ch2 (gt) - e-2esh2(gt)' 

x = (1 - e-2
e E) -te-o 0, 

F = / exp -lzl2{1 - e-e-w/3 E) + z•e-e:(e-w/3 - 1) ~ E+ J d2 { . · 

+z((e-w()·_ 1/* + i th(gt)e-icp-w()(l ~ e-w{J)j_x)+ 
w . w 

+(z")2 ~th(gt)e1'x - z'~th(gt)e-••-••Px} · 

As all preceding integrals the integral (10) is also G_auss which is calcu­
lated by the formula (9). To simplify the differentiation P with r~spe~t 
to c, it is convenient to decompose the phase and normalization quantity 
of .the functional Pin the series on the function x(c). The nonvanishing 
contribution as c -t O to n and D is determined by the expression 

Pn,D = (1- e-w/3) .JE·(1 + X

2

2
th2(9t)e-2wf3) X 

'Y 2, 

. { (1 __: ew/3)2 (1jl2 (1- ce: E 
xexp - 2 /3 + 'Y w . e-w - 1 

+x2 -e-th2(gt) +.: -1-ei"' - Le-i"' :_th(gt) , -w/3 · ) · (( ·•)2 · ·2 ) ) } ,2 2 w2 w2 . 'Y . 

1 = 1-'- exp-e:-w/3 E. 
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Using the definition (5) for the function obtained we derive the following 
result: 

[ I ·1 2 
] < n >= sh2 (gt) + ~ 2 (ch(gt) + sh(2gt)sin(c.p - 20)) + < n >13, ( 11) 

< n >13= n0 ch(2gt), 

D- < n >= sh(gt) [ sh(3gt); sh(gt) + 2 l~~
2 
sh(3gt)+ 

lil2 
. ] ·. +2 w 2 ch(3gt)sin(c.p - 20) + (D- < n > )13 , (12) 

(D- < n > )13 = n~ch(4gt) + 2n0 sh(gt)sh(3gt)+ 

Ii 12 
. 

+2no w
2 

_(ch(4gt) + sh(4gt)sin(c.p - 20)), 

0 = arg(a), 

which is the exact solution of the problem with the. quadratic Hamiltonian 
and initial distribution. 

3. Dispersion and average occupation number 

The sub-Poisson photon statistics of the field with the frequency w is 
· said to take place if the inequality D- n is fulfilled. At zero temperatures 
in formulae (11,12) the terms< n >13 and (D- < _n > )13 are equal to zero 
and these formulae coincide with the well known one [2] w·hich is obtained. 
for the initial distribution p0 • The inequality D < n is fulfilled when the 

· relation between the phases is equal to c.p - 20 = -f. With increasing 
temperature the positive addend (D- < n > )13 describes the influence 
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of the thermal. noise an_d prevents the establishment of the sub-Poisson· 
photon statistics. Also, this is prevented by the first terms in the square 
brackets (12) which are independent of the initial field j. and describe 
the quantum noise. It can be noted that the. thermal fluctuations ar~ 
important at a very small evolution time. On the contrary, the quantum 
fluctuations are important at large times. 

For a more detailed research of the SubaPoisson field statistics the. 
numerical calculation was undertaken. The points of sign-change of the 
function D- < n > were determined by the use of the net of three­
variables gt, j, w, /3 values. A special indication of the change of the 
D- < n > sign from "plus" to "minus" and vice versa showed the 
existence of two surfaces with such a change. The scale of the step in the 
net of values was determined by the requirement of "smoothness" foi- the 
function D- < n >. The calc~lation shows that the region of the param­
eters gt,w, and /3 admitting a sub-Poisson process when j is constant, 
is embedded between two surfaces drawn in the figure. This figure shows 
the case < n > < < I and the interval 1 + 0, 1 for the param~ter a"'-•- 1 

which corresponds to the o·ptical region of frequencies. At the frequency 
w ~ 10a the disappearance of this effect is caused. by the quantum noise. 
It is necessary to emphasize that the frequency threshold is eroded as 
the temperature rises. When a frequency is small w ~ 0, the disappear­
ance of this effect is explained by joining two surfaces because of thermal 
fluctuations. For this reason the time delay exists. In decreasing the 
pumping a the shape of the .surfaces is riot changed but they are brought 
together, thus reducing the .volume admitting the sub-Poisson photon 
statistics. One may find a short statement of this result in the work [6] 
of the authors. 

Thus, the quantum as well as thermodynamic fluctuations destroy 
light states with · the sub-Poisson statistics. The latter may exist only in 
the region of finite values of pumping, frequency, temperature and evo­
lution time. Suppression of this effect is caused. by thermal fluctuations 
.i!l the long-wave region and manifests itself in the delay of the effect. In 
the short~wave region.the suppression is caused by the quantum noise 

. and mani{ests itself in the presence of the frequency threshold at low 
temperatures. . 

The increasing of the sub-Poisson effect wa:s found [7] in the model 
(2) with the growth of the temperature. The photon statistics and 
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waiting-time distribution were investigated in [8]. The cross- correlation 
of two modes associated with the two-photon process of more general 
type was treated in [9]. 

In conclusion let us note, that in the mathematical aspect the Hamil­
tonian (2) corresponds to the Hamiltonian of the bosons excited above 
the condensate in Bogolubov's superfluidity theory [iO]. We suppose 
that the investigation of the occupation number statistics in this case 
can give new information about the condensate. So, the "squeezing" 
theory in the sphere of light may be extended to the condensed matter 
physics. 

The authors are thankful to N.N.Bogolubov for the discussion of this 
aspect of their work and for the support. 
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1. The range of parameter values admitting · the sub-Poisson 
distribution is embedded between two surfaces. The interval of 
the parameter wls~cfl + 10 corresponds to the frequency inter­
val 1013 + 1014 when the pumping a is equal to 1012

1 the interval · 
of values f3 · 8 + 1 corresponds to the temperature interval 
120 + 1200°K. 
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