





1 Imtroduction

The Jaynes-Cummings model (J CM) ofa single-mode quantized field
coupled to a two-level atom in a lossless cavity [1]{5] is an 1mportant
fundamental theoretical model of the interaction between two quantum
systems. In addition to being exactly solvable it has recently become ex-
perimentally realizable with Rydberg atoms in hlgh-Q microwave cavities
[6] The model predicts a lot b{ interesting effects, among them one finds
the so-called "collapses” and "revivals” of the Rabi oscillations {7] which
give a clear signature of the quantum nature of the interaciing ﬁeld. The
evolution of the field and atomic states in the JCM has recently attracted
a lot of attention (8]-{12]. Phoenix and Knight [8] and GeurBa_nacloche
(9] have shown that the atom and field most closely return to pure states
during the collapse region but not at the peak of revivals as may be ex-
pected and have found the explicit forms for the atomic and field states
at this time [9]- [10] The pure atomic state at half revwa.l tlme can be
generated even from an initial mixed atomic state [12]

Recently, Agarwal and Pun [13], Zaheer and Zuba:.ry [14] have con-
sidered a iwo-level atom injected into the cavity in a coherent super-
position of the upper and lower levels. They have shown that for a
certain choice of the relative phase between the atomic kdiue‘le and the
‘ coherent field for which the initial atomic state is an eigeustate of the
" semiclassical Hamiltonian, the population inversion essentialiy remains
* unaffected. Exactly coherent tfapping m two-leuel atoms has been found
to occur [15] when the initial state of the field is an exgensta.te of the
Susskmd-Glogower phase operator [16] and the phases of the ﬁeld and

dipole moment are identical. The effect of phases on the reduction of the
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fluctuations in atdmic variables, and on the quadrature and amplitude-
squared squeezing in the JCM has also been investigated [17], tlS]. In
this paper we study the time behaviour of the Mandel’s Q-factor [19]
and the antibunching effects using the definition based on the sign of
(dfdr)g®(t,t + 7) at 'rlk= 0 (20}, [2]] We calculate the quasi-steady
value which Q ta.kes in the co]la.pse region and find that Q is larger
than zero when the atom is initially i in an eigenstate of the semiclassical

Hamiltonian and is equal to zero for another initial atomic sta.te On the

other hand the entropy in the first case is lower than that in the second

one. Thus we grve one more example lﬂustratmg another important re-
sult of [8] statmg that the entropy, rather than the vanance, isa rehable

para.meter to charactenze the ﬂuctuatrons of the ﬁeld

2 Field..Statist_;ics

The model Hatmltoma.n of the JCM in the electric d1pole and rotat-

mg wave approxlmatlons is grven by (F’z =1)

H = wR* +wala +g(R*a+ o' R7), (1)

- where the operators Bt and R* describe the atom with tranition fre-

quency wy whi]e at a.nd a are creation and a;nnihi]a.tion operatore of pho-
tons with frequency w; g is the atom-field couphng constant whrch ma.y
be treated as real and positive mthout any loss of genera.hty

Let the atom at the initial time ¢ = 0 be prepa.red in a ooherent

superposition of the excited and ground states [17]

et =0) =con )+ Hin ), @
A

.'A%;i’—’hﬁm;“ Mi‘“ R ' P

and the field be in a coherent state .

riaalt =0) = ), g = exp(-n/2) \,_. @)

Assume that at ¢t = 0 the atom and the field are decoupled then we can

write for the initial atom-field state
[9(t = 0)) = Y guln)|tatom(t = 0)). (4)

The wave function of the total system at time ¢ is found from the Hamil-
tonian (1) to be

() = zqn{cosf’. [ ne(®)le, ) + Buc(t)lg,n + 1)]

+
Hain 240 (6)6,m) + Bag(Olesn - ] }

[ () (st i on )
Ant1(t) = exp[ tw( —) ] (cos f,.t+z—A— smfn)
(

where

A"’le (t) = €xp

twol
o) = e (), By=0, )
B,..(t) = Bniyg(t) = exp [-—iw (n..-i- %) t] (—ig__._';:“ sin fnt) ,
with f, being the generalized Rabi frequency . |
fo= Ve (n+1)+ A%4 | (7)
and A being the detuning parameter
A= Wy — Ww. (8)
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A good measure of the extend to which t.hg photon statistics of a state

is sub-Poissonian is the Q-factor

| = i(—?—r:i))—z-)- -1 9)
introduced by Mandel [19]. The more negative‘,Q is, the more sub-
Poissonian is the field statistics. Another important characteristics of
the field statistics is the qua.ntmﬁ degree of second-order coherence. It
is obtained by evaluating the transition rate for a joint absorption of
photons at two space-time points [22]. For a single-mode radiation field,
if purely temporal correlations are of interest, the relevant correlation
function in thé normalized form is : v
{at(t)at(t + 7)a(t + 7)a(t)) . (10)
(at(t)a(t)){at(t + 7)a(t + 7))

The coincidence rate g(®)(t,t + 7) plays the central role in the definition

g(z)(t,t +7)=

of photon-antibunching. Two definitions are commonly used in the lit-
erature [23]-[24]: the value of g®)(¢, t+ 7) at 7 = 0 is less than unity or
the derivative of g(®)(t,t + 7) as a function of the delay time 7 at 7 = 0
is positive. If under antibunching one means the tendehcy of photons
to distribute themselves separately rather than in bunches so that when
a light beam falls on a photo-detector fewer photon pairs are deteqted
close together than further épa.rt, one must use the latter definition [20].
Making use of (5) and (6) we can rewrite the Mandel’s Q-factor as
g = {06 Ba(Ba(®) - (e Bat)) a1)
(at(t)a(t))

and the derivative of g®(t,t + 7) as

=0

d _
7990+ 1) |, =

{ 2l D'+ ralt + T)a(t) |, (o' ()alt)

~(a! ({)at (t)ale)a(t)) (et + r)alt + 7)) |,=o}<a*(t)a(t»-3, (12)
where '
(a't)at)) = A+ Qusin®fut
~ im0 Y dutnu Fult),
(a'@)a!t)a(t)at)) = n2 . -: 2 E nQy sin? f,¢
' - sinezn:quq:+lnp;(t), (13)
(—g_—(at(t + r)a(t + r))' [y = Z fnQnsin 2f,t
~ si:: 0 gngnirJu(t),
%(at(t)at(t +r)at+r)a@) |, = Yon f:Qu siﬁ 2 fut :
- s;l 0 ; Gngn+110Jn(t).

In Eq. (13) for simplicity the notation

2
_ gn+1) 0 . .0
Qn = _—f,% q:cosza—qﬁ_'_l sin’ E] ’

il

Fut) g\/;u+ 1

-

sin ¢ sin 2f,t + écos(ﬁsin2 f,.,t] , (14)

Jn(t) = gvn+1|sindcos2f,t+ E-Af—cosquin 2fnt] ;
has been intréduced. - ) k’
It can be easily checked that for two limiting situations when the

atom is initially purely excited (6/2 = 0) or de-excited (6/2 = 7/2) Eqgs.

- (13) reduce to those obtained earlier by Dung et al. [21]

5



By substituting expressions (13) and (14) into (11) and (12) one easily
obtains explicit results for Mandel’s Q-factor and the derivative [g(z) @, t+
‘r)]:_ at 7 = 0. Recall that light for which @ > 0 (< 0) has fluctuations
larger (smaller) than those of a Poissonian process and is said to exhibit
super- (sub-) Poissonian behaviour. However, as will be shown below,
Q = 0 is not enough to state the Poissonian character of the field. The
photon bunching and antibunching are defined by the behaviour of the
normalized coincidence rate g@(t,t + 7) in the vicinity of 7 = 0. If
g@(t,t + 7) falls with increasing 7 from 7 = 0 (negative derivative), the
light is said to be bunched. I g(®)(¢, ¢+ 7) rises as 7 increases from 7 = 0
(positive dkeriwitive), the ]ight is said to be antibunched. |

In the collapse region Q is nearly constant and is found to be, at exact

resonance (A: 0)
. , 2 —2cosf — cos?d
Qquasi—ateadv = 47 + 2cosf ’

where we have put the relative phase between the field and the atomic

(15)

dipole ¢ equal to zero. For non-resonant case (15) is very complicated
and we have no such simple dependence for Qguasi—steady from 6 and .

From (15) we easily obtain the value of ¢ for whlch Qqua,...,md,, vanishes
l = arccos(V3 — 1) ‘ (16)

Equation (15) can be easily generalized to the case of m-photon JCM
with the Hamiltonian [25]-{26] (without taking into account @he ac Stark
shifts) ‘ 4
H = woR? + wyata + g(R*a™ +a'™R"). (17)
(18)

-2m® — 2mcosd — m3 cos?
47 + 2mcos @

to be Qquau'—ateady =~

6

Then the condition for Qquasi—steady = 0 Teads
-1+ v142m2 (]9)

m
For the two-photon JCM (m = 2) equation (19) means cosf = 1, ie.

cosf =

Qquasi—steady = 0 for an initially mverted atom. For m larger than 2 Eq.
(19) has no real solution g, and the field shows only super-réisscniéﬂ
statistics in the collapse region. Note that in- this region [ (7)(t t+
T)]' L_o is equal to zero for any values of m, 8 and i, whlch is in
contradiction to the first definition of antlbunchmg
It does not appear possible be express the sums in equétion (13) in

closed form. But for not too large ﬁ, the direct numerical evaluations
can be performed. The results show that, in general, Q and [g(z)(t t+

)] L__o oscillate near the initial time ¢ = 0 and in the revival region.
The field can be sub-Poissonian or super-Poissonian when the photons
exhibit antibunching and alternatively, the photons can be bunched or
antibunched when fhe cavity field showé sub- Poissonian piloton_ statistics
(see Fig.1.). By changing  we can reach positive and negative values
or zero for Mandel’s Q-factor. The numerical calculations of Mandel’s
Q-factor for the initially coherent field are presented in':Fig 2. for (a)
cosf'= 0 and (b) cosf = v/3 — 1. As can be seen from Fig 2.6.., for the
case (a) the interacting field shows super-Poissonian statistics, during the
whole time. In the case (b) (Fig 2.b.) in accordance with Eq. (19) the
Mandel’s Q-factor is equal to zero in the collapse region. But as we shall
see from the analytical and numerical results presented below it does not -
mean that in this region we have the Poissonian ‘Photon statistics. - This
indicates only that the variance, which is sensitive to the moment of the
second order, in the case (a) is larger than that in the case (b).

7



Further, we calculate the photon number distribution in the given

model. The density matrix is defined as

- plt) = [N (20)
Then, the _photbn number distribution at laier time ¢ is giveﬂ by
P(n,t) = Tra{nlo(t)|n) (21)

By using the expression (5) for the wave function [1/(t)) of the total sys-

tem, we obtain the following formula for the photon number distribution
2 20 . o0 2 20
P(n,t) =g |cos EI"(t) + sin §I,._1(t) + g,_, cos EL"_I(t)
. o0 1 . L1 .
+q,2‘_,_1 gin> EL"(t) + 2 dndn+1 810 6F.(t) — 5dngn—1 i 6F.—1(t), (22)

where

A?

cos? fnt + @sif fal,
2

g (n+1) . 2

—————Z8in” fut

R

L) =

L.(t) = (23)

and F,(t) is defined by (14).

The evolution of the photon number distribution is presented in Fig. 3.
for the initially coherent field and for cases (a) cos = 0 and (b) cosf =
v3—1. In the case of cos § = \/§ —~ 1 though Qquasi—steady = 0 the photon
number distribution at time ¢ has a muliipeaked structure, i.e., differs
from being a Poissonian distribution. But for cosd = 0 the curves P(n,t)
are similar to Poissonian one. As can be seen from Eq. (15) and Fig. 2.a.
in this case Qquasi—steady > 0 and the photon number distribution has the

super-Poissonian photon statistics.
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3 Entropy

In this section we compare the time evolution of the entropy with
that of the Mandel’s @-factor. Since for systems in which both the atom
and field start from pure states, the atomic and field entropies are e(iua.l
(8], [27] and the calculation of the atomic entropy is more transparent (8],
[12], (28], below we treat the time behaviour of the atomic entropy. The
atomic density matrix can be obtained by tracing over the field variables

and can be written as

aft) ()
T B¢
where «(t), ¥(t), B(t) can be easily found by using equations (5) and
(20). | | .

The atomic entropy is given by

Patom (t) = (24)

(25)

Satom = _Tr(Patom In Patom)o

Since the trace is invariant under a similarity transformation, we can go
to a basis in which the atomic density matrix is diagonal and write Eq.
(25) in the form |

Satom == 3_(Axln Ag). (26)
k

The Ax can be derived from equation (24) in a straightforward manner

Ma=3 {1+ VT IRORD - O}, (27)

with the elements of the atomic density matrix being

1 .
aft) = % + ECOSG’ZpM(O) cos 2gtvn + 1
" 9



1° ) . v
+ 7 8in 0 sin ¢ Z Prn+1(0) 8in 2gt/n + 1, (28)
A wY : :
¥(t) = cos 5 Z 1Pnan—1(0) cos gtv/n + 1sin gt+/n
. 90 . .
- sin’ 2 Z 10n+1,n(0) sin gtv/n + 1 cos gtv/n

+ 3 exp(—i¢)sin § me(O) cosgtvn + 1cos gtv/n

+ % exp(iq‘) 8in ¢ Z p,,+1',._i(0) sin gtv/n + 1sin gtﬁ, (29)
Al) = 1-af). (30)

where for initial coherent field we can write Pnm(0) = ¢ngm and g, ar
defined by (3). ,

In Fig. 4 we have plotted the entropy for the two values of cosé
(@) cosf =0 and (b) cosf = v/3— 1. In the case (b), as we see from the
figure, when the interaction is turned on, the entropy increases rapidly
from the initial value zero, but in the middle of the collapse region, it
decreases significantly indicating that the atomic and field subsystems
roughly return to pure states. Thls 18 in agreement with the results of

(8] [12] In the case (a), which corresponds to a trapping state [13] [15],

the atoxmc and ﬁeld subsystems go away from their initial pure states

very slowly.

Even more interesting is that in the first (;ase (a) the entropy is always
‘ smaller than that in the second case (b), which allows us to conclude
(somewhat arbitrarily) that in the collapse region the field state, when
cos @ = 0, is closer to a Poissonian 6n'e than when cosd = \/3- 1. Figure 3
of the photon number distributions also supports this conclusion. On the
other hand, as has been shown in equations (15), (18), Mandel’s factor

Qquasi—atea.dy =0 for cosf = ﬁ— 1 and Qqud,;-__,teady > 0 for cosﬂ = 0.
10

Thus, relying on the Q-factor alone can lead to some misinterpretations

on the fluctuations of the field.

4 Conclusion

It is shown for JCM that by varying the weights of the upper and
lower states in the initiaj coherent superposition atomic state, one can
change the cavity field from being sub-Poissonian to super—Pbissonian.
Moreover, sub-Poissonian photon statistics does not imply photon anti-
bunching and can be accompanied by photon bunching. It is found that
the investigation of the Q-factor, whi(;h is equivalent to an investigation
of the variance of the photon number distribution, is not enough to con-
clude about the behaviour of the field fluctuations. This is also confirmed
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e Figure 1. The time evolution of (a) the Mandel’s Q-factor and
(b) derivative [g(z)(t,t + 1')]: Ir=0 fori =20, ¢=0 A=
& :
0, cos@=0. '
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e Figure 2. Mandel’s Q-factor for ﬁ. =20, ¢ = 0, - A =0and
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by the results concerning the photon number distribl_ltion and the atomic
entropy. The explicit expression for Mandel’s Q-factor and the derivative -

[g(g)(t,t + 'r)]: |r=0' in the collapse region has been found.

S
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e Figure 3. Photon numbser distribution forfa =20, ¢=0, A=0"
and (a) cosf = 0 and (b) cosf = V3 — 1.
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e Figure 4. The atomic entropy for i = 20, ¢ =10, A =0 and
(a) cos8 = 0 and (b) cosd = V3~ 1. S
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