





I ’ I. INTRODUCTION. . )

Intersite  correlation effects in meial alloys and, esbecially, in
anomalous rare-carth compounds and alloys have been the topic of growmg
interest recenlly At low temperatures, dilute magnetic alloys show remarkable
properties, which are mainly related to single-site Kondo ’effect. 2 In Ref. 1,
however, it has been noticed that even in the lyéical dilute metal alloys there
are always traces of interimpurity correlations. These interimpurity correlatiop
effects caﬁ lead to suppression'of Kondo behaviour, formation of clusters,
etc.3-7’ In the systems that contain rare earth ions the -specific low-temperature
Behaviour mainly shows large conduction eleclro‘n masses.8 For the Heavy Ferh:ioil
systen;s the problem. of interimpurity correlations ‘is related . to ' the
understanding of their magnetic properties?-w '

Very recently a new development in tlﬁs field has emerged which is related
to alloy syslems'in which radical chaeges in physical properfies occur with
relatively modest changes in chemical composition.n—" A principle imporlenee
of these studies is connected with a fundamental problem of eleetronic solid
state ltheory, namely with the tendency of 3d electrons in -transition metal
compeunds and 4f electrons in rare—earth compounds to exhibit both localized and
delocalized behaviours. The - interesting electronic and magnetic properties' of
these substances are intimately related to this dual behaviour of electrons. In
spite ef experimental andr the‘oretical-achievements, still it remains much to be
understood concerning such systems. A ealisfactory overall picture is slil! in
_the proeess of evolution: ‘ ‘,

The formation of the singlet sﬁle for the single:impurily Anderson and
Kondo problelh is now very well (mdersteod within the.Bethe-Anut; scheme.,‘lv As
for dynamical properties, even for single-impurity Aederson model, the prei)lem
is only partially understood at present‘ The dynamics of the Andersonzl.

Hamiltonian is even more complicated than the dynamics of the Hubbard model.

However, both of them are often referred to as the simplest models of magnetlc
-metals and alloys. This nalve perceptlon contradicts the enormous amount of
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theoretical papers whxch has been pubhshed dunng the last decadcs and devoted
to attackmg the Anderson and Hubbard models by many rcfmed theoretical
lechniques."s‘22 As is well known now,‘I the simplicity of the Anderson/Hubbard
models  manifest itself in the dynamics of a two-particle scattering.
Nevertheless as to the true many-body dynamics, there is still no simple and
colﬁpact déscripli;)n, exceplkin a véry few limiting cases.

The includingvrof interimpurity correlations makes thc problem even more
ydifﬁcult.zs More recent calculations for two ﬁnpurity Anderson and Kondo
models®* 2 conclude that an anvalytical solution of the problem seems hardly
possible. To attack twé-impurity probleﬁns many advanced methods of quap}um
siatistiéal ’mechanics have been usedx27 These methods, however, kwere' not
successful. Thé most interesting difficulfy, which has been poiﬁted out in
ilef. 29, isk that in‘aﬁy order of perturbation theory, logarithmic}illy diveréenl
diagraxﬁs appear which cannét be generated from any divergent diagrams in a
previous order. All such d}agrams appear to have the feature that the Kondo
éffept’ ai one site is interrupted by the spin flip bet;veen two sites induced by
their mﬁtual interaction. Anofhe;' m;ethod which fails for two-impurity problems
for sinlxilar feasons is 'lAhe pz;th-inleg}al m_ethod.29 As to Bethe-Ans;atz method, it
éanr;ot ‘be' applied m standard fﬁrm. The single;siie regime is vital for
ohe-diménsi;)nal Bethe baran;etrizétion of the spéctrum in terms of the
rapidiﬁés, which kcha;aéterize the state of a mary-body syslem.33

‘Iﬂ the p;'esenl paper we Vpr0pose a general theory of interimkpurity
correlations on the basis of different points of view?® %
reél many-body dynaniics We pay attentio;l tb Kthe; calculalion of single-eléclron
quasiparticle speclra for the two- 1mpunty Anderson model (TIAM), treatlﬂg
exactly the mutual muluple elastlc scattering by use of the lrreduc:ble Greens

Function approach. > Thus our theory for the weak Coulomb corfelaliéﬂ Cf"?" is

a natural extension of the Hartree-Fock theories to in;lude the  inelastic

; ions i “oIf-consistenit "~ way.
electron-electron and eleclron-magnon interactions in a{,_,selfk,CO“ vay
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.interactions.

Another important modification which has been already introduced by one of us36
to describe the single-impurity Anderson model (SIAM) is the -matrix formalism.
The matrix form of the whole calculation procedure, which has never been done
before, reveals many very important features and hidden difficulties of SIAM,
TIAM and cluster-impurity Anderson' model (CIAM). Because these aspects of the
problem are of great importance and are slill‘ not yet clarified completely, we
briefly discuss these questions here. We will discuss the SIAM and TIAM, and

their limitations too.
Of further interest is the problem of adequate description of many-body

dynamics for the case of very strong Coulomb correlations. A number of other
approaches for the strongly correlated electronic systems have been proposed,

trying to find answer to Anderson's question: whether a real many-body

theory would give answers radically different from the Harlrce-Foﬁk‘ (H-F)
results?".>’ By applying our theory to SIAM and TIAM we obtain essentially new
(and 'radicall& different from the H-F") solution for the strongly eorrelated
case. Moreover, the general concept of constructing the interpolated dynamical
solution between SIAM and TIAM arises naturally_ in the framework of our
approach. It is worthy to emphasize that the approach we suggest is founded on
the same type of concept which has been proved to be valuable for various
many-body systems with complicated many-branch spectra © and strong
34-36,36-40 The unified concept of relevant generalized mean-field
is indispensable to understand the rea!‘many-body dynamiés of SIAM and TIAM. The
importance of the Irreducible Green's Function (IGF) formalism lies in the fact
that it gives a compact and convenient des_cription. -of the dynamical behaviour-of
a system of centinuous’ speetrum with a strongly localized perturbation (i.e. a'
Fermi sea of conduction electrons with a single (s-type) impurity orbital).
Since the pioneering work of Friedel"' " the concept of virtual bound state (or
resonant  scattering ~state) is also indispensable to understand local

perturbations in narrow bands of transition and rare-earth metal compounds.

. . . &
There are, however, several appreciable differences between Friedel's'' and
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Anderson's™ picturesewhich have been clarified by Blandin.*? Namely, he clearly
pointed out the essence of the whole problem: local perturbations in narrow
d-bands of transition metals can be discussed within an extended Slater-Koster
model. Moreover within the H-F approximation one can casily sec evidence for
bound state. The phase-shift analysis, taking into account the symmetry of the
problem, is also particularly fruitful, but only in the single-impurity case.
Outside the H-F approximation and in the many-impurity case, big problems remain
open: among them, the basic problem of calculating the adequate parameters of
SIAM within modern band structure theory and multi-orbital impurity states. Even
for’k’the case of SIAM this problem is quite difficult and we did not attempt to
considel; .it, ueilh;ar for SIAM nor for TIAM. However, the detailed presentation
and discus;ion ;)( Vthe dyx;amical properties of TIAM we give here will anyway be
usefui;’:lo >ujn’dei|”'s‘land better the limits of applicability of the traditional
model; to real subsklances.

The present paper -is ‘divided‘ into eight s‘ections. In the second one the
description of SIAM, TIAM and PAM is specified and a éeneral discussion of the
adequacy of those models is given. Ix; the third section a brief outline of the
IGF method is prese;ued. In the fourth se;tion the problem of interrelations
between SIAM, TIAM, CIAM and PAM is considered. The quasiparticle spectrum of
PAM“i‘s- .calc‘ulated( ;véthin IGF approach. In sec.:ktion V the spectrum of the
quési/[:;z;l;tkiﬂcle excitati(;x;s é.nd l’heir damping is calculated for TIAM in the weakly
cor"rke;lated case.‘The role of interimpurity cor;elalions is clearly shown. The

case of very strong Coulomb correlations is considered in section VI for SIAM.

Then this approach is used in section VI in the case of TIAM. The results of our

comparative study of the differing Anderson - models are discussed in - the

concluding section VIIL

i

ST—

s

Il. PRESENTATION OF THE MODEL

In the casec of SIAM and by including the correlation effects in the low
density case, Schrieffer and Mattis“™ showed that the criterion for the
occurrence of magnctic moments (which has been deduced by Anderson within H-F
approximalién) does not hold. 'f‘he solution is never magnetic. So arises the
problem of the role of the clectronic correlation effects.*™ The two-impurity
Anderson model (TIAM) has been first proposed by Alexander and Andcrson.43 They
have put forward a theory which -introduces the impurity-impurity interaction

within a game of parameters.

Lo L 43
They assume a Hamiltonian

H=H; + Hy + Hyy (1)
where
+
H, =X % %o ko @
ko

is the Hamiltonian of a set of conduction, quasi-frce electrons and the {g.}'s
. . + . sy r .
are the corresponding energies; e and o 1€ the creation and annihilation

- 2>, .
operators for an clectron with momentum k in spin state o.

d U d d + +
Hq = Z Eitie 7 Z Rie Mo * Z [v12d1¢rd2o * V21d2od1zr] @
oi=1,2 oi=1,2 -

where the {Ey;}'s arc the position ‘energies of the localized states (for
simplicity -we- consider identical impurities and only s-type (i.e.” non
degenerate) orbitals which we .call "d" Eoy = Eop, = Eo), U is the - intraorbital
Coulomb repulsion, Vi, is the direct transfer integral between the two d states
and d:@, d‘,o are, respectively, creation and aonnihilation operators for a
d electron of spin o at site i; n?o is the corresponding number operator. The

most important term, which contains the essence of the specific behaviour of the

Anderson model is: 5
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This term describes the hybridization interaction term between the localized
impurity states and extended conduction states.
The definition of the hybridization matrix elements Vi has been given by

Anderson in his SIAM37 as follows:

+5

1 ikR £
V= N Z ¢V (R ) (52)
Ra#0
with
V(R ) = J' () BT @ a@ - R) dF | (5b)

The use of H'' in the r.hs. of Eq. (5b) is notable, since it justifies the
treatment of the SIAM entirély in the H-F approximation. As for the TIAM, the
situation with the right definitions of the parameters V43 and V;, in Egs. (3)
an{;l (4) is rather unclear. The d:cfinilion of Vq, as it was given in Ref. 43 is

the following:

* * - -+
V, = Ve = I¢1(r)go2(r)Hddr 6)

(now Hy without ‘H-F".mark). The essentially local character of Hy Eq. (3)

clearly shows' that V.5 describes the direct coupling between = nearest
neighbouring sites. The SIAM is rather a straightforward adaptation of the
Hartree-Fock picture for the wave -functions to the Ianguage of.  the

L ’ .37
second-quantizied operator representation:

d =Z<n|?(> P + <n|d> d PR ()]
ng T ko o oo : :

k

e

+ . . p ’ 7
where d . is the one-electron creation operator consistent with the one-electron

energy €¢ny which results from the relevant H-F equations. This scheme has not
been analyzed in details for TIAM. The reasons for that is rather evident. The

justification of the TIAM needs a certain generalization of Eq. (7)’ in the form

+ _ + + +
dno‘ - Z <n]k>a‘ S * <nld1>°_ d1a‘ + <n|d2>°_ dza‘ ®
k
Going back to SIAM, it has been shown that Eq. (7) actually leads to omiting

lﬁany interesting terms' like c+dcd, c*c*dd, etc. But tﬁe term ¢ ded just-
descﬁbes the contact exchange coupling which definitively musf be coynbllb)art’zd l_d
the Vy, term for TIAM. In addition, with two new indices i = 1,2, lhev numberv of
omited terms are greatly increased. ’

For TIAM there is a poss{bilily of using new basis states, the ;or-called
"ev;:n' and "odd" parity states%’u, e.g. dP°‘=(d1°‘ + dzo)/ﬁ with p:=e fbr
even (+) aﬁd p = o for odd (-). Then the Hamiltonian will conserve barity and
cank be exp'ressed in terms of creation and annihilation operators with parity.‘ll,
leads to a two parity channel problem instead of a two impurity problem.6

O;xr main interest in this pziper is connected with situations when _the
virtual-mixing mechanism is dominant and the term V1.2 plays ﬁo essential rovle.
Also we mention only briefly the recent analysis of the applicability of‘ the
An&e;son effective Hamiltonian to the 4[-phenm;1ena in relation to phmo;lecqun
spes:troscopy.l°8 The claim is that the ef[ective parameters i;l lﬁe Anders;on
Hamiltonian should. be inj principle"frequency dependent, because lpe An‘dersqn
model is thought to be an effective Hamiltonian for the low frequency phenomené.
In th;z high frequency phenomena a more general fundamental ﬁamillonian must be
used. This iasl statement is quite interesting (compare with -Rc[. 49) but it
needs however ‘a separate ciiscussion.

k To summarize this chapter we conclude that, despite the well founded

derivation of the TIAM, the latter could at most be considered as a reasonable

7



semi;empirical mod®l. Rather’th'an; attempting to “calculate the’ parameters vof_the
TIAM. we shall give a detailed discussion of its many-body dynamics which is of
particular® interest. In-the . next sections we shall show. how the self - consistent
treatment of the dynamics yields a far better understanding of the SIAM and the

TIAM itself.

III. OUTLINE OF THE METHOD

/At this point’ it is worthwhile to underline that it is essential to aplply
an adequate method in order to solve a concrete physrcal problem: the final
solutlon should contain a correct physical reasonmg in a most natural way. The
lrst of many body techmques that have been applled to Anderson model is
extensrve1 2,18-32 In this paper it will be attempted to ]usti[y the use of '5
novel IGF approach = to SIAM and TIAM It is qurte revealmg to follow the
logic of development of many-body’techniques. This logic ‘is well known. 'l'he
siniple Hartree-Fock or RPA treatment ot'hthe correlations between electrons omits

several essential features. Ome of them is the damping  of quasiparticles.

Usually, this latter problem requires much larger theoretical efforts However

this must be a final goal towards a real understandmg of many-body dynamics in

strongly correlaled electronic systems
The IGF method allows one to descnbe completely the quasrpartrcle spectra

with dampmg in a very general way It is based on the notron of the'

lrreducrble parts of the GF's (or “the xrreducrble parts of the operators, out

of which the GF's are built). In terms of the IGF's it rs then possrble, wrthout .

recourse to a truncation of the hierarchy of equations, to write down the e'xac‘t
Lo B . i cE e T
Dyson equation and to obtain an ‘exact -analytical representatron Vof} the

self- encrgy operator Therefore, in contrast to the standard equatron of—mOllOﬂ

approach the decoupling is introduced in the self-energy operator only The
general philosophy of the IGF method lies in the separation and 1dentxflcal10ﬂ

of elastic scattering effects and inelastic ones. This last point is qmte f’fle"

8

i

‘o

S

e

underestimaled, since there are quite a lot of works where both ef_l'ects’are
mixed. However, as far as the right definition of quasiparticleldamping is
concerned, the separation of clastic and inelastic scattering processes is
belicved to be crucially “important for the many-body systems with complicated
many-branch spectrum and strong mteractlons 34-36,38-40

The IGF's arc defined in such a way that they cannot be reduced to the
lower-order ones by anyk way of decoupling. This procedure extracts all relevant
(ror the problem under consideration) mean-field contributions (elastic
scattermg terms) and puts them into the generalized mean-field GF'. Itris/
worth emphasizing that, in general, the mean-field renormalizations can exhibit.
a quite nontrivial structure. To obtain this. structure correctly, - .one ' must
construct the full GFs from the complete algebra. of . relevant . operators ‘and
develop a special projection procedure for higher-order GF's in accordance with

a given algebra.

IV, THE HIERARCHY OF THE ANDERSON'S MODELS

It will be quite revealing to discuss the interrelation of SIAM, TIAM and
PAM (as well as a Cluster Impurity Periodic Anderson Model (CIPAM), which has
been - described in details hy Ref. 50). The basic assumption of the periodic
impurity ‘Anderson’ model approach is the presence of two very well defined
subsystems, i.e.. the Fermi sea of nearly fre¢ conduction electrons and ‘the
localized impurity orbitals embedded into ‘the preceding continuum’ (in rare-earth
compounds for example the continuum is actually a mixture of s, p, and d states

and the localized orbitals are { states). The simplest form of PAM:

H—Z'e;c +X End +EZ ndnd
k ko ko o ioc 2 ig i-o

ko ic ic
v —k)-o g
~ikR; + ikR; +
+ —_— Z gt ¢ + o XRig d. (&)}
vR ¢ ko ko 0
ika
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assumes a one- electrqn energy level Eo and hybndtsatron interaction V as well

as the Coulomb interaction U at each lattrce srte Using the transformation

>

N
N
S = 1 -\kR) . _1 ikRj

jo

||Mz.

j =1

the Hamiltonian (9) can be rewritten in Wannier representation in the form:

d d )
H_ ztu i 10‘ X Eno. 22 i 1—0‘+vz [ a‘1c‘+c10‘d1o‘ an
T Lijo o :

If “one: retains . the - k-dependence of the: hybridization matrix element Vi in

~ eq. (11) the last term of ‘the r.his. in Eq. (11) will be as follows:

-

Z 1;(; -I;,) . (12)

ZI

z V..[df c. +c d ] HA4
iji jo ioc i jo

ijo k

The on-site hybndlzatlon V is equal to zero for symmetry reasons. Moreover as °

’ compared to the SIAM, the PAM has its own specific features. This can lead to
) i 50

peculrar magnetlc propemes for concentrated rare earth systems™  where the
criterion for magnetic ordering depends on the competition between indirect

RKKY-type interaction (not included in SIAM) and the Kondo-type singlet state

screening (contained in- SIAM). Instead of carrying through such a laborious -
progranime in the rare earth systems for example, we will consider here a simpleri:-:

case, namely the. comparison of the dynamical behaviours of SIAM and PAM in the *. .

limit of weak Coulomb correlations. Of “course, this is not directly related to

51
Kondo-type bebavnours which show up in the strongly correlated (U 2 @) reglme :

i

However, this comparison procedure will be very instructive for future analySIS

of TIAM. Let us consider the PAM in Bloch representation

10

H = Z ck ckack +X E(k) d:a‘dko' + -lZJ—N d;+:-;,o- dpo- d;, d:,-a‘

: ko pqro

,

Z Vi [k ke Cko‘dkt‘r] (13)

!

a? For simplicity in this section we will discuss the case when U - 0. The‘ more
§ basic drawback of the ‘Hartree-Fock type solution 1is that it ignores the
!

»“ correlation of the "up" and "down" electrons. Actually we will take into account

L the latter correlation for the PAM and SIAM in a self-consistent way using the
} IGF method. It can be shown that the use of the matrix Green's function for PAM,
+ +
< ckcr]ckcr > <_< cko‘ldko‘ >
; - .
. : Gko-(w) = a4
H + +
< dw|cw > <« dko‘|dkc‘ »
permits to handle the relevant equations within a very compact form. The
first-time % equation of motion for the double-time thermal GF,SZ
< A B() » =i et - ) <{AW), BO), > (15)
f reads A
f A
{ ) A + +
i @ g \f* €ogleg?y, € egldg 2y,
x
1’ : + +
! . B vk © - E(k) < dkolckcr 0 « dkcrrdkc‘ >
10 0 0
/ .- -
« = |- + uN™ Z . . (16)
01 <A| c> <A | 4>
Pq .
i . :
: where A =d

d
ktp,0 ptg,-0" q,-C

According to Ref. 34-36 the definition of the irreducible parts for U > 0

11



is as follows - ] . R R o °
is as fo o _ ©-Ey Vi Gy Gy 1o
x = (20)
-V w - E_(k) Gy G 0 1
ir + + d + + < s« d ‘c+ : .k (o 21 22
dk*p,o‘dp'l'q,—d‘dq,-d‘lcko‘ ? = € Cap,c g, o qo'!cktr ? - 9,0 %, kol ko
Qamn f It is easy to solve Eq. (20) and we find
*
. 1
: : i \A Y
ir + + - + + _ d d+ » : + °o _ K .
< dk+p.¢rdp+q.—trdq,—¢r”ktr >z« qk'rp.trdpm.—«rdqﬂ"dktr >80 0, ¢ ol o ' «dldg», =19 E) - ——— @1
. . v - e
(18)
-1
i + 0 [v k |2
Then we obtain after using Egs. 17,18 in the r.h.s. of Eq. (16) ! ‘ «c ¢ »9) ={e-g - — 2)
) ; w - E'o‘(k)
w-g ooV Gy G
At this point it is worthwhile to underline the significant difference between
- Vi © - Ek) Gy Gp
PAM and SIAM, which was shortly mentioned in Ref. 36. The corresponding SIAM
0o equation for GMF - GF reads™
1 o0 ) 0 0 é
- : +UN"Z U 9 .
0 1 cAle » «Ald » 4 ~ _ ) ° + o
- | oo | o . ‘ (v ep)apk Vpspk <« cw|cw » <« cwldw » 1 0
i ) . ,» - 23)
b + o + o
PV, W (w-E) « dwlcw » «d |d > 0 1
The following notation have been used
This form of matrix notation for SIAM has never been used before. However, it
s .
d d d clearly shows which fundamental problem has been posed by Anderson in his famous
"E (k) = E(k) - U D5 no=<n > . : .
paper,” i.e. how to define the quasiparticle spectrum of a system with strongly
LN
. . localized levels embedded in a continuum of states. Within our matrix
The definition of the Generalized Mean Field (GMF) (which for the weakly } :
representation, the eigenvalue problem reveals a fundamental difficulty: the
correlated case coincides with the Hartree-Fock mean field) Green's Function
- ) : number of states in the conduction band and in the’ localized orbital are
(GF) is evident. All inelastic renormalization terms are now related to the last i -
) ‘ . . % different, namely if we include the spin degeneracy the conduction band contains
term in the rhs. of Egq. 19. AIl elastic scattering (or - mean field) !
‘ ’ ; b 2N states whereas the localized (s-type) level contains only 2. The comparison
renormalization terms are contained in the following matrix equalioy for é .

of Eqgs. (20) and (23) shows clearly that this difficulty does not exist for PAM:
GMF - GF
the number of states in both localized and delocalized subbands are the same,

i.e. 2N (see Fig. 1). There are many other relevant questions connected with the
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comparison between PAM and SIAM, but we believe that in order to understand the

nature of the spectrum of elementary excitations this is the most fundamental
one.

The Eq. (23) for GMF - GF of SIAM is exactly solvable as well as the
corresponding Eq. (20) for PAM. However, the presence of )é in Eq. (23) clearly
means that this exact solution is simply to solve for any fixed momentum p. In

. 37 . . .
general, the compact solutions found by Anderson™ are written in the following

forms

-1
«d Id* »°={w-E -Z———k
oc'! o W oo*
"

+ o k
< cko-lcko L T 2 Gdd @ @4
w - £ @ - ck)

The fundamental difference between SIAM and PAM plays a very essential role when

we proceed with incorporating the correlation effects, ie. when we include the
inelastic scattering or self-energy corrections.

Let us again consider the PAM, 'starting' from Eq. (16). After second time
differentiation ?T[“"f the higher-order GF .in the r.hs. of Eq.(16) and
introducing irreducible parts for the r.hs. operators by analogy with
Eqs. (17,18), the equation of motion (16) can be exactly rewritten in the form

of Dyson equation
G=G"+G°MG ' (25)

Note that no decoupling has been done 1till now but only ideatical
transformation. The formal solution of the Dyson equatioxi can be cast as

follows

14
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G = [(é“)" - M ]-1 A (26)

where the self-energy operator M has the form

- 0 0
M, (@) = o M ’ (27
2 .
with
v UZ ir +
M = d + + ir
22 Nz Z € k+p, 0 pHq,-C q,-d'l r,~C rts,~C kis, 0 W (28)

pqrs

In order to calculate the self-energy operator in a self-consistent way, we
have to express it approximately by lower order GF's. However, the advantage of
using Dyson equation consists in the right functional structure of the
single-particle GF. In analogy with low density electron gas .we calculate the
self-energy operator (28) in the pair approximation. With the help of the
Spectral Theorem52 we express the GF by the correlation function. Then for the
correlation function we use the following so-called "trial solution” in the case

of a low density of quasiparticles <n > « 1:

+ +
<a a ir
r,~C rts,C aku,a‘ ak&p,a'(t) apq,q,_a-(l) aq,_a-(t)>

+
~

+
® Qk#p,d‘ ahp, o (t)> <a a ()>38

(t)> <a 8 )
q,¢ q,¢ kts kép rs,ptq r,q

+
a
Ptq, @ “piq, o

29)

After the substitution of Eq. (29) into Eq. (28) we find for the self-energy

15



2 odw_dw dw_ . -
M@ =3 | [—L—ZLQ—}{ o [ 1+ 50 - ntap | + s ey }

w -
N @+ 0, -0,
pq

xg (CAN

o (@) (30)

P*q,—cr(w1) gk*p,O‘

where

£, = - % Im G_(w + iO) 6y

is the spectral density. The Eq. (30) with Eq. (26) form . together the

self-consistent system of equations to calculate single-electron GF's and the’

corresponding density of states

D) = i—N f mG @+i0) 6

ko

If we start the iteration procedure with the-simplest first’ iteration expression
g - k 33
b = 30 - B, 33)

then after integration we find the standard second-order expression for the

self-energy (cf. Ref. 34)

I+
,=C

‘w+E_(p +q - E(k+p) - E_(q)

1 -n - n n n
I k+p, 0 9,0 k+p,oc q,-C

M, () =9fz il (34
A

Pq

-1
Here .= [exp(BEka)+1] is the Fermi distribution function. It is

interesting to note-that the same sort of: calculation for ‘the self-energy can’be

done in the case  of SIAM.36 But then the pair approximation Egq. (29)does not

work. Actually the analogous expression for SIAM self-energy is

16
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g

oo
Mv(w)xUZI
00

dw1dwzdw
{00 11 - ) - 1 + noney }
- W
3

w w - w
0.1 2

x 8, o) g (@) e () (35)
where
= - limed |d
Bol@) = - gIm«d [d > . (36)

and the first iteration expression has the form

gw(w) ~ 38 (w - Eo - U n_o_) H 37

then we immediately obtain MO(: = 0. This result reflects the fact that only one
impurity site is present. The recipe to calculate the self-energy operator for
SIAM has been given by Ref. 36. We will use it for TIAM in next section V. In
the case of PAM the same kind of approximation as in Ref. 36 will lead to the

expression for the self-energy in the following form

+ tanh — -Elmx

@)
2T 2T

© -9, v, 1 T+
q Exeq, o

UZ
Mko_(w) =N z J dw1(colh
q

©- o))
(38)

To conclude this chapter we propose in Fig. 1 a possible hierarchy of the
various Anderson models. Except the specific case of the SIAM we always have the
situation which corresponds to inter-impurity interactions. The corresponding
physical behaviour can then be understood looking through the SIAM-TIAM and

CIPAM-PAM complementary solutions.
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¢ V. TIAM. WEAK CORRELATION

We again consider the TIAM Hamiltonian (1). The IGF solution of this model

is obtained by analogy with the SIAM for small U.

Taking into account the first time differentiation of the relevant GF

matrix, we have

(w -e)s, - Vipspk Vop Sk G Gz 13
1 G
Z N V1p § (@~ E) ) Y12 x| Gy G, 7
P - ) :
B VZp * Vo ﬁ(w'Eo) G 5 G;, Gy

= (39
The notations are as follows
+ + +
= ; =« d_»
G, =« cwlcw » G,, = « cwldw »; G,y cwi .
+* + +
= ; = H =«d jd _>»
Gz1 « d1o‘lck0' ’ G22 « dwldw >3 G23 wi 20
+ * +
5 =« ; =«d__id _»
Gy =< bl e > 3 Gy, = dyldip >3 Gss 20 20
Ay mden, s Ay =ty )
(40)
In compact form the Eq. (39) can then be expressed as
L G (=1 ) (41)
z L, Gu@=1+U D, ()

P
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Gy

pp—

We thus have the Eq of motion (39) which is a complete anmalog of the
corresponding equations for the SIAM and PAM. Let us again introduce by
definition the irreducible part of the GF's

re d IB»=«<d

lB»-<n >«d1°_|B»

n
10 10 1Mo 10

“2)

re d |[B» =«d IB» - <n >«d, |B>»
-0 20

n
20 2o 20‘“2-0' 2

where we expect the thermal average < n,_>to be uniform (in principle it is

possible to consider non-uniform solution)

<n >=<n >=<n _> “43)
Now, if we consider the Eq. (39), taking into account the definition (42), we
obtain in analogy with Eq. (19) the same equation as (41); only, instead of
lsk(w) it will contain 6k M}) Let us define as previously the GMF - GF in the
following way

Ti, 6 =i @
[

After performing the second time variable differentiation in the r.hs. of (39)
and introducing the relevant irreducible parts for the GF's we are able to
rewrite the equation of motion in the form of a Dyson equation

G=G"+G°MG (45)

Let us remind again that G® is defined as follows
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. . <0
(0 - sp)apk B v1p6pk P VZp pk Gys
i
A% 1 (v - E | v G2
T Ve N - Eg) 12 x ’3
e
1
-V -V < (w- E ) o o o
2p 21 N o0 G31 G32 G33
1 0:{ 0
=] 0 1 0 (46)
0 0 1

The matrix G° describes the exact solution of the TIAM in the H-F approximation.

The SIAM-GF's are shown in the left upper corner of each matrix. We thus have a
very clear ~representation of the essence of the i?onlocal interimpurity
correlation problem. in the case of two localized levels interacting with a
continuous spectrum of conduction electrons. The Eq. (46) represents the exact
solution for the considered problem in the H-F approximation. After some algebra

we find the following results for the diagonal elements

2

+ _o |v1k " ‘7
COhrl% 20 =19 & - T - Bk
w - E
oo
+ o ‘ Iv1kIZ -
«dfd > ={w-E -] —"—- 8 @ Ch))
w -
P P
2
+ o I zkI -
¢ chrIdzo- *0=1% " Boe - Z - A5
w - €
P P
Here we have introduced the notations
20

. 43
previously.

2%
w - an' w - E w - Eoo-
(48)
, . IVZPIZ v -1
2 = 0u@ + V) 0@ + V) e - E -} 2 (49)
P "5
IV-,plz 11
@) = A, + V) (@ + V) | w-E -] 1B (50)
- w - €
) [J
where
° v1pv2p
App@) = A ) = ] —B 2P (51)
w - €
) P
describes the so-called "indirect coupling".l'3 If we put V“2 = v21 =0, we
obtain
[ 2
A )
12
8,,) = 3 (52)
v, |
w-E _ -X p
°r e w -€
P
2
(2,0 ) .
8,,w) = 3 (53)
(v,
w - E -z P
o p
w -€
P
1V, 17
8, kw) = —————— 59
(@ -E )

The detailed analysis of the H-F solution for two impurities has been done

,53 - . . . . . .
Here we will consider the quasiparticle interactions by using

the Dyson equation for the TIAM.

The formal solution of the matrix Dyson Eq. (45) has the form
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) G=1G)" - M (55)

Let us consider the explicit expression for the self-cnergy matrix

(0] (0] (0]
M=o M, M, (56)
o 2 Mg
where
My = Ut e 4o ol oo > My, = U° Ve Qg 1 o8 » "
My = Ut e RN " My = U° Ve Qo 15 o5 » CD

In order to calculate the self-energy matrix elements,ST let us perform for the
TIAM the same type of procedure as it has been done previously for the s1am.¢
With the help of the spectral theorem one can express the GF's (57) in terms of
correlation  functions. The natural “trial solution” for the correlation
functions can be proposéd in the following waysl'

+ +

<d d _d _d_©® d +® &M ©>=

+

+ +
<d, d d?_o‘ t) d‘f"‘ ®>< dm_ dm_ ) >

10 10
(58)
’ +
+ < dj-cr d‘,l-a?' (t') >< d‘lc 1_0. (t) d (t) >
+<d1—<‘r1-¢7‘(t)><d 1-0' (t)d ®;

22

3

+ + + -
<d & _d, d ©d_®d _©>=

+ +
<d d d1-o- ® d1-o- ) >< ch- dw >

2-0c 20
(59)
+
+ < dz-cr o ) >< dzo- 2_0_ (t) d (t) >
+
+ < dz-o~ (t) >< dza- 2_0 (t) d (t) >

The terms which describe the correlations of the "up™ and "down" spins on

the same and different sites correspond to the second terms in the rh.s. of

Egs. (58) and (59)

+ +
Z<d1-<r hoO><dyd ;- d (t)d ® >
o
- ot +
—<S S (t)><d1¢d1¢>+<51 S1 (t)><d11* d11~> (60)
+
E<d2-o- he ><d2rr 20 ¢ (t)d ©>
T
- ot +
—<SS(t)><d2¢d1¢>+<SZS1(t)><dmd1?> (61)

+ + : - +
Here S =d1~d¢f,S —d¢d

o
Using Egs. (58)-(61) we find the following explicit expressions for "the

self -energy matrix elements
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0

1 + N(w,) - n(w,) 1
22 2 1 -
My @=U J db;de, 2! CIm« s;1s; », }
1

©w - -
—w w -, T

1
+
x{ --Im«d |d > } 62)
L4 2
(re]
22 > 1+ N(w1) - n(wz) 1 .
M"@=U do, do, - —Im « S1|S1 >,
o © - w -, T
1 +
x4 - ~Im « d11~|d11~ >, (63)
T 2

For M33 we obtain the same expression with the substitution of index 1 by 2.

(re]

. 1 + N(w,) - n(w,) 1
23 _ 2 1 2 —1 ot
M @=U J dw, do, - —Im « S‘IIS2 >
W -w - n 1
-0 1 2
1 . )
xq - ;Im « d1¢ldz¢ %y 64)

o

1 + Nw,) - n(w,) 1

423 . o2 1 2 .-
M® (@=U J' do, dw, -—Im « 51132 >,

w - -0

— 1 5
l +
x4 - —Im« d”!dn >, (65)
n 2 )

Here N(wq) means Bose distribution function. For M:i we must again change
index 1 5 2. The Egs. (62,63) and (64-65) give the complete self-consistent
description of nonlocal ~ correlations and quasipaf[icle interactions for the
TIAM. The diagonal elements of the self-energy matrices M.;_z and M33 describe
single-site inelastic scattering processes; non-diagonal elements MZ and M*¥
describe  the intersite inelastic scattering processes. As well as the
non-diagonal elements of the GMF-GF 60, the latter non diagonal malrix elements
are responsible for the specific features of the dynamical behaviour of the TIAM

and, more generally, the CIAM. 24

VI. SIAM. STRONG CORRELATION

As [or the strong corrclation regime, cven for the SIAM, and in spite of a

great number of theoretical efforts, a compact and closed form of the

18-20,51

one-particle propagator has not yet been obtained. ~ The matrix form of

our calculation as in the casc of the weak correlation will help us to better

‘understand the essence of the difficulties.

34 ..
In analogy with the Hubbard model™, for the description of the strong
local correlations, we must use a new algebra of operators, namely {fm} with

a =%
=n* d ; o =n_; n_=1-n (66)

In terms of the new operators the relevant matrix GF for ‘the SIAM (23) can be

rewritten identically in the following form

+

+
«c |f »
« ckalcka »w Z kal of3c “w
B

(67

+ +
Z « ro(wlckc »w z « fv.>v.m'|f¢:'f30‘ »w
a af

éo(w) =

To calculate this GF we nced to write down the ecquation of motion for the

auxiliary GF, G

* | Y «c | Yoy |
« Cko‘lcko‘ w < Cko‘ oo W k0! o0 W
~ + + +
- < » 68
Go‘(w) « l‘t:m)‘lcko‘ w «.fm»o‘l o+0 »w foMJ‘l o0 W ( )
+ + +
»
« o-d‘lcko‘ )u < o-o‘l otC »w « fo-o‘I o-¢ @
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In the matrix notation the equation of motion reads
L]

E 6¢(‘°) -1=D 69)
where
w- e - Vk - V'<
- U,a=+
E = 0 w-E -U 0 ;U ={
«
0, xa=-
0 0 w-E -U
° -
@0)
1 0 0 0 0 0
- . 5 -
0 no—o‘ 0 ’ D D21 DZZ DZS (71)
0 0 e Dy, Dy, Dy

Here D is a higher-order GF. As an example we give now two matrix elements:

D = + o +
22 « (cpﬂ' nO-O‘ + do-c‘cp-d‘doo‘ cp'd‘do—d‘doo‘)l fo*d‘ »U

(72)

+

+
c d
o~C p-0 o0

D, =« (c 1-
(N‘( " cmr»w

33 ) -d

+

d_d)H|f

+
[
o0 p~0  0-C o

et us introduce the matrix of irreducible GF, D'" in accordance with the

AT :
[ e J ( G:+ G::' ] (73)
Ba

where the coefficients A™ are determined from the condition

definition given in ref. 34

<[D;é’f:Bcr]+>EO (74)

26

Similarly as in the preceding section we obtain the Dyson equation

~ o

G=0G"+

o

° M

o

(75)

where G° is the generalized mean-field GF. The explicit form of the mean-field

renormalizations are as follows

+ +

<({d c +e Y(n _-n ) >
At = 0-0 p-0 p-0 0-0 o 00 6)
‘<n >
0-0°
d’ 4 1+n_ -n )>
A = - <. ( o-cp-0 ¥ Cpoo o—o-) ( o o-¢ an
<n.-_ >
o-¢
A-+ - . A++ ; A+- = . A__

The generalized mean-field GF of the d-electrons has the form
-+

R <n_ > TV A

«d |d »:= ° = |1+ p_°
i w-E -U -ZV A w-E -U
o p [}
. -
- 1-<n°_o_> V. A )
+ — 1+ F (78) -
w-E -U -ZV A w - Bo - U
o - P P +

For VP= 0, we obtain the exact atomic solution’ with poles at E, + U,) and

(Ec + U)

at o~ o-0 (79)

The equation corresponding to Eq. (78) for the conduction electron GF reads
27



N 1 A" \Y
+ o _ k [ k o
< cko-lckcr >, = + Gz1 + G:51 (80)
w-€E @ -E€ w - e .

Taking into account that
) : + _ . + o ’
@-E -U)c« fw[cm» -ZVP{<no_o_>¢cpo_|cko_» } (81)
P
, o+ + 0
@-E -U)« roﬂrlcko‘ > =ZVP { (@-<n_ >« cw[cko_ » } (82)
p

We find the following expresion for the diagonal element of the conduction

electron GF

«ckcrlc:o- »Z’ = { w-eg - ]Vklz Fat(w) }—1 )
This form of solution also gives the correct expression for Vk=0' The
GMF-GF's (78) and (83) are the essentially new solutions of SIAM in the strongly
correlated limit. The paper of Ref. > is close to our approach; however, the
explicit form of the single-particle GF has not been written explicitly. Oh and
Doniach™ calculated the dynamical properties of \l;é SIAM in the context of
core-level photoemission spectra. For the mean-field 'GF they obtained the

following result55

o 1-n, e
Gdd(w) = + (84)
m-Eo -Zo(w) w-Eo-U -Zo(w)
where
2
IVl

T@=) —— (85)

P

This solution simply describes the two localized levels E;, and E, + U broadened

28

and shilted due to the mixing potential -Vk' Our theory can be considered as a
direct gencralization of Oh and Doniach's result’’ in the framework of the IGF
approach. Ol course our .Eq. (78) is more general than Eq. (84) (obtained within
the [(irst order in Vk)' Also it is important to note that in the atomic limit,
when U > » and Vk > o, the correct functional form of the solution must be
recovered. Oh and Doniach® foul'ld that, for vV, 2 05ev, ImGyy(w) starts to go =
negative for a certain range ol w values, indicating that their decoupling
procedure does not conscrve probability at each value of w. Our expression (78)
contains _ complicated correlation ([unctions, which, in . principle, :must be
calculated sclf-consistently; - doing so, the dilficulties - with the negative
spectral density does not appear. For a rough estimation of the behaviour of the-
correlation functions (Egs. 76, 77) at low temperatures we¢ can- use Oh and

Doniach’'s expression (30),55 for example (P meaning the principal part)

+ ) + ) i ‘(Ck-Eo-A)
< d >=-<¢ d >=(1-<n >) | 0 (-e)V
ko o0 ko oo oo ) kk(c-E,-/\)2+A2
K o
A" dw a
k
+ — P 2 2
- - - A
LI (w ck) (w Eo" ?+A
(ck-Eo-U-A)
+<n > e (e)V - -
iad k l((ck-Eo-U-/\)2+A2
Vk dw - - A
Ny i (86)
- - . - N
8 (w ck)(w Eo §) )"+ A
and - ’
+. + -
< C > = - c n > =
K o-0 oo ko 00 oF
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(ck - Eo -U-hN
<n > Vk ¢] (-ek)
(e

_ __AZZ
(- E -U )2 + 8

1 dw a
+—| P @7
] @-c)@-E -U-N A
where
}:o(w) = Aw) + iAW) (88)

The set of Eqs. (76)-(78) and (86)-(87) completely solve the GMF description of
SIAM in the strongly correlated case. It is worthy to note that after
substitution of (86) and (87) into (76) and (77) we obtain the GF (78) at the
second order in Vk' In addition, our theory allows to calculate inelastic

scattering corrections which are described by the self-energy operator

(o) (o)
‘ =1
) vv.lo M, M, I (89)
0 32
where
_ + _ir + _ir
M, ="eY,| Y, > ; M ="cyY | Y >
Y _ + c+

+

c (l-n_c_)-dwcp_q_w+cp_a_d°_o_dw

(90)
The complete solution of the Dyson equation in the form of (75) is very

complicated. Nevertheless it is possible to write down the simplest approximate

solution which includes the inelastic scattering corrections

30

e e

N < LIGPI. < IV A
«doo-ldoo-»w~ + ~ 1+ — ~
w - Eo - U - }p:VpA - Mzz(w) w - Eo - Mzz(w)
1 - < n o> IV A
+ o 1+ P_P — 1)
w - Eo - § Vp A - MB(w) w - Eo - U - M33(w)

The calculation of higher-order GFs which describe the inelastic scattering
corrections (90) can be done in the same way as in the previous sections IV

and V.
VII. TIAM. STRONG CORRELATION

In the preceding sections we have considered a self-consistent description
of the dynamical behaviours of (i) the TIAM in the ‘case of weak correlations,
and (i) the SIAM in the case of strong cqrrel.ations. In this section we will
examine the case of the very strong Coulomb correlations for the TIAM. For this
aim it is convenient to use the relevant algebra of Hubbard's operators

X:n.56'57 The TIAM Hamiltonian takes then the following form (U - «)

mm
H = z ke kn onm xi
im
+VE x°°+1— Z'[v* LR X°m+'hc]'i=12\ 92)
fo i kam km *j I )
i VN jka

As it has been mentioned above, a more symmetric form of the problem can be

handle by using a new set of variables
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1
om om om
X3 =‘/_i[x1 * X3 ]
1
x1°'“=;[x:°+xf°]
P
1
x§”=? [ x:'° - X7 ] (93)
2

In terms of the so-called "odd" and "even" variables the full Hamiltonian of

the TIAM can be rewritten as:

H = HO + H1 94)
where

_ + mn . oo 00,

H = Z €ka kn ke * Z En X+ x:‘) * B X+ X)) ©5)
km »
1 . om . ‘o
= —_— of .

H1 = o { Vk’ e X’ + Vk_ Ca X+ hc } (96)

The new hybridization matrix element is expressed as

1 ,:a
th=—'V[1te1R], ©n
the two impurities being located on the z axis at -R/2 and +R/2. The convenience
of the even and odd operators representation is obvious. The relevant matrix GF

is a 3x3 matrix (instead of a 5x5 matrix by using the same algebra of operators

as in section VI)

ckmlckm « cknl + < ck |X_ »
G=]«x®c »  «XTX®> <« X"|X™> ©8)
+ (<] + + + -
« XM’ >« XX™ » « X™Mx™ »
- km - + - -
32

From the comparison of Egqs. (68) and (98) we can see that the new set of
variables (cven and odd) somewhat allows to consider the TIAM in terms of the
SIAM. However, this "reduction” from TIAM to SIAM is only partial, as we will

sce later. The cquation of motion for the GF (98) can then be written in the

form
EG,@-1=D, 99)
where
- 0
w- e 0 1] 1 4]
- - +
E = 0 w - EmI 0 ;=10 Amm 0 ,
- E’ A~
0 w Eom 0 0 om
(100)
* oo mm
Amm=<xi' >+<Xi >, (101)
0 0 0
D = 2
D 2 $2 23 (102)
¢31 ¢32 ¢33



J 1
* + +
¢21 = ;ﬁ VP“« meﬂ'Ckm»
. pn
1 * + mo
= — V «A ¢ »
¢22 YR p+ mn pnI +
pn
1 . o
¢ = — V. «A ¢ |X"»
23 mn -
¥R on
1
* - +
¢31 = ;ﬁ Vp—«Am cpnlckln»
pn
1 * - o
= V «84 ¢ (X »
¢32 v p- an pn’ +
pn
1
* . ]
¢33—- E Vp_ ((Am Cpn _ >
. pn

(103)

The method to introduce the irreducible parts for the TIAM in the case of strong

correlations is the same as for Eq. (73). We follow here the same approach.

of

The coefficients A™" are determined from the condition

" For example, let us calculate the coefficient A;; (compare with Eq. (76))

o ) ir o L
¢ er xno 5 = A+ c ) xmg > = A++ < xom xm >
. 22, + . ] an  pn + . 22 +, + N

++ < [A:n pn :°]+
A = ! =

22 < [x:n xmo +

].> = <4A >
+ T+
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(104)

(105)

The GMF Green's Funclion_are' defined as

EG’ =1
From this equation one can find that
< A+ >
om mo o mm
« X"’ 'x" »w = mo om
<3 (X - X)) e >
w-E -—Y) V¥ an_ ¢ t . en
" VR Pt <4t >
pn mm -
om, w0 _o . < A;m >
« XX » =
@ 1 <3 (X™ X" e >
w-E -—Y§ v ;- - en
" VR p- <a' >
pn mm
And the equation’ for conduction electron GF
+
+ [} 1 vk+ 1 * < Anm > + o
«ck ci:m»w= + e Vm-———«mckn»w
L . g w -g VN w - E
k om
A 1 <A >
- *
+ k —z =z €c (:k »:
w -¢g VN Puw-E pn
ok pn om

If we take in the rhs. of Eq. (109) the - diagonal elements, ie.

proportional to 8pk dmn we easily find

+ o
«c e » =
kn' km @ . 2 .+ 2 -
|Vk+} <b >+ ivk_] <a >

w - -

onm

In the case of VH_ = 0, this expression Co.rresponds to an exact solution:
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(106)

(107

(108)

terms

110)



<c [c+ » =
kn' “km T w- e

i

Using the definition of G° as previously considered it is then possible to

derive the approximate Dyson equation
G=G°+G°M G (112)
kt

Mz—ZZ\yRi"‘w (113)

The matrix M:clI has a similar form as Eq. (89) and all further

considerations (section VI) can be again performed here as for the SIAM. The

difference now consists of the non-diagonal terms of self-energy operators M

and M . In analogy with Egs. (64) and (65) they contain higher- order GF's which
describe inelastic impurity-impurity correlations terms. In order to obtain an
approximate estimation of higher-order correlators contained in Eq. (113), it is
possible to use any relevant expression since the functional structure of
dynamical TIAM solutions has the-right general form. A mote consistent approach
would need to calculate the collective correlation function independently, like
transversal spin susceptibility « sf]s;__‘ >, We plan to look into this aspect of

the problem in the future.

VIII. CONCLUDING REMARKS
In summary, we have developed a new approach to describe the many-body
dyramics of SIAM.and TIAM in the framework of the IGF formalism. We have
obtained a new interpolation solution - the one-particle GF's for the SIAM and

TIAM as well as the solution for the PAM in the weakly correlated case. In this

36

last case the functional of the generalrzed mean- flelds only dcpends on the mean
densities of electrons. Moreover our soluuon 1mproves the H F solutron it
allows to mcorporate (i) the correlatlon of the spin-up and spin- down electrons
at the impurity level as wcll as (ii) the impurity-impurity correlation effects
in the case of the TIAM. As far as strong Coulomb correlations are concerned we
have obtained essentially new solutions. l’urthermorcwe arc then able to confirm
the statement’ 0 ®* that in this case the mean-field renormalizations have
a quite nontrivial structure and cannot be reduced to the mean density
funetional. The theory we suggest "allows to find explicitly the damping of
quasiparticle cxcitations in a sclf-consistent way as was demonstrated here.

In order to give a complete picture of the’ role of non-local or’
1mpunty vrmpunty correlatrons we must extract the Kondo type peak of’the

‘

spectral density of states in the strongly correlated case for low temperatures

. 5 .
For the SIAM there are a few reasonable schemes on how to do so. >1,58,5 For the

TIAM this - type of behavrour has not yet been descnbed analytrcally Therc are

P

within quantum Monte Carlo algorlthm

60,61

only a few numerical calculations
which gives some useful insights into the considered problem. However it ‘is
evident that for the TIAM (or for the CIAM®) the definition of the Kondo
effect, which is associated with the screening of a single impurity spin at. a
characteristic temperature Tk' must be redefined. An approach which permits to
define "the renormalized Kondo temrperature in the presen-ce of addltional
impurities has been proposed many years agoawrthm the framework of a
perturbatron theory The main assumption of Ref is that, at the 1mpunty

site i, the loganthmrc conlnbutlon whrch charactenzes a Kondo system

undergoes a transformatton such that

Tt (T WA

14y

under the influence W of inleraeling impurities around i.ASo', as emphasized by

the authors of Rel. 23, the singlc-impurity trecatment is almost valid and needs
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only small corrections in the dilute limit. However, a more correct way to

define the Kondo temperatirre in the U - o limit of the Anderson model is related

to the low temperature behaviour of the spin susceplibility1’62

1
X~ Q11s)
2n Tk
where in the symmetrical case the Kondo temperature is
1/2
@un i
Tk - e( nU/8r) (16)
n

In the region where T, is of ‘the same order as Tm(Y the role of non-local
correlations is strongly increased an’_d the correct kdefinitioﬁ of the Kondo
temperature is a very‘ nontrivial problem. The various cluster Ande;son models
confirm the necessity of adapled de[iniliqns of the Kc;mdo temperature. For
example >in Ref. 31, where the Anderson cluster has been considered, the Kondt;
temperature is defined to be the triplet-singlet splitting, and in this model is

“given by (see also8 and 50)

T = — a117)

;

The nonexponential dépendence of the Kondo‘tempéralure on the hybridization
follows from modeling the continuous spectrum of band energics by only a few
discret;e' states. In the region of in-lerplay.belween RKK‘.( and Kondo behaviours
the key point is then to connect the partial Kondo screening effect with the Tow
temperature  behaviour of the total spin  susceptibility. The Anon-local
contributions to the total spin susceptibility of two very-well formed impurity

. 6,64
magnetic moments have been calculated by Ref. 63 (see also ’ )
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cos 2kFR

X, ~2%- 121E, @) (118)

pair 3

(k R)
The problem is how to find an interpolated expression of the susceptibility in
the region of RKKY-Kondo interplay. As it is well known, it is extremely
difficult to describe such a threshold behaviour analytically. However, progress

is expected both from analytical and numerical investigations in this

fascinating field.
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FIG. 1. The hierarchy of the Anderson models (the numbers are given in the
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case of 's' orbitals: with n = N). For a detailed presentation of - the CIPAM,

see also Rel. 65.
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