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Bhl'l:HCJICHhl napaMeTp nop.llAKa m H cpeAHeKBaJJ,paTH'iHhlH napaMeTp 
nop.11AKa m0 e TO'l:HO pewaeMoH MOAeJIH CTPYKTypttoro q>a3osoro nepexoAa. B 

3TOH MOAeJIH Y'l:TeHhl KaK KJiaCCH'l:eCKHe, TaK H l(BaHTOBhle KPHTH'leCKHe q>JiyK­
Tya~HH, 3aenc.11mne OT TeMnepaTyphl H pa3MepHOCTH npocTpaHCTBa d. Jl.n.11 
eeJIH'l:HHhlr(d, T) = m/m0 nonyqettor(d, T) = v'J.3ToTpe3yJihTaTHe3aBHCHT 

OT ipnyKTya~HH B CHCTeMe. 
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We calculate the order parameter m and the root mean square order 
parameter m0 of an exactly soluble model of structural phase transition. In this . 

model classical and quantum critical fluctuations depending on the temperature 
T and the dimension of the space are present. For the ratio r(d, T) = ml m0 we 

obtain r(d, T) = v'J. This result does not depend on the quantum and\or 

classical fluctuations .. 

. 
The investigation has been performed at the Laboratory of Theoretical 

Physics, JINR. 
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1.Introduction 

The discussion about r = m / m, the relation between 
. 0 

the two measures of the long-range order (LRO) m and m
0

: 

the usual magnetization m and the root mean square magneti­

zation m
0

, is one of the most interesting questions in the 

theory of phase transitions [ 1-8]. Though the "folk-lore" 

statement is that in the thermodynamic limit both quanti­

ties coincide (see, e.g., the review [ 1]), the problem of 

equivalence of the different def i ni ti ons of the LRO is a 

rather sophisticated one [2] and has a long history (see 

also refs. [3,4]). Recently the interest in this subject 

has been renewed by Kaplan et al. [5,6] in connection with 

the theory of some quantum spin systems ( see also refs. 

[1,7,8]). 

where 

By definition 

m = 

m = 
0 

< Lz>H(h)=Tr { Lzexp[-~H(h)] }·{ Tr exp[-~H(h)] }-t 
H(h) = H - hNL 

z 
~ = 1/T, 

(1) 

( 2) 

H is _the Hamiltonian of the system under consideration. Lz 

is the z-component of the operator of the magnetization 

(staggered magnetization) for ferromagnets (antiferromag-



nets) and N is ttle number of spins. Let us note that the 

physical quantity mis obtained by introducing an infinite­

simal symmetry breaking field h, while m
0 

does not require 

such a field, the expectation values in (1) and (2) are 

calculated over symmetry-broken and symmetry-unbroken 

states, respectively. This lies at the basis of the 

difference between the two measures m and m
0 

In ferromagnet where [L
2

,H]=O, the result r~1 is found 

at any temperature [3] When [L ,H]=O and His invariant 
z 

under the uniform spin rotation, we have r ~µ [4]. In 

ref. [5] the estimate r~1 is obtained in the more complica-

ted case of antifer.romagnet, where [L ,H]*O. 
z 

The exact 

value r =µ is obtained in the framework of the Lieb­

Mattis model in the ground state (T=O) [6] and at arbitrary 

temperatures T and an arbitrary value of the spin [7). 

All the results cited above have been attached to the 

localized spin models of a Heisenberg type. Recently the 

problem of the LRO in an itinerant magnetic system ( the 

simple Vonsovskii-Zener model of antif.erromagnetism with 

imperfect nesting conditions [8]) was examined and the 

result r =µ found. For this model it has been shown that 

the ratio r is independent of the band filling, which is a 

measure of the nesting. 

All efforts in this area have been attached to magne-

tic system, however this problem is not of a smaller 

:~, 

? 

'" 
interest in the other physical systems exhibiting a phase ,l 
transition. 

2 

In this paper we shall examine the ratio r in a 3-

component model, exhibiting a structural phase transition 

of a ferrodistortion type, with cubic symmetry (the model 

is a generalization of the two-component one, 

refs.[9]). The Hamiltonian of this system is 

, ( p: <X A 2 ) 1 , ( ) 
2 

H= L ~ - T QI a + TL Al 1 • QI a -QI• a + 

I (X I I '<X 

B ) 2 
+ 4~ ( I Q:(X + 

8 

4~ I 2 2 
QI <X QI' <X 

I <X I I '<X 

see 

(3) 

<X=x,y,z; P
1

<X and Q
1

<X are canonically conjugated momenta and 

coordinates, respectively, of the 1th atom with the <X com­

ponent of the displacement, N denotes the number of atoms. 

A>O, 8
1

, B
2 

are model constants. ll>u, is non-zero only for 

the nearest neighbors. 

The thermodynamic behavior of the system can be 

studied exactly with the aid of the approximating Hamilto­

nian method (AHM) [10,11), in the sense that instead of (3) 

we can use a simplified approximating Hamiltonian (see 

eq.(4) below), which generates the same thermodynamic beha­

vior under a proper choice of its free variational parame­

ters (for details see refs.[9]). The approximating Hamilto­

nian for the model (3) in normal coordinate representation 

is 

T = 
0 ~ I lpqal

2 

q<X 

2 

+:v2n2 IQ J -
0 q<X q.., 

3 

.!!_ E C 
9 0 

(4) 



where we use the nptations 

2 A A2 
V = M Eo= 4(8 +B ) 0 1 2 

Q = b. 
1 = b. + s2q2 + - (A - A ) 

q(X (X A o q (X 

1 2 1 2 3 2 
C = -b (A +b. +b. + 3) + -b (2b. -b. -b.) + 2b (A -t:,.) , 

xyz xyz yz 
1 2 ~ 2 

b = _!_ 381 + B2 
1 2 B

1 
+ B

2 

B 
2 2 

b =-- B + B 
2 3 1 2 

(5) 

and b.a are variational parameters. They obey the equations 

1 2 
9y =1:,(A-+b.+b.+3) + -(( 2b. -b. -b. ) 

xN · 
1 

x y z b2 x y z 

1 2 
9y =1:,(b.+b.+b.+3) + -(( 2b. -b. -b. ) 

yN l X y z b2 y z x 

1 2 
9 y = 1:,< t:,. + b. + b. + 3 ) + -((2b. -t:,. -t:,. ) 

zN 
1 

x y z b2 z x y 

where 

y = _!_' ;\ ;\Q 
CXN NL ~coth~ 

q q(X 2t ' 

hv
0 

;\ = 4E
0 

T 
t = 4E

0 

' 
(6.1) 

' 
(6.2) 

' 
(6.3) 

(7) 

We note that the Hamiltonian (3) is exactly soluble 

only in the region ( see refs. [ 9) for the two-component 

case) 

3B1 + B2 > 0 and B > 0 • 
2 

Equations (6) have a simple solution 

b. =b. =b. =b. 
X y Z 

and the investigation of the system (3) 

4 

( 8) 

(9) 

is similar to 

'y~ 

? 

'p, 

.., 

that of the one-component version [12-14] proposed by 

T.Schneider et al. [15]. 

2.The parameters m and m
0 

In calculating m from (1) we 

1/2 H(h)=H-hNL , where L =(M /N)" Q • 
z z L lz 

I 

use the Hamiltonian 

In this case we have 

the approximating Hami 1 tonian H
0 

( h) =H
0 

-hNL
2 

and the free 

energy (normalized to 4E
0

) is 

f(h) : lim f[H(h)] = lim -(t/N)lnTr{exp-[H(h)]/T)} = 
N➔oo 

S X 
- d I D - -t J 

Kd 
(X 0 

N-+oo 

;\/ X
2 + b.a 

ln[2sh 2t 
C h 2 

]---- -----
36 BE v 2 b. 

0 0 z 

(10) 

In eq. ( 10) a =x, y, z; S =2(rr)d/ 2/r(d/2) is the surface of 
d -

the unit d-dimensional sphere, x
0
=ic(d/Sd) 1/d• K= 2rrs/a (a 

is the lattice constant) and b. ,b. ,b. are the solutions of 
X y Z 

the equations 

1 2 9y = 1:,(b. +b. +b. + 3) + -((2!:,. -!:,. -b. ) 
' X l X y Z b2 x y z 

. 1 2 9y = 1:,(b. +b. +b. + 3) + -(( 2b. -b. -b. ) 
' y l .x y z b2 y z x 

1 2 9h 2 
9y = 1:,(b. +b. +b. + 3) + -((2b. -b. -b. )---

Z l X y z b 2 z x y 4 E v2b.2 
0 0 z 

where 

y = lim y = 
a N-+oo Na 

d-1 
z dz AX / 

coth --o t:,. x-2 
2 s 

=~-d-Xd-1 J 
2 Kd D 

0 ✓ -2 
b.(XXO 

+ z2 2t (X o + Z 
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(11.1) 

(11.2) 

(11.3) 

(12) 



Adding the equalions (11), we have 

h
2 1 ----- : 3b ( "1 + "1 + "1 + 3 ) - y - y - y 

4E v2 "12 1 x y z x y z 
(13) 

0 0 z 

The functions f (h) are differentiable and convex at 
N 

any h. The limit function f(h) is convex and differentiable 

at h*0. Then applying the Griffiths-Fisher lemma [16], we 

have 

lim sup <L > s 
z 

N➔oo 

lim 
h➔0 

af(h)/ah, 

lim inf <Lz> ~ lim+ af(h)/ah. 
N➔oo h➔0 

However we can choose a sequence of points h+ > 0, h+➔ 0 at 
n n 

which the derivatives 

af(h) I + = lim 
h=h N➔oo ah n 

< L >H(h+) 
z n 

exist. Now from the right continuity of af(h)/ah at h = O 

and from eqs.(10) and (13) it follows that 

E 1/2 1/2 

m =~[ 3~ ] {"1 +"1 +"1 + 3 - 3b (y + y + y ) } v
0 1 

x y z 1 x y z 
(14.1) 

Similarly it can be shown that there exists a sequence 

for h- > 0, h-➔ ~ and we get 
n n 

E 1/2 1/2 

m =- ~o [ 3~J {/J.x+l'ly+l'lz+,3 -,3bl(yx+ yy+ yz)} (14.2) 

In zero field (h=O), equations (11) reduce to equa-

6 

~ 
I.J. 

t 
i 

J 

tions (6) in the thermodynamical limit . Then taking into 

account (9), we can write (14) (as y =y =y =y) 
X y Z 

(15) 

E 1/2 1/2 

m = signh v: [ b: ] { "1 + 1 - 3b1 y } 

The source term -hNLz breaks the symmetry of H. The 

function f(h) is not differentiable at h=0 and m * <Lz>H = 

o. This is an example of Bogolubov's "quasi-averages" [17]. 

The calculation of m from ( 2) requires the use of a 
0 

source term which does not break the symmetry of H [7]. Let 

us consider the Hamiitonian H(p) = H - pNL2
, which has the 

same basic symmetry properties as H. In this case we have 

the approximating Hamiltonian H (p)= H - pNL2 and the free 
0 0 

energy is 

f(p) = lim f [H (p)] , 
N N 0 
➔00 

where 

t A0q(p) 1 
fN[H

0
(p)]= 3Nl ln[2sh 2t ] - 4 

q 

(1 + "1 )2 

~ 
(16) 

n2< )= n2 
q p q 

2)0 - (2p/vo qo ' 

o is the Kronecker symbol and "1 is the solution of the 
qO 

equation 

/J. + 1 = 3blyN. (17) 

The functions f [H (p)] are dif.ferentiable at p=0. 
N 0 

Then from the Griffiths-Fisher lemma [16], the continuity 

of the derivatives af [H (p)]/ap (which permits one to 
N 0 

7 



inverse : the ordet of the operation lim lim) at p=O and 
p➔O N➔oo 

equation (16), we obtain 

lim < L2
, >H = -lim 

.N➔OO N ➔OO 

afN[Ho(p) JI 
p=O. 

ap 
(18) 

Now using the unitary transformation Uat3 =exp{-i(rr/2h) 

[{P~aQ1t3- Q1aP1t3)}. which transforms La into Lt3 , Lt3 into 
I 

-La and keeps invariant the other axes, one can easily show 

that 

< L2 > = < L2 > = < L2 >. 
x H y H z H (19) 

Let us note that Uat3 conserves the commutation relations 

[P1a'Q1•t3 J =ihci11• 0at3· 

Finally from (2),(17),(18) and (19) we obtain 

m~ 
4E 

= 3b Vo 2 { 1 + /J. - 3b y } 
1 0 l 

1 (20) 

and (cf. eq.(15)) 

r(d,T) = m / m
0 

= /:J • (21) 

3.Discussion 

In this paper we have investigated the relation r(d,T) 

between the two different measures of the LRO in the 

symmetry breaking state and in the state with unbroken 

symmetry. The most interesting physical consequences in 

this area have' been provoked by the fact that in the 

quantum models the order parameter operator does not 

commute with the Hamiltonian (see refs.(1-8,18)). The quan-

8 

tum model studied here is exactly soluble in the thermody­

namical limit. The pec~liarity of this model comes from the 

presence of ~uantum and classical critical fluctuations, 

depending on the temperature T and the space dimensionality 

d [ 13). In the classical limit, the one-component version 

of the model (3) belongs to the class of universality of 

that there spherical models. It has been also shown 

classical to quantum dimensional crossover in the 

is a 

zero· 

temperature 1 imi t [ 13]. The obtained result r( d, T) = /:J 
shows that the critical fluctuations (quantum and/or 

classical) do not violate the equality m = m
0
/:J found 

earlier for some exactly soluble mean-field models in the 

theory of magnetism [6-8]. At last, let us note that the 

generalized model obtained for an arbitrary number of the 

components n of Lgives the resultr(d,T) = Jn. 
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