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I. INTRODUCTION 

·lnlersile correlation effecls in metal alloys and,' especially, in 

anomalous rare-earlh compounds and· alloys have been the topic of growing 

interest recently. Al low temperatures, dilute magnetic alloys show remarkable 

properties, which are mainly related to single-site Kondo eff ect.
1

'
2 In Ref. 1, 

however, it has been noticed that even in the typical dilute metal alloys there 

are always traces of interimpurity correlations. These interimpurity correlation 

effects can lead lo suppression of Kondo behaviour, formation of clusters, 

3-7 
etc. In the systems that contain rare earth ions the specific low-temperature 

. 8 
behaviour mainly shows large conduction electron masses. For the Heavy Fermion 

systems the problem. of interimpurity correlations is related to the 

understanding of their magnetic properties.9-10 

Very recently a new development in this field has emerged which is related 

to alloy systems in which radical changes in physical properties occur with 

relatively modest changes in chemical composition.11
-
17 A principle importance 

of these studies is connected with a fundamental problem of electronic solid 

state theory, namely with the tendency of 3d electrons in transition metal 

compounds and 4f electrons in rare-earth compounds to exhibit both localized and 

delocalized behaviours. The interesting electronic and magnetic properties of 

these substances are intimately related to this dual behaviour of electrons. In 

spite of experimental and the_oretical · achievements, still it remains much to be 

understood concerning such systems. A satisfactory overall picture is still in 

. the process of evolution, 

The formation of the singlet ,tate for . the single-impurity Anderson and 

Kondo problem is now very well understood within the Bethe-Anzatz scheme._
1 

As 

for dynamical properties, even for single-impurity Anderson model, the pr?blem 

is only partially understood at present. The dynamics of the Anderson 

Hamiltonian is even more complicated than the dynamics of the Hubbard model. 

However, both of them are often referred to as the simplest models of magnetic 

metals and alloys. This naive perception contradicts the enormous amount of 



theoretical papers Jhich has been published during the last decades and devoted 

to attacking ,the Anderson and Hubbard models by many refined theoretical 

techniques.18--
22 As is well known now,1 the simplicity of the Anderson/Hubbard 

models manifest itself in the dynamics of a two-particle scattering. 

Nevertheless as to the true many-body dynamics, there is still no simple and 

compact description, except in a very few limiting cases. 

The including of interimpurity correlations makes the problem even more 

difficult.23 More recent calculations for two impurity Anderson and Kondo 

model/4
-
32 conclude that an analytical solution of the problem seems hardly 

possible. To attack two-impurity problems many advanced methods of qua~Wm 

statistical mechanics have been used.2
7 

These methods, however, were not 

successful. The most interesting difficulty, which has been pointed out in 

Ref. 29, is that in any order of perturbation theory, logarithmically divergent 

diagrams appear which cannot be generated from any . divergent diagrams in a 

previous order. All such diagrams appear to have the feature that the Kondo 

~ffect at one site is interrupted by the spin flip between two sites induced by . 
their mutual interaction. Another method which fails for two-impurity problems 

for si~ilar reasons is the path-integral mi:thod.
29 

As to Bethe-An;atz method, it 

cannot b_e · applied in standard form. The single-site regime is vital for 

one-dimensional Bethe parametrization of the spectrum in terms of the 

rapidities, which characterize the state of a mariy-body system.
33 

In the present paper we propose a general theory of interimpurity 

correlations on the basis of different points of view26
'
27 

in connection with 

real many-body dynamics. We pay attention to the calculation of single-electron 

quasiparticle ;pectra for the two-impurity Anderson model (TIAM), treating 

exactly the mutual multiple elastic scattering by use of the Irred~~ible Green's 

. 34,35 · I · case is Funct10n approach. Thus our theory for the weak Coulomb corre atwn . 

a natural extension of the Hartree-Fock theories to include the _inelaStic 

electron-electron and electron-magnon interactions in a. self 0 consisterit way. 
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Another important modification which has been already introduced by one of us36 

to describe the single-impurity Anderson model (SIAM) is the matrix formalism. 

The matrix form of the whole calculation procedure, which has never been done 

before, reveals many very_ important features and hidden difficulties of SIAM, 

TIAM and cluster-impurity Anderson model (CIAM). Because these aspects of the 

problem are of great importance and are still not yet clarified completely·, we 

briefly discuss these questions here. We will discuss the SIAM and TIAM, and 

their limitations too . 

Of further interest is the problem of adequate description of many-body 

dynamics for the case of very strong Coulomb correlations. A number of other 

approaches for the strongly correlated electronic systems have been proposed, 

trying lo find answer to Anderson's question: "... whether a real many-body 

theory would give answers radically different from the Harlree-Fock' (H-F) 

results?".
37 

By applying our theory to SIAM and TIAM we obtain essentially new 

(and "radically different from the H-F") solution for the strongly correlated 

case. Moreover, the general concept of constructing the interpolated dynamical 

solution between SIAM and TIAM arises naturally in the framework of our 

approach. It is worthy to emphasize that the approach we suggest is founded on 

the same type of concept which has been proved to be valuable for various 

many-body systems with complicated many-branch spectra and strong 

.interactions.
34

-
36

'
38

-
40 

The unified concept of relevant generalized mean-field 

is indispensable to understand the real many-body dynamics of SIAM and TIAM. The 

importance of the Irreducible Green's Function (IGF) formalism lies in the fact 

that it gives a c.o~p-a~. 3!):d convenient description of the· dynamical behaviour of 

a system of continuous· spectrum with a strongly localized perturbation (i.e. a 

Fermi sea of conduction electrons with a single (s-type) impurity orbital). 

Since the pioneering work of FriedeI
41 

the concept of virtual bound state (or 

resonant scattering state) is also indispensable to understand local 

perturbations in narrow bands of transition and rare-earth metal compounds. 

There are, however, several appreciable_ differences between Friedel's41 and 
3 



Anderson's37 pictures•which have been clarified by Blandin.
42 

Namely, he clearly 

pointed out the essence of the whole problem: local perturbations in narrow 

d-bands of transition metals can be discussed within an extended Slater- Koster 

model. Moreover· within the H-F approximation one can easily see evidence for 

bound state. The phase-shift analysis, taking into account the symmetry of the 

problem, is also particularly fruitful, but only in the single-impurity case. 

Outside the H-F approximation and in the many-impurity case, big problems remain 

open: among them, the basic problem of calculating the adequate parameters of 

SIAM within modern band structure theory and multi-orbital impurity states. Even 

for the case of SIAM this problem is quite difficult and we did not attempt to 

consider it, neither for SIAM nor for TIAM. However, the detailed presentation 

and discussion of the dynamical properties of TIAM we give here will anyway be 

useful to understand better the limits of applicability of the traditional 

models to real substances. 

The present paper is !Iivided into eight sections. In the second one the 

description of SIAM, TIAM and PAM is specified and a general discussion of the 

adequacy of those models is given. In the third section a brief outline of the 

IGF method is presented. In the fourth section the problem of interrelations 

between SIAM, TIAM, CIAM and PAM is considered. The quasiparticle spectrum of 

PAM is .calculated within IGF approach. In section V the spectrum of the 

quasiparticle excitations and their damping is calculated for TIAM in the weakly 

correlated case. The role of interimpurity correlations is clearly shown. The 

case of very strong Coulomb correlations is considered in section VI for SIAM. 

Then this approach is used in section VI in the case of TIAM. The results of our 

comparative study of the differing Anderson models are discussed in the 

concluding section VIII. 
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II. PRESENTATION OF THE MODEL 

In the case of SIAM and by including the correlation effects in the low 

density case, Schrieffer and Mattis
44

-
45 

showed that the criterion for the 

occurrence of magnetic moments (which has been deduced by Anderson within H-F 

approximation) does not hold. The solution is never magnetic. So arises the 

problem of the role of the electronic correlation effects.
44

-
45 

The two-impurity 

Anderson model (TIAM) has been first proposed by Alexander and Anderson.
43 

They 

have put forward a theory which • introduces the impurity-impurity interaction 

within a game of parameters. 

They assume a Hamiltonian 
43 

H = HS + Hd + Hsd (1) 

where 

+ 
Hs = L ck ckO" \O" (2) 

kO" 

is the Hamiltonian of a set of conduction, quasi-free electrons and the {ck}'s 

are the corresponding energies; c + and c are the creation and annihilation 
kO" kO" 

➔ 

operators for an electron with momentum k in spin state O". 

Hd = L E. 
01 

d U [ n + -
iO" 2 

nd nd + f (v d+ d + V d+ d ) (3) 
iO" Hr l 12 10" 20" 21 20" 10" . 

O"i=1,2 <ii=1,2 O" 

where the {E0 ;}'s arc the position energies of the localized states (for 

simplicity we consider identical impurities and only s-type (i.e. non 

degenerate) orbitals whic.h we call "d": Eo1 = ~ = Ea), U is the intraorbital 

Coulomb repulsion, V 12 is the direct transfer integral between the two d states 

and 
+ 

diO"' diO" are, respectively, creation and annihilation operators for a 

d electron of spin O" at site i; n~ is the corresponding number operator. The 
10" 

most important term, which contains the essence of the specific behaviour of the 

Anderson model is: 5 



' H 
sd l (Vk,C:a-d,a- + vik<a-ck.,J 

i k<r 

(4) 

This term describes t_he hybridization interaction term between the localized 

impurity states and extended conduction states. 

The definition of the hybridization matrix elements V;k has been given by 

Anderson in his SIAM
37 

as follows: 

with 

1 
vdk = vN 

➔➔ 

L eikRn Vi~) 
Rn>'O 

➔ I * ➔ H-F ➔ ➔ ➔ ➔ 
ViRn) = '{Jir) H (r> a(r - Rn) dr 

(Sa) 

(5b) 

The use of HH-F in the r.h.s. of Eq. (5b) is notable, since it justifies the 

treatment of the SIAM entirely in the H-F approximation, As for the TIAM, the 

situation with the right definitions of the parameters V 12 and Vik in Eqs. (3) 

and (4) is rather unclear. The definition of V12 as it was given in Ref. 43 is 

the following: 

* J* ➔ ➔ ➔ V12 = V21 = <p1(r)<pzCr)Hir (6) 

(now Hd without "H-F" mark). The essentially local character of Hd Eq. (3) 

clearly shows that V 12 describes the direct coupling between nearest 

neighbouring sites. The SIAM is rather a straightforward adaptation of the 

Hartree-Fock picture for the wave .functions to the language of the 

second-quantizied operator representation:3
7 

+ [ ➔ + + d = <njk> c + <njd> d no- a- ka- a- o<r 
:(7) 

k 

6 

;I 

I ., 

\ 
I 

where d+ is the one-electron creation operator consistent with the one-electron no-

energy Ccn> which results from the relevant H-F equations. This scheme has not 

been analyzed in details for TIAM. The reasons for that is rather evident. The 

justification of the TIAM needs a certain generalization of Eq. (7) in the form 

+ L I + + + d = <n k> c + <njd > d + <nld > d 
no- a- ka- 1 a- 1a- 2 a- 2a- (8) 

k 

Going back to SIAM, it has been shown that Eq. (7) actually leads to omiting 

many interesting terms
1 

like c+dcd, //dd, etc. But the term c+dcd just 

describes the contact exchange coupling which definitively must be compared to 

the V12 term for TIAM. In addition, with two new indices i = 1,2, the number of 

omited terms are greatly increased. 

For TIAM there is a possibility of using new basis states, the so-called 

"even" and "odd" parity states 
46

'
47

, e.g. d = (d ± d )f-/'l with p = e for 
pa- 10- 2<T' 

even(+) and p = o for odd(-). Then the Hamiltonian will conserve parity and 

can be expressed in terms of creation and annihilation operators with parity. It 

leads to a tw? parity channel problem instead of a two impurity problem.
6 

Our main interest in this paper is connected with situations when the . 

virtual-mixing mechanism is dominant and the term V12 plays no essential role. 

Also we mention only briefly the recent analysis of the applicability of the 

Anderson effective Hamiltonian to the 4f-phenomena in relation to photoelectron 

spectroscopy.
48 

The claim is that the effective parameters in the Anderson 

Hamiltonian should be in_ principle · frequency dependent, because the Anderson 

model is thought to be an effective llamiltonian for the low frequency phenomena. 

In the high frequency phenomena a more general fundamental Hamiltonian must be 

used. This last statement is quite interesting (compare with Ref. 49) but it 

needs however a separate discussion. 

To summarize this chapter we conclude that, despite the well founded 

derivation of the TIAM, the latter could at most be considered as a reasonable 

7 



semi-empirical mod~!. Rather th.'an attempting to· calculate the parameters of_ the 

TIAM. we shall give a detailed discussion of its many-body dynamics which is of 

particular interest. In the next sections we shall , show how the self-consistent 

treatment of the dynamics yields a far better understanding of the SIAM and the 

TIAM itself. 

Ill. OUTLINE OF THE METHOD 

At this point it is worthwhile to underline that it is essential to apply 

an adequate method in order to solve a concrete physical problem: the final 

solution sho~ld contain a correct physical reasoning in a most natural way. The 

list of many-body techniques that have been applied to Anderson model is 

extensive.1' 2' 18"
32 In this paper it will be attempted to justify the use of a 

novel IGF a~p~oach34
"
36 t~ SIAM and TIAM. It is quite revealing to follow the 

logic of development of many-body' techniques. This logic is well known. The 

simple Hartree-Fock or RPA treatment of the correlations between electrons omits 

several essential features. One of them is the damping of quasiparticles. 

Usually, this latter problem requires much larger theoretical efforts. However, 

this must be a final goal towards a real understanding of many-body dynamics in 

strongly correlated electronic systems. 

The IGF method allows one to describe completely the quasiparticle spectra 

with damping in a very general way. It is based , on the notion of the· 

"irreducible" parts of the GF's (or the irreducible · parts of the operators, out 

of which th~ GF's ar~ b~iit). In term~ of the IGF's it is then possible, without 

recourse to a tru'n~ation of the hierarchy of.
0

equations, to ~rite down the 'exact 

Dyson equation a~d to obtain an 'exact · analytical representation-. or"_· th; 

self -e~ergy ope'rat~r. Therefore; in contr~st to the standard equati~n-of ~ mo'iio~ 

approach, the decoupling is introduced in the self-energy operato; o~ly. ·Th~ 

general philosophy of the IGF method lies in the separation and' ·ic!kntidcation 

of elastic scattering effects and inelastic ones. This last point is' ·quite often 

8 

-'i -, 
~ 
1J 

ii 
·1 

s, 

underestimated, since there are quite a lot of works where both effects are 

mixed. However, as far as the right definition of quasiparticle dampi~g is 

concerned, th'e separation of elastic and inelastic scattering processes is 

believed to be crucially important for the many-body systems with complicated 

many-branch spectrum and strong intcractions.34
-
36

'
38

"
40 

The IGF's arc defined in such a way that they cannot be reduced to the 

lower-order ones by any way of decoupling. This procedure extracts all relevant 

(for the problem under consideration) mean-field contributions (elastic 

scattering terms) and puts them into the generalized mean-field GF's. It is 

worth emphasizing that, in ge~eral, the mean-field renormalizations can exhibit 

a quite nontrivial structure. To obtain this structure correctly, one must 

construct the full GF's from the complete algebra. of relevant operators and 

develop a special projection procedure for higher-order GF's in accordance with 

a given algebra. 

IV. THE HIERARCHY OF THE ANDERSON'S MODELS 

It will be quite revealing to discuss the interrelation of SIAM, TIAM and 

PAM (as well as a Cluster Impurity Periodic Anderson Model (CIPAM), which has 

been described in details by Ref. 50). The basic assumption of the periodic 

impurity Anderson model approach is the presence of two very well defined 

subsyste-ms, i.e. the Fermi sea of near.ly free conducti.on electrons and 'the 

localized impurity orbitals embedded into the preceding continuum· (in rare-earth 

compounds for example the continuum is actually a mixture of s, p, and d states 

and the localized orbitals are f states). The simplest form of PAM: 

H=l 
kCT 

C c+ C + \ E nd + .!:!. \ 
k kCT kCT l O ;a- 2 l 

d d 
n_ n. 

10" 1-<1' 

iCT iCT 

V 

+ v'N l 
i ko-

( 
.,;;. + ,;t + ) 

e 1 d c + c 1c d 
iCT kCT kCT i CT 

9 

(9) 



i 
' 

assumes a one-electr'ln energy level E0 and hybridisation. interaction V as well 

as the Coulomb interaction U at each lattice site. Using the transformation 

N N 

♦ 1 [ + .;;;j 1 [ ;;;j (10) 
c➔ =- ce c=- ce 

ka- IN ja- ka- vN ja-
i =1 j=1 

the Hamiltonian (9) can be rewritten in Wannier representation in the form: 

l + l d UL d d l H = t .. c. c. + En. + -
2 

n. n. + V 
1) 10" JO" 0 1_0- 10" 1-<T (d~ c. + c~ d.) 

10" 10" 10" 10" 
(11) 

. i j<T i<T i<T i<T 

If one retains the k-dependence of the hybridization matrix element Vk in 

eq. (11) the last term of· the r.h.s. in Eq. (11) will be as follows: 

r ( • • ) L Vii dio-cio- + cio-djo-

r ➔ ➔ ➔ 
v .. = - r V ;k(RrR·) 

1J NL ke . 1 
(12) 

; j<T k 

The on-site hybridization V .. is equal to zero for symmetry reasons. Moreover as 
. . 1l 

compared to the SIAM, the PAM has its own specific features. This can lead to 

pecuHar magnetic properties for concentrated rare earth systems
50 

where the 

criterion for magnetic ordering depends on the competition between_ indirect 

RKKY-type interaction (not included in SIAM) and the Kondo-type singlet state 

screening (contained in SIAM}. Instead of car~ying thro~gh such a laborious 

programme in the rare earth systems for example, we w_ill consider here a simpler, 

case, namely the comparison of the dynamical behaviours of SIAM and PAM in the 

limit of weak Coulomb correlations. Of ·course, this is not directly related to 

. • 51 
Kondo-type behaviours which show up in the strongly correlated (U ➔ o,) regn~~-

However, this comparison procedure will be very instructive for future analysis 

of TIAM. Let us consider the PAM in Bloch representation 

10 

I 
,( 

r 
\i 
,. 
ii 

' 
f 
r 
l 
I 

i 
• 

y, 

H = [ ck c:a-cko- + [ E(k) d:a-dk<T + ~ N [ l~ ➔ ➔ d➔ d! d➔ 
p+r-q,o- po- q,-o- r,-o-

ko- k<T pqrO' 

+ [ vk (d:a-ck<T + C:a-dko-) 
ko-

(13} 

For simplicity in this section we will discuss the case when U ➔ 0. The more 

basic drawback of the Hartree-Fock type solution is that it ignores the 

correlation of the •up• and "down" electrons. Actually we will take into account 

the latter correlation for the PAM and SIAM in a self-consistent way using the 

IGF method. It can be shown that the use of the matrix Green's function for PAM, 

Gk/w) = [: 

+ 
cko- I cko- » 

dka-1 C:a- » 

« C Id+ » l k<T k<T 

« dko-1 d:a- » 

(14) 

permits to handle the relevant equations within a very compact form. The 

first-time ~ equation of motion for the double-time thermal GF,
52 

« A(t) B(t') » = i 9(t - t') < (A(t), B(t)]+ >, (15) 

reads 

[ 

. W ·Ck 

• Vk 

Vk 

w - E(k) l [ 
+ « C C » 

X ..,I :· • 

« dk<T I cko- » w 

+ 

« cko-ldko- »w l 
« dka-t<a- » w 

[-: : l [ 

0 

-1 + +. UN I «Alck<T» 

pq 

0 · 1 
«A I d:(T» 

(16) 

where A = d d+ d . k+p,<T p+q, -a- q, -a-

According to Ref. 34-36 the definition of the irreducible parts for U ➔ 0 

11 



is as follows 

ir« d l" d i/ » 
+ + + . 

«d d d le »-o <n >«d le» 
k<p,CT J>«l,--CT q,--CT kCT k<p,CT p<q,--CT qCT kCT p,O q,--CT kCT kCT 

(17) 

ir « d d• d Id' » = « d d• d Id• » - o <n > « d Id• » 
k<p,CT p<q,--CT q,-CT kCT Hp,CT p<q,--CT qCT kCT p,O q,--CT kCT kCT 

Then we obtain after using Eqs. 17,18 in the r.h.s. of Eq. (16) 

[ 

w - ck 

- V 
k 

- v l [ G11 

w - :.,.(k) G21 

G12 l 
G22 

· [: : l + UN-1 L 
pq 

The following notation have been used 

E.,.(k) = E(kj - U 

[ 

0 0 l 
ir + ir + 

«A I ck.,.» w «A I dk.,.» w 

n d 
-CT 

d d 
n = <n > 

--a- k--cr 

(18) 

(19) 

The definition of the Generalized Mean Field (GMF) (which for the weakly 

correlated case coincides with the Hartree-Fock mean field) Green's Function 

(GF) is evident. All inelastic renormalization terms are now related to the last 

term in the r.h.s. of Eq. 19. All elastic scattering (or mean field) 

renormalization terms are contained in the following matrix equation for 

GMF - GF 

12 

r 

!1 
j 

l 
l 

\ 

\1 

l 

~ 

[ 

W - C k 

- V 
k 

- V 
k 

w - E.,.(k) l. [ :~ G;
2 l 

Go 
22 [: : l 

It is easy to solve Eq. (20) and we find 

{ 
IV 12 }-

1 

• o k · 
« d Id » = (,J - E (k) - ---kcr kCT W CT 

W - C 
k 

• 0 { « c le » = w - c -kcr kcr !<) k 

jVkl2 }-1 
w - E.,.(k) 

(20) 

(21) 

(22) 

At this point it is worthwhile to underline the significant difference between 

PAM and SIAM, which was shortly mentioned in Ref. 36. The corresponding SIAM 

equation for GMF - GF reads3
6 

[ 

(w - c )o -Vo l [ « p pk p pk 

E 1 
P -VP N (w - Eo) « 

c le' »o 
pCT kCT 

d I c' »o 
oCT kCT 

«cpcrld:,.»

0

1 [1 Ol = (23) 

« d Id' »
0 

0 1 
oCT oCT 

This form of matrix notation for SIAM has never been used before. However, it 

clearly shows which fundamental problem has been posed by Anderson in his famous 

paper,
37 

i.e. how to define the quasiparticle spectrum of a system with str~ngly 

localized levels embedded in a continuum of states. Within our matrix 

representation, the eigenvalue problem reveals a fundamental difficulty: the 

number of states in· the conduction band and in the· localized orbital ar~ 

different, namely if we include the spin degeneracy the conduction band contains 

2N states whereas the localized (s-type) level contains only 2. The comparison 

of Eqs. (20) and (23) shows clearly that this difficulty does not exist for PAM: 

the number of states in both localized and dclocalized subbands are the same, 

i.e. 2N (see Fig. 1). There are many other relevant questions connected with the 
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comparison between P.A,M and SIAM, but we believe that in order to understand the 

nature of the spectrum of elementary excitations this is the most fundamental 

one. 

The Eq. (23) for GMF - GF of SIAM is exactly solvable as well as the 

corresponding Eq. (20) for PAM. However, the presence of ~ in Eq. (23) clearly 

means that this exact solution is simply to solve for any fixed momentum p. In 

general, the compact solutions found by Anderson
37 

are written in the following 

forms 

« d jd+ »
0 = { w -

O(J" O(J" w 

IV I 2 }-1 
E • \ k w l --

k W • C 
k 

1 IV 12 
I 

+ o k 
« \a- cko- » w = ---. + 2 Gdd (w) 

w - ck (w - ck) 

(24) 

The fundamental difference between SIAM and PAM plays a very essential role when 

we proceed with incorporating the correlation effects, i.e. when we include the 

inelastic scattering or self-energy corrections. 

Let us again consider the PAM, starting from Eq. (16). After second time 

differentiation i of the higher-order GF. in the r.h.s. of Eq. (16) and 

introducing irreducible parts for the r.h.s. operators by analogy with 

Eqs. (17,18), the equation of motion (16) can be exactly rewritten in the form 

of Dyson equation 

G = G0 
+ G0 

M G 

Note that no decoupling has been done till now but only 

transformation. The formal solution of the Dyson equation can be 

follows 

14 

(25) 

identical 

cast as 

r 

G [ <GY, . Mr (26) 

where the self-energy operator M has the form 

Mko-(w) = [ : :
22 

] (27) 

with 

u2 
M22 = N2 [ 

ir « d d+ d j d+ d . .. d+ » ir 
k+p,a- p+q,-a- q,-a- r,-<F r+s,-<F k+s,cr (c) 

(28) 

pqrs 

In order to calculate the self-energy operator in a self-consistent way, we 

have to express it approximately by lower order GFs. However, the advantage of 

using Dyson equation consists in the right functional structure of the 

single-particle GF. In analogy with low density electron gas . we calculate the 

self-energy operator (28) in the pair approximation. With the help of the 

Spectral Theorem
52 

we express the GF by the correlation function. Then for the 

correlation function we use the following so-called "trial solution" in the case 

of a low density of quasiparticles < n > « 1: 

+ + ir 
<a, ,-<r a r+s,-<r ak+s,o- ak+p,o-(t) ap+q,-<r(t) a q,-<r(t)> 

'" <a+ a (t)> <a / (t)> <a+ a (t)> o o o 
k+p,O- k+p,o- p+q,-<r p+q,-<r q,-<r q,-<r k+s,k+p r+s,p+q r,q 

(29) 

After the substitution of Eq. (29) into Eq. (28) we find for the self-energy 

15 



u2 
M (w) = 2 

k<r N I 
•dwdwdw · 

L w + w: _ w
2 

3 
_ i:,

3 
{ n(w1) [ 1 - n(w2) - n(w3) ] + n(w2) n(w3) } 

pq 

x gp+q,-o-(w1) gk+p,<r(w2) gq,-o-(w3) (30) 

where 

g (w) = - .!. Im G (w + iO) 
k<r rr k<r 

(31) 

is the spectral density. The Eq. (30) with Eq·. (26) form together the 

self-consistent system of equations to calculate single-electron GF's and the· 

corresponding density of states 

D(w) = lN \ Im G (w + iO) rrl. k<r 
(32) 

k<r 

If we start the iteration procedure· with the· simplest first iteration expression 

gk<r ,.; o(w - E<r(k)) (33) 

then after integration we find the standard second-order expression for the 

self-energy (cf. Ref. 34) 

2 n (1-n -n ]+n n 
M (w) = !:!_ \ p+q,-<r k+p,<r q,-o- k+p,a- q,-o-

k<r· .2l · · · 
N pq w + Ea-(p + q) - Ea-(k + p) - Ea-(q) 

(34) 

Here nk<r = ( exp(/3Eko-> + 1)-1 

is the Fermi distribution function. It is 

interesting to note that the same sort of· calculation for the self-energy can be·· 

done in the case of SIAM.
36 

But then the pair approximation Eq. (29)does not 

work. Actually the analogous expression for SIAM self-energy is 

16 

J 

I. 
1, 

!' 

\. .,... 
! 
I 

l 
I 
i 
l 

Ma- (W) 
00 I"' dw dw dw { 

"' u2 1 2 3 n(w1) (1 
w+w -w -w 

-a, · 1 2 3 

- n(w2) - n(w
3
)] + n(w

2
)n(w

3
) } 

x go-o-(w1) goi"'2) g.,_;,.(w3) (35) 

where 

1 + 
goa-(w) = - rr Im « d oa-1 d oa- » w+io (36) 

and the first iteration expression has the form 

go<r(w) - o (w - E
0 

- U n-o-) ; (37) 

then we immediately obtain M a- = 0. This result reflects the fact that only one 
00 

impurity site is present. The recipe to calculate the self-energy operator for 

SIAM has been given by Ref. 36. We will use it for TIAM in next section V. In 

the case of PAM the same kind of approximation as in Ref. 36 will lead to the 

expression for the self -energy in the following form 

u2 I "' _ "'1 "' ( M (w) = - \ dw (coth --- + tanh -2. -
k<r N l 1 2T 2T 

q 

1 -+ ) - Im x +_ (w - w ) · g (w ) 
rr q 1 k+q,<r 1 

(38) 

To conclude this chapter we propose in Fig. 1 a possible hierarchy of the 

various Anderson models. Except the specific case of the SIAM we always have the 

situation which corresponds to inter-impurity interactions. The corresponding 

physical behaviour can then be understood looking through the SIAM-TIAM and 

CIPAM-PAM complementary solutions. 
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• V. TIAM. WEAK CORRELATION 

We again consider the TIAM Hamiltonian (1). The IGF solution of this model 

is obtained by analogy with the SIAM for small U. 

Taking into account the first time differentiation of the relevant GF 

matrix, we have 

(w - cp)o pk - v1popk - V o j 2p pk I G11 G12 

I - V 1p 
1 N ( w - Eo) - V 12 I x I G21 G22 

p 

- V 2p - V 21 .!.. (w - E ) I N o I G 31 G 32 

1 0 0 0 0 0 

0 1 Ol+U « A1 I C + » « A1 Id+ » ka- 1a-
« A Id+ » 

1 20" 

0 0 « A I c + » « A2 Id+ » 
2 · kO" 10" 

« A Id+ » 
2 20" 

The notations are as follows 

G = « c le+ » · G = « C Id+ » . 
+ 

G
3

=«c Id » 
11 pa- ka- ' 12 pa- 10" ' 1 pa- 20" 

G = « d i/ » 21 10- ka- G22 = « d1a-l d;a- » G23 = « d10-ld;(l" » 

G· =«d le+» 
31 20- ka-

G - « I + 32 - d2a- 410- » G33 = « d2a- I ~;a- » 

A1 "' d n · 10" 1-0" ' A2 = d n 20-· 2-a-

In compact form the Eq. (39) can then be expressed as 

\ L G (w) = i + U Dk(w) l pk pk 
p 

18 

G13 

G23 

G 33 

(39) 

(40) 

(41) 

;~ 

' ,!,'~ 
! 
I 

I 
~ 
l 

We thus have the Eq of motion (39) which is a complete analog of the 

corresponding equations for the SIAM and PAM. Let us again introduce by 

definition the irreducible part of the GF's 

ir « d n I B » = « d n I B » - < n > « d I B » 
10" 1-a- 10" 1-a- 1-a- 10" 

(42) 

ir« d n 1B » = « d n 1B » - < n > « d 1B » 20" 2-a- 20" 2-a- 2-a- 2a-

where we expect the thermal average < ni-a- > to be uniform (in principle it is 

possible to consider non-uniform solution) 

<n >=<n >=<n > 
1-0" 2-a- -a-

(43) 

Now, if we consider the Eq. (39), taking into account the. definition (42), we 

obtain in analogy with Eq. (19) the same equation as (41); only, instead of 

Dk(w) it will cont.ain Dk i&). Let us define as previously the GMF - GF in the 

following way 

r i, G0 = i 
l pk pk 

(44) 

p 

After performing the second time variable differentiation in the r.h.s. of (39) 

and introducing the relevant irreducible parts for the GF's we are able to 

rewrite the equation of motion in the form of a Dyson equation 

G = G0 
+ G0 MG (45) 

Let us remind again that G0 
is defined as follows 
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I 
p 

• 
( W • C )o • V1 0 k j p pk p p 

- V .!_ (w - E ) 
1p N o<r 

-V 2 P . V 
21 

- V o 2p pk 

v,2 

.!_ (w - E ) 
N o<r 

1 o I 

~ 
0 0 

X 

0 

0 

1 

0 a,, 
Go 

21 

Go 
31 

Go 
12 

Go 
22 

Go 
32 

Go 
13 

0 

G23 

Go 
33 

(46) 

The matrix G0 
describes the exact solution of the TIAM in the H-F approximation. 

The SIAM-GF's are shown in the left upper corner of each matrix. We thus have a 

very clear representation of the essence of the nonlocal interimpurity 

correlation problem in the case of two localized levels interacting with a 

continuous spectrum of conduction electrons. The Eq. (46) represents the exact 

solution for the considered problem in the H-F approximation. After some algebra 

we find the following results for the diagonal elements 

«c le+ o { IV 12 
ko- ko- » w = w - ck _ 1 k 

w - E 
0(1' 

• -1 

- fl
1
,(k,w) } 

+ 0 { « d1o-ld1o- »w = w - Eo<r 
Iv 12 }_, 

[ 1k - fl22(w) 
W - C 

p p 

+ 0 { « d Id » = w - E 
20' 20' w o<r 

[ IV2kl2 

P w - cp 
}

-1 

- fl
3
/w) 

Here we have introduced the notations 

20 

(47) 

J 

,, ... 

'! 
~ 
! 

fl,,(k,w) = [ v2k + vnv, 2 ] [ v
2
k + vu v2, J [ w - E 

0(1' 

v2, v,2 

]

-1 

w - E w - E 
. 0(1' 0(1' w - E 

0(1' 

where 

fl22(w) = (.\21 (w) + V12) (.\
21

(w) + v
21

) [ w - Eo<r 
JV 12 ]-1 

[ -~2p 

W - C 
p p 

fl (w) = (,\ (w) + V ) (,\ (w) + V ) [ w -33 12 21 12 12 
IV , 2 ]-1 

E . 1 1p 
o<r L ~~ 

W • C 
p p 

- V V 
,\21(w) = ,\,/w) = L ~ 

W - C 
p p 

(48) 

(49) 

(50) 

(51) 

describes the so-called "indirect coupling".43 If we put V
12 

= V
21 

= 0, we 

obtain 

fl2/w) = 
( ,\12(w) ] 2 

w E - L 
IV 12 

(52) 

2p 
00' p 

W - C p 

fl [,\ )2 
3iw) = 12(w) 

E JV J2 
00' - ~ __ 

1
_P 

w -c 
w -

(53) 

p 

2 
Jv2kl 

fl
11 

(k,wl = ----

(w - Eo<r) 
(54) 

The detailed analysis of the H-F solution for two impurities has been done 

previously.
43

'
53 

Here we will consider the quasiparticle interactions by using 

the Dyson equation for the TIAM. 

The formal solution of the matrix Dyson Eq. (45) has the form 
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I 

6 = 1<a°f1 
- Mf1 

(55) 

Let us consider the explicit expression for the self -energy matrix 

M -[: 

0 :~ l M22 (56) 

M32 33 

where 

M = u2 ir « d n Id+ n » ir . 
~ W1-<1' W1-<1' ' 

2 ir J + ir 
M32 = U « d2crn2-<1' n1_crd1o- » 

M = u2 ir « d n In d+ » ir . 
23 10- 1-<1' 2-<1' 20- ' 

M = u2 ir « d n In d+ » ir 
33 20- 2-<1' 2-a- 20-

(57) 

In order to calculate the self-energy matrix elements,
57 

let us perform for the 

TIAM the same type of procedure as it has been done previously for the SIAM.
36 

With the help of the spectral theorem one can express the GF's (57) in terms of 

correlation functions. The natural "trial solution" for the correlation 

functions can be proposed in the following wa/
4 

< d;cr d;-<1' d1-<1' d1cr (t) d;-<1' (t) d1-<1' (t) > "" 

+ + + 
< d1-<1' d1-<1' d1-<1' (t) d1-<1' (t) > < d1cr d1o- (t) > 

(58) 

+ . + + 
+ < d1 d

1 
(t} > < d

1 
d

1 
d

1 
(t) d1 (t) > 

.-<1' .-a> . . . er -<1' er -{1' 

+ < d
1 

d+ (t) > < d+ d
1
+ d

1 
(t) d

1 
(t) 

-<1' 1-<1' 10-. -<1' cr -<1' 

22 

~ 
,\ 

'c 
I 
i 
r 

:.1 
,' 

/;) 

< d;o- d;-<1' d2-<1' d1o- (t) d;-<1' (t) d1-<1' (t) > -, 

< d
2
+ d

2 
d+

1 
(t) d

1 
(t) > < d:_ d (t) > 

-<1' -<1' -<1' -<1' c.u 10-

(59) 

+ + + 
+ < d2-<1' d1-<1' (l) > < d2cr d2-<1' d1cr (t) d1-<1' (t) > 

+ < d
2 

d
1
+ (t) > < d

2
+ d

2
+ d (t) d (t) > 

-<1' -<1' cr -<1' 10- 1-<1' 

The terms which describe the correlations of the "up" and "down" spins on 

the same and different sites correspond to the second terms. in the r.h.s. of 

Eqs. (58) and (59) 

[ 
+ + + 

< d
1 

d
1 

(t) > < d
1 

d
1 

d1 (t) d (t) > 
-cr -<1' cr -<1' cr 1-<1' 

cr 

+ - + - + + = < s
1 

s1 (t) > < d1,1, d1,1, > + < s1 s1 (t) > < d11' d11' > (60) 

[ 
+ + + 

< d
2 

d
1 

> < d
2 

d
2 

d (t) d1 (t) > 
-cr -<1' cr -<1' 10- -<1' 

er 

+ - + - + + = < s2 s1 (t) > < d2'1, d,,1, > + < s2 s, (t) > < d21' d11' > (61} 

+ + - + 
Here S = d 1' d,1,'; S = d ,1, d1'. 

Using Eqs. (58)-(61) we find the following explicit expressions for the 

self-energy matrix elements 

23 



M!2 (w) = U2 r 
-co 

d1.i
1
dw

2 
1 + N(w ) - n(w) { 1 } 

1 2 -, + - - Im « S
1 

S
1 

» w 
w - w

1 
- w

2 
rr 1 

x { - ~ Im « d Id+ » } 
1,1, 1,1, W 

1l 2 
(62) 

M:2 (w) = U2 r 
-co 

dw
1
dw

2 

1 + N(w1) - n(w2) { 1 
- - Im 

w - w
1 

w
2 

rr 
« s• Is- » } 

1 1 w1 

x { - : Im « d Id+ » } 
rr 11' 11' w

2 
(63) 

For M33 we obtain the same expression with the substitution of index 1 by 2. 

co { } 
23 2 1 + N ( w 1 ) n ( w 2) 1 _ + 

M1' (w) = U J dw1dw2 ------- - - Im « S
1 
js

2 
» w 

w-w-w 1l , 
-ro 1 2 

x { - : Im « d , I d+ » } · 1~ 2,1, w 
1l 2 

(64) 

. 23 2 Ico 1 + N(w1) - n(w2) { 1 
M,1, (w) = U dw1dw2 -----'-----. - - Im 

w-w-w 1l 
-co 1 2 

« s•is- » } 
1 2 w, 

x { - : Im « d11' Id~ » w
2 

} (65) 

Here N(w1) means Bose distribution function. For M~! we must again change 

index 1 ➔ 2. The Eqs. (62,63) and (64-65) give the complete self-consistent 

description · of nonlocal correlations and quasi particle interactions for the 

TIAM. The diagonal elements of the self-energy matrices M
22 

and M
33 

describe 

single-site inelastic scattering processes; non-diagonal elements M 23 and M 32 

describe the intersite inelastic scattering processes. As well as the 

non-diagonal elements of the GMF-GF c;°, the latter non diagonal matrix elements 

are responsible for the specific features of the dynamical behaviour of the TIAM 

and, more generally, the CIAM. 
24 

VI. SIAM. STRONG CORRELATION 

As for the strong correlation regime, even for the SIAM, and in spite of a 

great number of theoretical efforts, a compact and closed form of the 

one-particle propagator has not yet been obtained.
18

-
20

•
51 

The matrix form of 

our calculation as in the case of the weak correlation will help us to better 

·understand the essence of the difficulties. 

In analogy with the Hubbard model
34

, for the description of the strong 

local correlations, we must use a new algebra of operators, namely {fo<XCT} with 

a = ± 

f = no: d 
O<XJJ' o--<J' W' 

+ 
n 
en nm n 

en 1 - n 
en 

(66) 

In terms of the new operators the relevant matrix GF for the SIAM (23) can be 

rewritten identically in the following form 

Go-(w) = 
[ 

+ 
« cko-lcko- »w 

« f C + » ~ ocxa-1 ko- w 

' « c If• » l ~ ko- 0(30- w 

'«r Jf; » l o<XCT a,,a- w 
a(3 

(67) 

To calculate this GF we need to write down the equation of motion for the 

auxiliary GF, G 

+ « c If• » « c If• » « cka-1\a- »w ko- o+a- w k<r o-<r W 

a- o+o- a- w G (w) = I « f I< » « f If. » 
o+<r o+<T w 

« r If• » I 
o+O" o-0" w 

(68) 

« f I c• » 
o-<r ko- w « f 1t » o-cr o+O" w « f 1t » 

o-0" o-0" w 
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In the matrix notation the equation of motioo reads 

where 

E= [": "• 

I -[: 

0 

+ n 
o-a-

0 

E Ga-(w) - I = D 

- V 
k 

w - E - U 
0 + 

0 

- V l 
":. - u 

0 -

: ]· n=[: ' 21 

n D 
-a- 31 

0 

0
22 

D32 

(69) 

Va= { 

U, a=+ 

0, a= -

(70) 

:23 l 
D33 

(71) 

Here D is a higher-order GP. As an example we give now two matrix elements: 

D = « (c n + d+ c d - c + d d \It » 
22 p(l" O-(T O-(T p-0- 00- p-0- O-(T or;' 0+(1" W 

(72) 

D = « (c (1 - n ) - d+ c d + / d d ) It » 
33 p(l" ()-(T O-(T p-0- 0(1' p-0- O-(T 0(1' o+O- W 

et us introduce the matrix of irreducible GP, Dir in accordance with the 

definition given in ref. 34 

0ir = 0 _ [ [ :: ) [ G;+ G:-J, 
a 

(73) 

where the coefficients A(3a are determined from the condition 

[ 
-;, + ] 

< Da(3, fo{3a- + >= 0 (74) 
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Similarly as in the preceding section we obtain the Dyson equ_ation 

G = G0 
+ G0 

MG (75) 

where G0 
is the generalized mean-field GP. The explicit form of the mean-field 

renormalizations are as follows 

A++ 
< (d+ c + c + d ) (n - n ) > 

o-a- p-a- p-a- o-a- oa- o-a-
(76) 

. < n > 
0-(T 

A 
- < (d+ c · + c + d ) (1 + n - n ) > 

o-a- p-a- p-a- o-a- oa- o-a-
(77) 

< n > 
O-(T 

-+ ++ +- --
A =-A A =-A 

The generalized mean-field GP of the d-elec.trons has the form 

< n > [ :E V A-+ 

u_) « d Id+ » o = o-a- 1 + P P 
OU' OU' w ++ 

w-E-U-LVA w-E 
0 + p p 0 

+- ) 1-<n > [ LV A 
+ o-a- 1 + p p (78) -

w - E - U - L V A -- w - Eo -u 
0 - p p + 

For V = 0, we obtain the e·xact atomic solution· with poles at E0 + U+) and 
p 

(E0 + U_) 

<n > 1-<n > 
F

8
\w) = 

o-a- o-a-
+ 

w-E -U w-E -U 
0 + 0 

The equation corresponding to Eq. (78) for the conduction electron GP reads 
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(79) 



• 1 V V 

I + o k o k o 
« cko- cko- » w = --- + --- G21 + --- G31 

w - ck w - ck w - Ck 
(80) 

Taking into account that 

(w - E - U) « f le+ »
0 = \ V { < n > « c I/ »0

} 
0 + o♦O" kO- L p 0~ p<T ko- (81) 

p 

(w - E - U ) 
0 -

« f I C + » 0 = \ V { (1 
o♦O" ko- L p - < n >) « c I c + » 0 

} 
~ po- kO- (82) 

p 

We find the following expresion for the diagonal element of the conduction 

electron GF 

«cko-lC:o- »: = { w - ck - 1vk12 Fat(w) r, (83) 

This form of solution also gives the correct expression for V k = 0. The 

GMF-GFs (78) and (83) are the essentially new solutions of SIAM in the strongly 

correlated limit. The paper of Ref. 
54 

is close to our approach; however, the 

explicit form of the single-particle GF has not been written explicitly. Oh and 

Doniach
55 

calculated the dynamical properties of the SIAM in the context of 

core-level photoemission spectra. For the mean-field GF they obtained the 

following result5
5 

1 - n n 
Go- (w) = ~ + -o-

dd w - E - I: (w) w - E - U - ~ (w) 
o a o o 

(84) 

where 

I:o(w) = l ~ (85) 

. k w - ck 

This solution simply describes the two localized levels E0 and E0 + U broadened 

28 

and shifted due to the mixing potential _V k" Our· theory can be considered as a 

direct generalization of Oh and Doniach's result
55 

in the framework of the IGF 

approach. Of course our Eq. (78) is more general than Eq. (84) (obtained within 

the first order in V k). Also it is important to note that in the atomic limit, 

when U ➔ oo and V k ➔ o, the correct functional form of the. solution must be 

recovered. Oh and Doniach
55 

fou~d that, for Vk ;:;- 0.5 cV, ImGdd(w) starts to go 

negative for a certain range of w values, indicating that their decoupling 

procedure does not conserve probability at each value of w. Our expression (78) 

contains . complicated correlation functions, which, in principle, must be 

calculated scl(-consistcntly; doing so, the difficulties with the negative 

spectral density does not appear. For a rough estimation of the behaviour of the 

correlation functions (Eqs. 76, 77) at low temperatures we can use Oh and 

Doniach's expression (30),
55 

for example ('P meaning the principal part) 

+ + [ . (ck - E O - A) 
<c d > = - < c d > = (1 - < n > ) 8 (-c )V 

ka- oa- ko- oa- o~ . k k (c _ E _ A/ + 62 
K o 

Vk r dw ti. ] + - 'P 2 2 
Tr (w - C ) (w - E - A) + t,. 

-B · k 0 

+ < n > 8 (-c) V 
[ (ck - Eo - U - ti.) 

o~ k k (ck - Eo - U - A)2 + t,.2 

Vk r dw ti.. ] 
+ - 'P 

rr (w - c ) (w - E U - A>2 + ti.
2 

-B k o 

(86) 

and 

< /· n d > = - < c n d+ > = 
K o~ 00' ko- o~ 00' 
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< n > V 
CHT k [ e 

(ck - E
0 

- U - A) 
(-ck) 2 2 

(ck - E
0 

- U - A) + t,. 

+ ~ [1' 
If _ B (w 

dw t,. 

- ck) (w - E
0 

- U - A/ + t,.2] 
(87) 

where 

'F.
0

(w) = A(w) + it,.(w) (88) 

The set of Eqs. {76)-(78) and (86)-(87) completely solve the GMF description of 

SIAM in the strongly correlated case. It is worthy to note that after 

substitution of {86) and (87) into (76) and (77) we obtain the GF (78) at the 

second order in V k. In addition, our theory allows to calculate inelastic 

1 

< n > 
+ o-0" 

< d Id » "' ++ -
ocr ocr w E U _ 'F. V A - M (w) 

W O p p 22 
[ 1 + (,) -

i:VA-+ ) 
p p 

E - M (w) 
o 22 

+ 
w - E 

0 

1 - < n > 
o -IT 

- L V A 
p p - M3iw) 

( 

'F. V 
1+---p p 

w - E 
0 

:+~ M
3
iw) ) 

{91) 

The calculation of higher-order GFs which describe the inelastic scattering 

corrections (90) can be done in the same way as in the previous sections IV 

and V. 

VII. TIAM. STRONG CORRELATION 

scattering corrections which are described by the self-energy operator I In the preceding sections we have considered a self-consistent description 

where 

M = j-
1 

{ [ v p v q [ : 

pq 0 

M = ir v I v+ ir 
22 < 22 22» 

+ 
Y

22
=c n +d c d 

p<T CHT o-<r p-<r OC1' 

0 

M22 

M32 
~]}' 

ir I + ;r 
M33 = « y33 y33 » 

- c+ d d 
p-<r o-<r ocr 

Y = c {1 - n ) - d+ c d + c+ d d 
33 p<T o-o-' ocr p-<r ocr p-<r CHT ocr 

(89) 

(90) 

The complete solution of the Dyson equation in the form of (75) is very 

complicated. Nevertheless it is possible to write down the simplest approximate 

solution which includes the inelastic scattering corrections 

30 

of the dynamical behaviours of (i) the TIAM in the ~ase of weak correlations, 

and (ii) the SIAM in the case of strong correlations. In this section we will 

examine the case of the very strong Coulomb correlations for the TIAM. For this 

aim it is convenient to use the relevant algebra of Hubbard's operators 

X~.
56

'
57 

The TIAM Hamiltonian takes then the following form (U ➔ oo) 
1 

H = r c c + c + r E x~'" 
l km km km l om 1 

1 
xoo +-

+ L Eto i vN 
; 

km im 

r ( v* -i k~j + xom h ) l k■ e ckm j + .c. 

jkm 

i = 1.2 (92) 

As it has been mentioned above, a more symmetric form of the problem can be 

handle by using a new set of variables 
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i•1 

' 
l 

:11 

j 
,I 

Ii 
II 

I 

I 
IJ 

I, 
'( 
·) 

1 
x:• = - ( xom ± x0

• ) _ ,fl, 1 2 

1 
xom = - ( x'"' + xmo ) 

1 ,fl, + -

1 
X

0
m = - ( x"" - x.., ) (93) 

2 ,fl, + - . 

In terms of the so-called "odd" and "even" variables the full Hamiltonian of 

the TIAM can be rewritten as: 

H = H + H 
0 1 (94) 

where 

l + [ .,,. ...,. oo oo 
H = C" C" C + E ex, + x~ J + Ef ex, + X ) o •• .m k11 om 2 o 2 

(95) 

km II 

1 { . } + om + om 
H = - f V c X + V ck X +. h.c. 

1 viii L k+ km + k- m -
km 

(96) 

The new hybridization matrix element is expressed as 

1 ➔➔ 

V = -·V ( 1 + ikR) k+ - e ' - ,fl, . 
(97) 

the two impurities being located on the z axis at -R/2 and +R/2. The convenience 

of the even and odd operators representation is obvious. The relevant matrix GF 

is a 3x3 matrix (instead of a 5x5 matrix by using the same algebra of operators 

as in section VI) 

« ck jc+ » 
m km « ck Ix"" » 

II + « ckmlX:'° » 

G = I « x011 I C + » 
+ km 

« xo• I xmo » 
+ + 

« xomlxmo » I 
+ -

(98) 

« xo'"I c+ » 
- km 

« xom,xmo » 
- + « x~'"lx'.:" » 
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I 

I 

From the comparison of Eqs. (68) and (98) we can see that the new set of 

variables (even and odd) somewhat allows to consider the TIAM in terms of the 

SIAM. However, this "reduction" from TIAM to SIAM is only partial, as we will 

sec later. The equation of motion for the GF (98) can then be written in the 

form 

E G
1
,.(w) - I = D 

where 

E= l.: "• 0 

w - E" om : l;i=l: 
w - E 0 om 

± oo mm hmm = < X± > + < X± > , 

D -[: 

0 :~ l <1>22 21 

<1>31 <1>32 <1>33 

33 

0 

.6 + 
mm 

0 

(99) 

:J 
(100) 

{101) 

(102) 



1 

"'21 = v'N L v* «ti.+ c le+» 
p+ mn pn km 

pn 

1 
v* ,t, = 

v'N L « t,+ C IXmo » 
22 p+ •mnpn + 

pn 

1 
* 

v'N L « t, + C I xmo » ,t,23 = V 
p+ m pn -

pn 

1 

,t,31 = 
v'N L * - I + V «ti. C C » 

p- mn pn km 
pn 

1 
,t, = 

32 v'N L v* « t, - C I xmo » 
p- mnpn + 

pn 

<1>33 = 
1 - L v* « t,- C 1xmo » 
v'N p- mn pn -

(103) 

pn 

The method to introduce the irreducible parts for the TIAM in the case of strong 

correlations is the same as for Eq. (73). We follow here the same approach. 

The coefficients A ap are determined from the condition 

< [ o~, x;0 ]+ >= o 

For example, let us calculate the ·coefficient A; (compare with Eq. (76)) 

· [ ; r .., ] [ ( + ) i r mo ] ++ [ ·om 110 ] <;. 4' X > = ti. c , X > = A
22 

< X X > 
_ · 22, + + mn pn + + + , + + 

< (t.♦ C X110
] > 

A++ = ___ .,_n __ p_n_, __ +_+ 

22 <[XomXmo) > 
+, + + 

< 0 (XIIIO - xom) C > 
mn + + pn 
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< ti.· > 
1111 

(104) 

(105) 

I 

: 
I 

,I 
I 

; 

:1 

The GMF Green's Function are defined as 

e. a0 = i 

From this equation one can find that 

+ 
< t, > mm « xo'"1xmo »o = 

+ + w 
[ mo om ) 1 < o {X - X ) c > L * mn + + pn w-E -- V 

om v'N p+ < t, + > 
pn am 

·< t, > 
« x:m1x:" »: = mm 

[ mo om 

] 
1 < o {X - X ) c > 

w - E l* mn- - pn - V om v'N p- < ti.+ > 
pn mm 

And the equation for conduction electron GF 

< t,+ > 1 
+ 0 - --1 » -« ckm cicm w w - ck 

V k 1 
+--♦ -[ 

w - ckvN 

* mm I + o V ----«c c » 
p+w-E pnkm w 

V 1 
k- \' 

+-- -l 
w-cv'N 

k pn 

pn 

. < t,- > 
* mm 

V --
P- w - E 

om 

011 

I + 0 
« c ck » 

pn m w 

{106) 

(107) 

(108) 

{109) 

If we take in the r.h.s. of Eq. (109) the diagonal elements, i.e. terms 

proportional to opk omn we easily find 

I 
+ 0 

« \m ckm »w"' 

W - C -
k 

1 

· 2 + 2 
IV I < t, > + I V I < t,- > 

k+ mm k- mm 

w - E om 

In the case of V k± .= 0, this expression corresponds to an exact solution 
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I + 1 
« ckm ckm » = ~ 

k 

Using the definition of G0 
as previously considered it is 

derive the approximate Dyson equation 

G G0 
+ G0 MG 

The self-energy operator is given by the second order in V k± 

1 
M "' -[ ~ w M"t w 

N l P pq q 
pn qt 

(111) 

then possible to 

{112) 

(113) 

The matrix M"t has a similar form as Eq. (89) and all further 
pq 

considerations (section VI) can be again performed here as for the SIAM. The 

difference now consists of the non-diagonal terms of self-energy operators M
23 

and M32. In analogy with Eqs. (64) and (65) they contain higher-order GFs which 

describe inelastic impurity-impurity correlations terms. In order to obtain an 

approximate estimation of higher-order correlators , contained in Eq. (113), it is 

possible to use any relevant expression since the functional structure of 

dynamical TIAM solutions has the right general form. A mote consistent approach 

would need to calculate the collective correlation function independently, like 

+ -
transversal spin susceptibility « s-j S+ » . We plan to look into this aspect of 

1 2 w 

the problem in the future. 

VIII. CONCLUDING REMARKS 

In summary, we have developed a new approach to describe the many-body 

dynamics of SIAM and TIAM in the framework of the IGF formalism. We have 

obtained a new interpolation solution - the one-particle GFs for the SIAM and 

TIAM as well as the solution for the PAM in the weakly correlated case. In this 

36 

last case the functional of the generalized mean-fields only depends on the mean 

densities of electrons. Moreover our solution improves the H-F solution; it 

allows to incorporate (i) the correlation of the spin-up and spin-down electrons 

at the impurity level as well as (ii) the impurity-impurity correlation effects 

in the case of the TIAM. As far as strong Coulomb correlations are concerned we 

have obtained essentially new solutions. Furthermorewe arc then able to confirm 

the statement3
4

-
36

'
38

-40 that in this case the mean-field renormalizations have 

a quite nontrivial structure and cannot be reduced to the mean density 

functional. The theory we suggest , allows to find explicitly the damping of 

quasiparticle excitations in a ~elf-consistent way as was demonstrated here. 

In order to give a complete picture of the role of non-local or 

impurity-impurity' correlations we must extract the Kondo-type peak of the 

spectral density of states in the strongly correlated case for low temperatures. 

For the SIAM there are a few reasonable schemes on how to do so.51
'
58

'
59 For the 

TIAM this type of behaviour has not yet been described analytically. There are 

only a few num~rical calculations
60

'
61 

within quantum Monte-Carlo algorithm 

which gives some useful insights into the considered problem. However it is 

evident that for the TIAM (or for the CIAM66
) the definition of the Kondo 

effect, which is associated with the screening of a single impurity spin at a 

characteristic temperature Tk, must be redefined. An approach which permits to 

define · the renormalized Kondo temperature in the presence of additional 

impurities has been proposed many years ago.23within the framework of a 

perturbation theory The main assumption of Ref. 
23 

is that, at the i"'.purity 

site i, the logarithmic contribution which characterizes a Kondo system 

undergoes a transformation such that 

ln T ➔ in (T
2 ~ W) 112 

(114) 

under th~ influence W of interacting impurities around i., So, as emphasized by 

the authors of Ref. 23, the single-impurity treatment is almost valid and needs 
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only small correctiol\S in the dilute limit. However, a more correct way to 

define the Kondo temperature in the U ➔ "' limit of the Anderson model is related 

to the low temperature .behaviour of the spin susceptibility1•62 

1 
x~--

21r Tk 

where in the symmetrical case the Kondo temperature is 

Tk 

1 /2 
(2 u r) (-1ru 1sr) 
--- e 

ll 

(115) 

(116) 

In the region where Tk is of the same order as TRICKY the role of non-local 

correlations is strongly increased and the correct definition of the Kondo 

temperature is a very nontrivial problem. The various cluster Anderson models 

confirm_ the necessity of adapted definitions of the Kondo temperature. For 

example in Ref. 31, where the Anderson cluster has been considered, the Kondo 

temperature is defined to be the triplet-singlet splitting, and in this model is 

- 8 ~ given by (see also and ) 

4V
2 

Tk =--- (117) 
C - C 

1 f 

The nonexponential dependence of the Kondo temperature on the hybridization 

follows from modeling the continuous spectrum of band energies by only a few 

discrete states. In the region of interplay. between RK KY and Kondo behaviours 

the key point is then to connect the partial Kondo screening effect with the low 

temperature behaviour of the total . spin susceptibility. The non-local 

contributions to the total spin susceptibility of two very-well formed impurity 

magnetic moments have. been calculated by Ref. 63 (see also 6'
64

) 
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2 
cos 2kFR 

X . ~ 2 X 12 Tl E (x/gµ ) 
3 pair F B (k R) 

F 

(118) 

The problem is how to find an interpolated expression of the susceptibility in 

the region of RK KY-Kondo interplay. As it is well known, it is extremely 

difficult to describe such a threshold behaviour analytically. However, progress 

is expected both from analytical and numerical investigations in this 

fascinating field. 
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FIG. 1. The hierarchy of the Anderson models (the numbers are given in the 

case of 's' orbitals with n ~ N). For a detailed presentation of the CIPAM, 

see also Ref. 65. 
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