





I Introduction

The crucial characteristics of high-temperature superconductors (HTSC)
are the strong electron correlation (1] and the pronounced two- d1mens1onal
structure [2]. In order to study these propertles, various models have
been proposed: the one-band Hubbard model (3], the t-J‘ model ‘[4],
the Emery model [5] and others. However, the numeﬁcal calculations
in the one-band Hubbard [6] and Emery model [7] have shown that
superconducting correlations are not found. At the same tirne, the ob-'
served large isotope shift at certain concentration of doping holes [8, 9],
some anomalies in the phonon spectra and in the structural instability
of oxide materials [10, 11] show the important role of phonons in the -
formation of Cooper pairs in HTSC. This allows one to propose the
electron-phonon pairing mechanism in the system with strong electron
. correlation as one of the possible superconducting mechanism in HTSC.

In the present paper, we consider the Emery model with the electron-
- phonon coupling. After discussing the model in the next Sect., we ob-
tain the self-consistent equations of the Green function in Sect.3. The
equation for the superconducting temperature is obtained in Sect.4.

The numerical results and discussions are presented in Sect.5..




II Model Hamiltonian

Electron-phonon coupling in the CuQ, plane with strong electron

correlations can be described by the following Hamiltonian:

H = H0+Hmt+th
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where X{° = d}a(l nf;), X§° = n‘};(l — n4,) are the Hubbard oper-
ators acting in the subspace of singly occupied copper sités, G = —0.
e4(€,) are the energies of the Cu(O) holes. &% (& o) are the creation
' (annihilation) operators for: the b, symmetry combination of four oxy-
gen orbitalé (with respect to a given Cu ion)(see e.g [4]). The func-
tion Vypr = Zt,u3% e”‘_(f -4 '.)7;;,- where N is the number of copper sites,

T = \/Sin2 sk + sin? %ky‘, describes hybridization between copper and
oxygen holes in ff’ unit cells of the CuQ, plane; p is the chemical
potential which has to be found from the following equation for the

.concentration n:-
1 ago R t '
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H, is obtained from the Emery model in the limit Uy — 00 which élim—
inates the upper Hubbard sub-band corresponding to the states with

doﬁbly occupied copper sites (see e.g. [12])
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H;,, describes the electron-phonon coupling with the constants g4 and
gp for the Cu and O holes, respectively; H,, is the phonon Hamiltonian -
where p; and uy are the momentum and coordiﬁate operators, respec-
tively, of the ions with mass M and the force constant K(= Mw?) in

the lattice site f.

III Self-consistent eqliations for the

electron Green function

We define the 4-component Nambu operators ¥, and \Il}a where,
e.g., |
1 ‘ G
\I)az(X}’O,(I)tU,X‘? a(pfc_r)
and introduce the two-time Green function for holes
Grp(t —t') =<< Tp(t) | Bh, (1) >>
and for phonons
fol(t — t’) =< u!'(t) | uf:(tl) >>

After the Fourier transformation for the equation of motion for

Gy s(t —t'), we obtain the following equation:

wGyp(w) =N x 10+ (& x 73)Gsp(w) +
X”"q),,, +(1-— nﬂ,)@
X0
—(I'L-,X}"” —(1- ni‘f&)@:‘r&
_ X0
H(§ x 73) << rotup | Bhp >>u.
3

+Y V<< [ ot >>, 4+ (2)



where

ga 0

N 1-n%/2 0 €4 — 0 :
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0 1., 0 g—p 0 g,

I
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7; (i = 0,1,2.3) are the Pauli matrices and the symbol 4 x B denotes
the direct product for matrices A and B.
Here, we suppose that the system is in the paramagnetic state.i.e.:
d d
< ngy >(=< n‘}l ?z n®/2

< X7 >=<dldp >=0

In order to decouple the seciuence of Green function equations, the

fbllowing approximations of the Hubbard-I type have been used:

<< XP®i, | U, >>< X7 ><< 8, | U, >>0  (3)

<< (L=nd)®, | Th, >>o (1-n%/2) << @i | T), >>
Substituting the approximations (3) into (2) one obtains

wGp(w) = N x 1o+ (€ x 75)Gyp(w) +

‘+((J\7'r‘1)‘x 73) 3 ViGip(w) + (§ X 73) << ¥ g0y | o, >>, (@)

By differentiating the Green function << ¥, u; vl (#) >>, over -
_ g€ Joy flo

the second time t’, one obtains in the same approximation as above the.

following equatioﬁ: ‘

<< Upup | O, S5 w0 =< Tpouy | B, 3>, (Ex ™) +

T3 << Upuy | T, S5, Vip((Bm) x )+ (5)
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In the g-representation the system of Eqs. (4)-(5) can be written in the

form:
G(q,w) = Go(g,w) + Go(¢,w)T(g,w)Go(q.w) : (6)
where
G~ (q,w) 0 -
Gg'(g,w) = ‘ ] 1)
. 0 —g—- (Qv\_w)
—?‘tpd‘)’q ) W€y + U

The scattering matrix T'(q,w) is defined by:
T(q,w) = (§ x )V x 10) 3 << Ty | Tlouj >>,
(N7 x 7)(§ x ma)e” 0

Eq.(6) can be written also as the Dyson equation:

le(‘b""’}) = G(;I(va) - E(va) - (8)

.where £(q,w) is the self-energy voperator which is defined by the scat-

tering matrix by the equation:



In the Migdal approximation one can neglect vertex corrections to
the electron-phonon coupling and obtain the following expression for

the self-energy operator:
) - dvdy'
Y(q,w) = (§ x )N~ x TO) /] (th——— + cth-——) x (9)
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Here we used the spectral representation for the correlation function

and the following approximation:
< Wi (D)ui(t) Ol uj >m< Uin(t) P, >< wilt)u; >

In this way, we have obtained the self-consistent system of Eqs.(7)-

(9) with the equation for the chemical potential (1)

IV Equation for the superconducting
transition temperature

In the well known procedure used in the theory of weak coupling
(see e.g. [13]) we propose the most simple approximation for the electron
Green function

G—-l(q w): g——l(q,w) A(w)
’ At(—w) —G7'(g,—w)

' A] w A3 w
Ay [ D) Bw)
—'Ag(—-UJ) A-)(W)

is the matrix gap function.

where
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In this way, from Eqs.(7):(9) we obtain the linear equation for the

matrix gap function in the weak coupling approximation:
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A(w) = f(w

Here was used the local approximatioln for the phonon Green function:
D' (q,w) = D"Yw) = Mw? —'K.

Now the superconducting transition temperature can be obtained
from the matrix Eq.(10) by solving the linear system of equations for

the matrix elements A;,Ay,Ag.

V  Numerical results and discussion

Consider the numerical solution of Eq.(10) by taking into account
the equation of the chemical potential (1) which in the normal state

has the following form:

L _ | S
T = 2 o[def(e) Nie) (11)

n? = 2 /de F(e) Ny(e) (12)
nt4n? = noo - (13)

w‘here fle) = (exp((e-—p)/T)+1) ™ is the Fermi factor, Nd ‘e) = N(e) |
€— ¢ |, Np(€) = N(e) | € — ¢4 | and N(€) =45, 6((e — ea)(e — &) —

4t2,(1 - nd/2)7:) : : :
Eqgs.(11)-(13) are the self-consistent equatlons to determine the fill-

ing of the copper band n?, the bondmg- oxygen band n?, and the chem-
.



ical potential p. As the values in the right-hand sides of Eqgs.(11) and.

(12) do not exceed two, the maﬁcimal filling of the oxygen band is two
while a filling of the copper band is always less or equal to one, i.e.
0 < n? < 1. This is due to the proper acéount (through the Hubbard
operators) of the statistics for carriers in the copper band. Fig.1 shows
the filling of the copper and oxygen band versus the concentration n
at temperature T=0 for €, = ¢ = 2. Here, we measure energy in units
of t,y and set ¢ = 0. Fig.1 clearly shows, that for n > 1.3 the holes
go mainly onto the oxygen band while the filling of the copper band
is nearly constant and equals n? &~ 1. In this region the holes of the
oxygen band play a dominant role in the Cooper pair formation while
in the region 0 < n < 1.3 the holes in the copper band are impor-
tant. In this case, the system has no electron-hole symmetry. On the
- contrary, in the usual two-band Fermi system, where the electron corre-
lation is absenf, the system has the electro‘n-hole symmetry (see Fig:.1).
Fig.2 shows the deI;endence of the suyperconducting transition temper-
ature Tc on the concentration n for ¢ = 2, wy = v0.5, Ga = gp = 0.5
(where ¢ = §/2Mux) in two cases: for the Emery model and for the
usual two-band Fermi system. For the Fermi system Tc(n) is symmet-
rical around n=2 while for the Emery model Tc(n) does not possess
this symmetry. Fig.3 shows the Tc(n) dependence for several values of
the electron-phonon coupling constant g4, g,. One clearly sees that in

the region 0 <n<13 the electron-phonon coupling onto the copper
sites dominates in the superconducting state formation while in the re-

gion 1.3 < n < 3 the electron-phonon coupling onto the oxygen sites
is'important. In both regions Tc attains the maximal value near the
Van-Hove singularity in the quasiparticle spectrum.
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Fig.1 The depen(liencev of the filling for copper an'djoxygen bands on -
the charge carriers concentration for the Emery model (solid line) and
for the usual two—btand Fermi system (glayshred’ 1ine). e =2
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Fig.2 The dependence of the super001iduCtiﬁg tl'anS}.tion temperature on
the charge carriers concentration for Emery model (solid line) and fof

the usual two-band Fermi system (dashed line). ¢ = 2, Ga=g, =05
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In summary, we have considered the electron-phonon mechanism of
superconducting pairing in the two-band Emery xﬁodel. In comparison
to the usual two-band Fermi system, where the electron correlations
are neglected, we have found for the present model an about two times
higher transition temperature Tec with its maximum shifted from the
half—ﬁlling values, n=1 or n=3, to the lower hole densities, n ~ 0.8
(d-band) and n = 2.3 (p-band). The electron-phonon coupling at the
copper sites and the oxygen sites play a dominant role in the copper
band (0 £ n < 1.3) and in the oxygen one (1.3 _<_ n < 3), respectively.

Finite life-time effects both due to the electron-phonon and anti-
ferromagnetic spin-fluctuation scattering are negleéted here. We also
neglect Coulomb repulsion of holes (y* = 0). All these effects suppress
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Fig.3 The dependence of the superconducting transition temperature

on the charge carriers concentration. € = 2
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Tc and should give a sharper Te(n) dependence. We are planning to

consider them as well as @ more realistic phonon spectrum and non-local -,

electron-phonon interaction in a separate study.
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