





i.Introduction

The discussioh about r =m / m, the relation between
the two measures of the long-range order (LRO) m and n%:
the usual magnetization m and the root mean square magneti-
zation m, is one of the most interesting questions in the
theory of phase transitions [1-8]. Though the "folk-lore"
statement is that in the thermodynamic limit both quanti-
ties coincide (see e.g.,, the review [1]), the problem of
equivalence of the different definitions of the LRO is‘ab
rather sophisticated one [2] and has a long history (see
also refs. [3,4]). Recently the interest in this subject
has been renewed by Kaplan et al. [5,6] in connection with
the theory of some quantum spin systems (see also refs.
[1,7,8]1).

By definition

m = i i 1
iig+§12 < Lz>H(h) , (1)

. / 2
m = ﬁiz <(Lz) >y (2)

where
-1
< L2>H(h)=Tr { Lzexp[—BH(h)] }.{ Tr exp[-ﬁH(h)] }

H(h) = H - hNL_ , B = 1/T,
H is the Hamiltonian of the system under cdnsideration. L,
is the z-component of the operator of the magnetization

(staggered magnetization) for ferromagnets (antiferromag—
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nets) and N is tHe number of spins. Let us note that tﬁe
physical quantity m is obtained by introducing an infinite-
simal symmetry breaking field h, while m, does not require
such 'a field, the expectation values in (1) and (2) are
calculated over symmetry-broken and symmetry-unbroken
states, respectively. This 1lies at the basis of the
difference between the two measures m and m,.

In ferromagnet where [Lz,H]=0, the result rz1 is found
at any temperature [3] When [LZ,H];O and H is invariant
under the uniform spin rotation, we have r zvf§ [4]. In
ref. [5] ﬁhe estimate rz1 is obtained in the more complica-
ted case of antiferromagnet, where [LZ,H]¢0. The exact
value r =/3 is obtained in the framework of the Lieb-
Mattis model in the ground state (T=0) [61 and at arbitrary
temperatures T and an arbitrary valuebof the_spin [7].

All the results cited above have been attached to the
localized spin models of a Heisenberg type. Recently the
problem of the LRO in an itinerant magnetic. system (the
simple Vonsovskii-Zener model of antiferromagnetism with
imperfect nesting conditions [8]) was examined and the
result r =Vf§ found. For this model it has been shown that
the ratio r is independent of the band filling, which is a
measure of the nesting.

All efforts in this.area have been attached to magne-
tic system, however this problem ‘is not of a smaller

interest in the other physical systems exhibiting a phase

transition.
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In this paper we shall examine the ratio r in a 3=
component model, exhibiting a structural phase trensition
of a ferrodistortion type, with cubic symmetry'(the model
is a generaiization of the two—component oﬁe, see
refs.[9]). The Hamiltonian of this system is
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B, B, 2 2
an wl %« Qg (3)
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a=xX,y,2; P and Qia are canonically conjugated momenta. and

11'¢¢

1o

coordinates, respectively, of the 1lth atom with the a com--
ponent of the displacement, N denotes the' number of atoms.

A>0, B1' B2 are model constants, P is non-zero only for

e
the neareet neighbors.

The thermodynamic behavior of the system can be
studied exactly with the aid of the approximating Hamilto-
nian method (AHM) [10,11], in the sense that instead of (3)
we can use a simplified approximating Hamiltonian (see
eq.(4) below), which generates the same‘thermodynamic beha-
vior under a proper choice of its free variational parame-
ters (for details see refs.[9]). The approximating Hamilto-
nian for the model (3) in normal coordinate representation
is

2
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‘where we use the nptations
2

v2 = A E = A ’
o M 0 4iBl+Bz)
' 1 2 2
— — - .= A + S
aa Aa +, A (AO Aq) « a

. 2 1 2 3 _ 2
c = %( Ax"Ay‘.Az* 3) + -FZ-(ZAX"Ay"Az) + sz(Ay Az) ’
. .

; (s

_1
b2 7B, + B, ' =3 B +B

and A are variational parameters. They obey the equations
a

9 yxnﬁl_ls:(A;AyfAz* 3) + —12);((21\x -a, b)) (6.1)
9 Y,,= %;('AX;A?A; 3y ‘-%;(‘(ZAY -A_ -A) . (6.2)
9y, = —1b—1(Ax+Ay+Az+ 3) + —12;2-((21\z -A, _A"’) , (6.3)
where
SR
Y an ='11TZ. | 2?zqa coth —z3%, ' (7

We’notevthat the Hamiltonian (3) is exactly soluble

oni§ in the region (see refs.[9] for the two—-component

case)
| ' B, >0 . (8)
3B1 + B2 >0 and 2
Equations'(G)'have a simple solution

A oA = : (9)
Ax fAy Az A,

and the investigation of the system :(3) is similar to

that of the one-component version [12-14] proposed by

T.Schneider et al. [15].

2.The parameters m and m0

In calculating m from (1) we use the Hamiltonian
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H(h)=H-hNL , where L =(M'"°/N)} Q . In this case we have
1

the approximating Hamiltonian Ho(h)=Ho—hNLz and the free:

enerdgy (normalized to 4E0) is

f(h) = 1lim f{H(h)] = lim —(t/N)1nTr{exp-{H(h)]/T)} =

N-o N-o0

Sd % Avfx2;+ Aa c © R
= —;—tz J ln[ZSh———iﬁf—————— ]___—"_—__—77—‘ (10)
K 36 8E v A
o o 0 o0 z

472 /r(a/2) .is the surface of

the unit d-dimensional sphere, xDzk(d/Sd)f/d, k= 2ns/a (a

In eq.(10) a =x,Y,Z; S,=2(m)

is the lattice constant) and Ax,Ay,Az are‘the solutions of

the equations

_L 2
9yx- bl(Ax*Ay*Az* 3? + —5;((2Ax —Ay —Az) s (11.1)
9y =L (A +A +A+ 3) + 2 ((20 -A -A) , (i1.2)
y bl Xy z bz y z 7 7 : .
1 ’ 2
9y,= (BB +A+ 3) + 2 (28 -a, —Ay)——&é——z . (11.3)
| 1 2 4EovoAz
where
Yy, = limy =
& Now M ,
1 _ “(12)
A Sq d-1 2z gz AX, A x7% + 22
=5 X, J coth a’p
K Vr = 2t
o A x + Z



Adding the equations (11), we have

2

- 1 _
2 = 3bl(Ax’Ay’Az+ 3) - Y.~ Yy Y, - (13)

z

4E v
0

h
Za

The functions'fN(h) are differentiable and convex at
any h. The limit function f(h) is convex and differentiable
at h#0. Then applying the Griffiths-Fisher lemma [16], we
have

1im sup <L > =< 1im &8f(h)/éh ,
N-o z h-0~

lim inf <L > = lim, 38f(h)/8h .
z +
N-w h-0
However we can choose a sequence of points h; > 0, h:» 0 at
which the derivatives

af(h)

—85————'=h+=1im <L>
n

+
N-oo z H(hn)

exist. Now from the right continuity of 8f(h)/8h at h = O
and from eqgs.(10) and (13) it follows that

1/2 1/2
2

E
Py __0 + + -
m = "o[ 3b1] {Ax+Ay Az 3 3bl(yx+ yy+ yz)} . (14.1)
Similarly it can be shown that there exists a sequence
for h: > 0, h:e 0, and we get
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E
__ 2 0 _
m = vo.[ 3b1] {Ax+Ay+Az+,3 '3b1(yx+ yy+ yz)} . (14.2)

In zero field (h=0), equations (11) reduce to equa-

tions (6) in the thermodynamical 1limit Then taking into
account (9), we can write (14) (as yx=yy=yz=y)
2 Eo 172 172
m = signh v [Ti_] { A+ 1 - 3b1y } . (15)

The source term —hNLz breaks the symmetry of H. The
function f(h) is not differentiable at h=0 and m # <Lz>H =
0. This is an example of quolubov's “quasifaverages" [17].

The calculation of m; from (2) requires the use of a
source term which does not break the symmetry of H [7]. Let
us consider the Hamiltonian H(p) = H - pNL?, thch has the
same basic symmetfy prdﬁerties as H. In this case we have
the approximating Hamiltonian Ho(p)= Hé— bNﬁz and thé free
energy is |

f(p) = lim £ [H (p)] ,

Noo
where
AR (p) 2
.t q 1 (1 +8)
£.[H (p)]= 3TZ In[2sh —3——] % ¥, , (16)
2 _ 2 _ 2
Qq(p)— Qq (2p/vo)8qo‘,

aqo is the Kronecker symbol and A 1is the solution of the
equation

A +1=3by. : (17)

The functions fN[Ho(p)] are differentiable at p=0.

Then from the Griffiths-Fisher lemma [16],7the continuity

of the derivatives afN[Ho(p)]/ap (which permits one  to



inverse ‘the ordet of the opefation lim 1lim) at p=0 and

R p-0 tiom
equation (16), we obtain
' 8f [H (
lim < B2 >y = -lim —"’°*p)] . (18)
. No® N-c ap p=0

Now usi t i 3 ion (
ng the unitary transformation Uan=exp{—s(n/2h)
?(PlanB— QlaPlB)}' which tr;nsforms La.into LB , LB into
—La and keeps invariant the other axes, one can easily show
that
2 Y g 2 -
< = =
| Lx >H < Ly >H < Lz >H. (19)
Let us‘note that UaB conserves the commutation relations
[ 1q’Qx'B ] 1h§11'6aB'
Finally from (2),(17),(18) and (19) we. obtain

s '4Eo : i
m, = . u2 { 1 + A = 3b1y } , (20)
1 0 B .
and (cf. eq.(15)) ’ )
r(d,T) =m / m = st . . (21)

3.pis§ussion

In . this paper we have inVestigated the relation r(d4,T)
between -the two different measures of ‘the LRO in the
symme?ry breaking state and in the state with unbroken
symmetry. The‘ moét .interesting physical consequences in
this area have“been' provoked 'by the fact that in the
quantum - models the brdér parameter oberatbr does not

commute with the Hamiltonian (see refs.[1-8,18]). The quan-

tum model studied here is exactly soluble in the thermody-
namical limit. The pecqliaritf‘of this model comes from the
presence of guantum and claésical critical fluctuations,

depending on the temperatﬁre T and the spacerdimeﬁsidnality
d [13]. In the classical limit, the one-component version
of the model (3) belongs to the class of universality of

spherical models. It has been also shown’ that there is a
classical to quantum dimensional crossover in the =zero-
temperature 1limit [13]. The obtained result r(d4,T) = Vf?
shows that the critical fluctuations (quantum and/or
classical) do not viglate the equality m = m, 3 found
earlier for éome exactly soluble mean-field models in the
theory of magnetism [6-8]. At last, let us note that the
generalized model obtained for an arbitrary number of the

components n of ﬁgives the resultr(d.T)7=\/"-
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