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1 Introduction 

In crystalline systems with a structural phase transition some anoma
lous behaviour can be observed above the transition temperature T,; ( cf. 
[l, 2]). In perovskites, e.g., the classical soft mode picture of structural 
phase transitions breaks down and precursor fluctuations give rise to an 
extra, very narrow central peak in the order parameter fluctuation spec
trum (see [3, 2]). In addition to many attempts being made to explain 
the appearance of correlated clusters (precursors) a concept has been 
worked out [4, 5], that reminds that for the dynamical glass transition 
suggested by Gotze et al [6] on the basis of the mode-coupling theory. 
According to this theory in pure crystalline systems an ideal, narrow 
(static) central peak must set in at the so-called freezing temperature 
T;. This transition is accompanied by an appearance of finite, long
time correlations of the local atomic displacement u; = Q;- < Q; >, 
i.e., 

L· · = lim < u·(t)u ·(O) ># 0 
',J t-+oo ' J 

(1) 

where < · · · > denotes the thermodynamic average. 

Thus, in the formal sense, the physical situation at T > Tc in the 
systems with a structural phase transition reminds that in supercooled 
liquids or polymers above the glass transition point T9 ( cf. [7, 8]). 
In the last years with the mode-coupling theory at hand substantial 
progress was made in the understanding of the freezing process near 
the glassy transition. The main result was prediction of the dynam
ical glass transition temperature T; ~ T9 + b..T, where b..T is about 
50K. At this temperature the intensity of the quasistatic central peak 
in the density fluctuation spectrum and the dynamical density response 
function exhibit critical scaling behaviour in certain frequency regions 
[6, 9, 8]. This prediction was partly verified in a number of experiments 
with glassy materials (see [10, 11, 12, 13, 8, 14]). , 

Following the idea, it would be interesting to look at Tc* > Tc for 
some experimental confirmation of the existence of the freezing transi
tion in crystalline systems, also. Simultaneously the question may arise, 



whether in the systems with transitions into structural, dipole, orienta
tional, spin, quadrupole or any other glassy states the dynamic freezing 
transition can be observed above the thermodynamic glass transition 
temperature T9 (see [15, 16]). To answer the question investigation of 
the intensity of the central peak is not sufficient, as some kind of hop
ping processes could smear the central peak almost at T :$ Tc*, making 
impossible unambiguous identification. Presence of static or relaxing 
defects would mask the central peak of intrinsic dynamical origin ( cf. 
[15]). Therefore, the analysis of the dynamical response functions at 
not too low frequencies is more suitable as the test of the critical scal
ing behaviour at T;. This has successfully been done for glasses ( see 
[14]). 

This paper presents the numerical calculation made in the frame 
of the mode-coupling theory of the frequency and temperature depen
dence of the real and imaginary part of the dynamical susceptibility near 
the freezing transition. The calculation was performed for the scalar 
cp

4
-lattice model of structural phase transitions. The mode-coupling 

equations for the isothermal relaxation function were solved directly 
in the real time space. The resulting integro-differential equation was 
handled by the predictor-corrector method, and the time evaluation 
over five time decades was analyzed. 

We hope that the presented theoretical results will stimulate de
tailed experimental search for the freezing transition at temperatures 
above Tc ( or T9 ) in crystalline systems. This purpose could serve the 
neutron and light scattering methods or dielectric and magnetic relax
ation measurements. 

2 Model and mode-coupling equations 

The scalar cp4-lattic~ model is determined by the Hamiltonian 

~ Pl A; 2 . B; 4 1 ~ )4 
H = L:-,(T- TQ; + 4Q;) + 4 ~cij(Q; - Qi , . ~ 
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where Q; is the coordinate of the local normal mode that determines 
the structural phase transition. Within elementary cell the Q; can be 
considered as the coordinate of the effective particle of mass m = 1, 
moving in a double-well potential. P; is then the conjugate momen
tum of this particle. The interaction between the particles occupying 
different lattice cells of a 3-dimensional lattice ( i = l, • • • , N) is then 
described by the harmonic force constants C;;. In the pure crystalline 
case the parameters of the Hamiltonian are independent of the cell
number, but in quenched disordered systems they can be random. To 
study the influence of defects on the phase transition, only the param
eters A; are assumed to be site-random (B; = B). Following [5] let us 
consider A; = An~0 at defect sites and A; = A > 0, otherwise. If pis 
the defect concentration, then the probability distribution of A; looks 
as 

P(A;) = po(A; - An)+ (1 - p)o(A; - A). (3) 

To study the relaxation processes in the model we introduce the aver
aged isothermal relaxation function 

4'1k(t) = (u1(t)luk) = fop d/3'< u1(t - i/3')uk >, /3 = l/kBT, (4) 

where u1(t) = Q,(t)- < Q1 > is the displacement operator and the 
bar denotes the configurational average over the random quantities A;. 
The initial value of 4'ik(t) determines the static isothermal susceptibility 
xl',. = 4'1k(t = 0). By introducing the Laplace transform of 4'1k(t) in the 
form 

4'1k(z) = i fo':,o dteizt4'1k(t) = ((u,luk)), Imz > 0, (5) 

the following exact q-representation can be derived by the equation of 
motion and using the Mori-projection formalism 

1/x~ )-1 T( --~,, ' q,g{z) = -xq z z + Mq(z) (6) 

where 4'1k(z) = (1/N) E 9 4'q(z) exp [iq(R1 - Rk)]. The relaxation kernel 
M1k(z) is given by 
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M1k(z) = (( Q,I Qk))c2), (7) 

where the lower index (2) denotes the projection procedure to be done 
in the way suggested by Tserkovnikov [17, 4]. In the spirit of the 
mode-coupling approximation the relaxation kernel is estimated with 
the expression that comes from factorization of u;-powers and trunca
tion of the configurational average in (7) as in [5]. For the classical limit 
( <p1k( t) ==} /3 < u,( t)uk(0) >) we get: 

M1k(t) = V1<p1k(t) + V3<p/k3(t). (8) 

The coupling parameters are determined in the following way 

vi= A2p(l - p)(l - Av/A)2 and V3 = 6B2 k1T2
• (9) 

To get considerable values for v1 even for small concentrations p, strong 
harmonic defects (IAvl >> A) are necessary. 

For the simplicity of further calculations we exploit the fact that 
the critical scaling law does not essentially depend on relaxation func
tion dispersion (see [18, 8]). Therefore, to qualitatively investigate the 
freezing dynamics picture at Tc* we neglect the relaxation kernel dis
persion, i.e., M1k(t) ~ S1kM(t). Then, self-consistent determination of 
a diagonal or local part of the relaxation function becomes possible, if 
we use the following Ansatz for the isothermal susceptibility: 

T T 1 """' T 1 X = Xu = N L Xq = 2, 
q Wo 

(10) 

where w5 has the form 

W~ =AT+ C, T = (T - Tc)/Tc, (11) 

and G = Ei Cii• The Ansatz (10) is in accord with the Landau-theory 
and will be a reasonable approximation inside the non-critical region 
with respect to the structural phase transition. Within this approach 
the critical temperature can be estimated as Tc = tTo (see [5]), where 
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Jo= C/A is the dimensionless coupling parameter and To= A2 /BkB is 
some unit of temperature expressed through model parameters. Then 
we assume that r; lies outside the critical fluctuation region, as the 
mode-coupling theory for the freezing transition ( also for the dynami
cal glass transition) assumes no critical fluctuations at Tc ( cf. [4, 8]). 

It is worth emphasizing that in spite of (10), we do not consider 
the case of an infinite interaction radius, i.e., C;i = C/N. Then the 
model is solvable and as is shown in [19], at C / A < 1 the quantity 
L;;(T) tends to zero only if T ----+ oo, and at C / A > 1 vanishes at all. 
Of course, the freezing transition is expected only for the systems with 
a finite interaction radius (cf. [20, 21]). The approximation used above 
should be considered as tµe approximation valid for the systems, where 
the freezing transition really exists. Within our theory we cannot prove 
existence of such a transition. However, if this transition exists, the 
presented mode-coupling theory may give a good guide line for the ex
perimentalists in the sense the mean field theory does in the case of 
usual phase transitions. 

Thus it is possible to rewrite the equation (6) in the time repre
sentation. On carrying out Laplace back transformation of (6) and 
taking into account the definitions (8-11) one can obtain the following 
equation: 

<I>(t) + w~<p(t) + lt dt«i>(t - t)M(t) = 0, 

with the initial conditions 

<p(0) = XT, «i>(O) = 0. 

(12) 

(13) 

It is convenient to express (12) through dimensionless variables and 
parameters. With the new function D(t) = iI!(t)/xT introduced, it 
takes the form 

D(t) + w~D(t) + lt dtD(t - t)M(i) = 0, 

with the initial conditions 

D(0) = 1, D(O) = 0. 

s 

(14) 

(15) 



For the sake of coflvenience in following we will also use the dimen
sionless frequency and time variables, i.e. w --+ w / A 112 and t --+ tA 1/ 2 . 

Within this notation we have now w5 = r + Jo now. 

If no direct measurement of linear susceptibility is possible, then 
the observed quantities, like damping and velocity of ultrasonic waves, 
have contributions from several non-linear response functions. To fol
low the influence of these contributions let us consider the quadratic 
susceptibility: 

X(2)(w) = wLT[(u;(t)lu;(0))], (16) 

where LT[F(t)] means the Laplace transform of F(t). To estimate (16) 
the factorization procedure used for the approximation of the relaxation •· 
kernel can be employed. Neglecting a contribution of the correlation 
functions of the type of ((ullui)) and ((ullu;)) to ((ullul)), the latter 
can be approximated by ((ullun)c2), and then the quadratic suscepti
bility can be presented in the following way: 

1 j e13w - 1 j ·- · 2 X(2)(w) = --
2 

dw _ dte-•wt2< u(t)u > 
7r w-w 

(17) 

To solve the above equations one needs to apply an appropriate 
numerical procedure. In the next section we describe the method we 
suggest for the solution of the integro-differential equations like (14). 

3 The numerical procedure 

Let us consider the general form of the memory integro-differential 
equation of the second order. With the new abbreviation m(t) = 
M(t)/w5 and adding small phenomenological microscopic relaxation 
term one obtains the relaxation equation in the following form 

D(t) + vD(t) + w5D(t) + w51t dtD(t - t)m(t) = 0, 

with the initial conditions 

D(0) = 1, D(O) = o. 

6 

(18) 

(19) 

The memory-type equations like (12) and (18) appear in numerous 
theoretical studies of dynamic phenomena. For instance, the theory of 
long-time relaxation processes in supercooled liquids [8] bases mostly on 
the analysis of the behavior of the solutions of these integro-differential 
equations. The specific behavior of the dynamic response functions can 
be described by solving (18) with an appropriately chosen kernel m(t) 
as the polynomial in D(t): 

m(t) = .r{D(t)} = EvnDn(t). (20) 
n 

Comparing to (8) the parameters Vn are given for the scalar <p4-lattice 
model by the following equations 

V1 = vi/wt =·(r + Jo)2p(l - p)(l -Av/A)2, 

Va = va/wg = ( r + fo)4(T /To)2. 

v2 = vn2'.4 = 0. 

The widely used method[8] for solving (18) can be briefly described as 
follows: 

1) the attempt function D[0l(t) is taken inside some appropriate time 

domain, 
2) the relaxation kernel mlkl(t) = .r{D[kl(t)} is calculated ( with k = 0 

in the first step), 
3) the Laplace transforms of both the correlator n[kl(z) = LT{D[kl(t)} 
and the relaxation kernel mlkl(z) = LT{m[kl(t)} are performed, 
4) the next approximation for the correlator D[k+l)(z) is obtained ac

cording to the equation (6) 

2 
Wo r1, 

n[k+ll(z) = -(z - z +iv+ w5m[k)(z) (21) 

5) the back Laplace transform (BLT) is used for obtaining the approx
imate solution D[k+1l(t) = BLT{Dlk+1l(z)}, and 
6) the integral convergence criterion is used to decide on whether stop 
the iteration procedure or continue calculation from step 2). 

7 



' However in the own words of the authors[22] " this procedure is not 
practical . . . since Laplace transforms are very cumbersome for func
tions, which are structured and stretched on such large windows .... " 
In the present paper we suggest a different numerical approach to the 
solution of the equation (18). This method in the theory of ordinary 
differential equations got the name of the predictor-corrector method. 
The method consists in doing the following subsequent steps. 

First, we obtain the Taylor expansion of the unknown function near 
t = 0 up to the seventh order in t 

D(t) = 1 + a2t2 + a3t3 + ... + a7t7 (22) 

in order to explore this precise series in finding solution at the first 
few steps of the integration scheme. The coefficients ak are determined 
after substituting the expansion (22) into (18). The initial conditions 
were already used in (22). 

Application of the predictor-corrector method to the integro-diffe
rential equation of the second order means the splitting of the original 
equation into a system of two first order equations by introducing the 
new function P(t) = D(t). Then we can write the system in the follow
ing "standard" form. 

P(t) = F{D(t), P(t)}, D(t) = G{D(t), P(t)}, 

with the initial conditions P(0) = 0, D(0) = 1. Here we introduce 

F{D(t), P(t)} = -vP(t) - w~(D(t) + I(t)), 
G{D(t), P(t)} = P(t), 

where the integral part is 

I(t) = it dtP(t)m(t - t), 

(23) 

(24) 

with m(t) defined by (20). Then we introduce the grid representation 
of all functions in the form D; = D(t;), P; = P(t;), m; = m(t;), with 
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a discrete time t; == ih expressed through stepsize h. To predict the 
values of D;+t and P;+1 we use 

~ { } P;+1 = P;-1 + 2hF D;, P; , 

D!~1 = D;-1 + 2hG{D;,P;}. 

and make corrections according to iteration over k 

(k+t) h ( { } { (k) (k) }) P;+1 =P;+ 2 F D;,P; +F D;+1,Pi+1 , 

(k+t) h ( { } { (k) (k) }) D;+t = D; :t 2 G D;,P; + G D;+1,Pi+1 , 

(25) 

(26) 

(27) 

(28) 

while the convergence criterion ✓c.ri!!t 1 l - D}!l1)2 + (P;~t1) - P;~!)2 ~ 
c is satisfied. One of the advantages of the predictor-corrector method 
that consists in a more exact calculation of the correlation function 
D( t) near the beginning of the t-axis is due to the use of this very point 
convergence criterion. Then we take into account a simple estimate of 
the discretization error of the predictor-corrector method[23] by 

' 
c 1 ( {O) (k+t)) 
uP;+i = 5 P;+t - P;+i , 

1( (0) (k+l)) 
8D;+i = 5 D;+t - D;+I , (29) 

and use (29) to obtain the final correction for the solution (27-28). 

It is necessary to say a few words about the calculation of the inte
gral part I(t). Choosing a scheme of numerical integration it is neces
sary to take into account the complex estimate of calculation laborious
ness. On one hand, there exist many numerical methods of enhanced 
precision ( h3 or higher order). But, all of them require larger volume 
calculations with increasing accuracy. On the other hand, to find solu
tions in every new time point t;, it is necessary to recalculate (24). Since 
usually we need about 103 - 104 points in a time domain, ft appears 
suitable to use the simplest scheme of the first order in h: 

9 
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Figure 1: The time dependence of the relaxation function <I>(t) of 
the Fa-model for different temperatures r: 1 - O; 2 - 0.004; 3 -

0.008; 4 - 0.010; 5 - 0.012; 6 - 0.014. The freezing temperature 
r; ~ 0.0083 for this set of model parameters. 

h i-1 

I;= -(Pom; + P;mo) + h L Pjmi-i• 
2 j=l 

(30) 

This notation illustrates another advantage of this scheme. Namely, in 
the stage of making the correction iteration the sum is calculated only 
once. 

And, finally, once the dimensionless solution D(t) within a suitable 
time domain is obtained, we renormalize it to operate in the follow
ing with the mode coupling correlator <I>(t). This transformation is the 
reverse one to that we used for deriving (14) from (12). Further numer
ics are soonner standard than new. Thus, for example, ~e performed 
Laplace transform of the correlators by the Filon algorithm[24]. 

to 

f 

) 
! 

4 Results and discussion 

The time dependent local relaxation function <I>(t) from (12) is shown 
in figure 1 for the case: v1 = 0 (p = 0) - (F3-model in Gotze notations 
(8]), Jo = 0.3, and Tc= 0.1T0 • Over nearly six decades time evaluation 
can be followed. Since T < r; ~ 0.0083, the function <I>(t) has a finite 
value for t -+ oo in agreement with the result directly obtained from 
(6), if one takes the. limit L;; = limz__.;0 z<l>;;(z) (cf. (5]). The value 
z; = L;;(r;)/xT(r;) = j (a discrete B-transition (8]). For r > r; two 
characteristic relaxation regions can be distinguished: when <I>(t) ~ 2.0 
then it is the /3-relaxation and the region when <I>(t) -+ 0 belongs to 
a-relaxation. To have more information about both relaxation regions 
the Laplace transform of <I>(t) should be studied. In figures 2 and 3 the 
real and imaginary part of the dynamic susceptibility 

x(w) = wLT[<I>(t)](w) (31) 

for the Fa-model are shown. It can be seen that the linear and quadratic 
susceptibility have nearly same qualitative w- and T-dependencies. From 
these curves qualitative representation of the scaling laws of a- (w ~ 
10-3

) and /3-relaxation ( w ~ 10-1
) can be derived. Gotze (25, 8] found 

the analytical expressions for these scaling laws from the equations (6) 
and (8) using € = (T - Tc*)/Tc*, as the small expansion parameter, 
and considering the w -+ 0 limit. For € > 0 two frequency scales 
Wa ~ €-1/ 20+1/ 2b and w(3 ~ €1/ 2

a separate the a-' and /3-relaxation. 
Around w(3 the simple interpolation formula 

x"(w) ~ v'f (r(l - a) sin(1ra/2)(w/w(3)° + B r(1 + b) sin(1rb/2)(w(3/w)b] 
. ·, ~ (32) 

can give a good approximation to the susceptibility behaviour illus
trated in figure 2. Differently from the usual phase transition case the 
exponent parameters a and b are not the universal ones and depend on 
model parameters and, hence, on temperature. According to (25] t.hese 
p~rameters are d~t.ermined by· the. equation · · , 

r 2(1 - a)/r(l - 2a) = r 2(1 + b)/r(l + 2b) = >.(T), (33) 
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Figure 2: The ·frequency dependence of the real (1 - x' and 2 -
X(2)) and imaginary (3 - x" and 4 - xc'2)) part of the susceptibility 
of the F3-model for the temperature r = 0.012 > r;. The odd and even 
labels correspond to a linear and quadratic part of the susceptibility, 
respectively. See text for details. 
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Figure 3: The imaginary part of susceptibility x" ( w) of the F3-model 
versus log(w) for different temperatures r: 1 - 0.011, 2 - 0.013, 3 
- 0.015, 4 - 0.017, 5 - 0.019. 
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where r(x) is the (famma-function. The exponent parameter ,\(T) is 
given by 

,\(T) = 3 (1 - lc)3 
V3 le, le = {JL;;(T)/XT (T). (34) 

In figure 4 the quantities lc(T), ,\(T), a(T) and b(T) are shown as the 
functions of temperature. 

Another insight into scaling behaviour one. can have by considering 
the temperature dependence of x'(w, T) and x"(w, T) at fixed frequency 
w. This is the typical experimental situation, e.g., with Brillouin scat
tering. The corresponding results are plotted in figure 5. Unfortunately, 
these curves show that the T-dependence of x(w, T) lacks sensitivity for 
the experimentalists to detect anomalous critical behaviour at T;. For 
€ < 0 , e.g., x"(w, T) ~ wlt:l-l/(2a)+1/2 was ~redicted by the theory. One 
has to remember also, that T; is very close to Tc· in the pure B-type 
transition case ( cf. [4, 5]) and no definite conclusion about the freezing 
transition in pure systems can be drawn from such experiments. 

Let us now consider the F 13-model (v1 # 0), ansmg, when one 
includes into consideration the nonzero defect concentration p / 0. To 
enlarge the interval between Tc and T; we take v1 = 6.25A 2 and Jo = 
2.1, that correspond· to Tc= 0.7To and T; = 0.98T0 or T; = 0.4. As 
we choose the control parameter v1 large enough the freezing transition 
changes its type, i.e. now L;i(T - Tc) - E - 0 (the A-transition [8]). 
Due to this continuous transition no freezing of a-peak occurs, as shown 
in figure 6. There is no a-peak at all. The scaling behaviour is now 
restricted to {3-like relaxation at w ~ wp ~ €l/a': x"(w) ~ w€1.-1/a' for 
w < < wp and x"( w) ~ wa' for w > > wp. The temperature dependence 
of the parameter a' is shown in figure 7. (see (33)). From the double 
logarithmic plot of x"(w )in figure 6 it follows that the analytical scaling 
laws are not quite illustrative in such a presentation. On the other 
hand the critical temperature behaviour of x"(w, T) at fixed frequency 
is clearly seen in a relatively wide frequency window (see figure 8). For 
rather different frequencies x"(w, T) has a pronounced peak at T;. The 
peak becomes the broader the higher is the frequency. Nevertheless, for 
T < TP- and T > T/, where Tp is determined by w = wp(Tp), the 
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scaling law x"(w, T)/w ~ €-l/a'+l can be sufficiently well recognized, 
if the measuring frequency is not too high (see figure 9). Here the in
fluence of the quadratic susceptibility X(2)( w) is not drastic and in the 
region of the scaling law validity (T < TP- and T > T/) X(2)(w, T) is 
a nearly flat function of temperature. Therefore, the critical behaviour 
in x"(w, T) is not masked with quadratic susceptibility, if the measured 
quantity is influenced by both susceptibilities. 
At the same time as x"(w, T) shows a peak at r; the real part x'(w, T) 
changes its slope at r; and a cusp~like behaviour is observed the better 
the lower is the frequency, up to w -+ 0 (see figure 8). This feature 
of the A-type freezing transition reminds of the spin-glass transition. 
However, unlike that transition the freezing temperature r; does not 
depend on the measuring frequency. The important point to be decided 
on is whether the experimentally found anomalies ( the cusp-behaviour) 
are connected with the dynamical freezing transition or with the ther-
modynamic glass transition. · 

There were made several attempts to describe the transitions in 
spin-glasses [26], in orientational glasses [27], and in polymers [28] in 
the frame of the mode-coupling theory. This possibility has to be ruled 
out in the light of our results for the A-type freezing transition. This 
means that all peaks in loss functions or the cusp-like points in real 
parts of the susceptibility suffering a clear frequency shift ( e.g., by an 
Arrhenius or Vogel-Fulcher law) cannot be ascribed to a dynamical 
freezing transition found by the mode-coupling theory. These anoma
lies are caused by some other type of the freezing kinetics, e.g., due to 
relaxation in a random potential landscape ( cf. [29, 30]). 

We wish to emphasize again, that, as far as it concerns the applica
tion of our results obtained in the frame of the mode-coupling approach, 
we look for the new kind of the freezing transition, which should take 
place above Tc in the systems with usual structural phase transitions. 
For the systems with a structural glass transition this dynamical tran
sition should be searched for above the frequency dependent thermody
namical glass transition point T9 • But it is possible that this transition 
is not observable because of too strong influence of the relaxing defects 
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Figure 9: An illustration of a tendency to reach the master function 
for the imaginary part of susceptibility with a decrease of frequency. 
Here w is: 1 - 0.1; 2 - 0.01; 3 - 0.001; 4 - 0.0001; and for the 
higher frequencies the curves coincide with the latter case. 

or hopping processes connected with correlated clusters. These effects 
are neglected in the mode-coupling theory ( cf. [31, 32, 8]). In principle 
there are two ways of overcoming these shortcomings of the presented 
theory. 

i) Following the phenomenological approach of [15] the relaxing de
fects can be included via Ansatz ( cf. eq. (6)). 

M1k(z) = . D.r 
1 

+ Mr'k(z), 
ZZT/ + 

(35) 

where M{ic(z) is determined by eq. (8). In the general case the pa
rameter D.1 and the relaxation time (e.g., r1 = rr° exp( - Ea/kB T) ) of a 
local relaxing defed are the random quantities. This additional relax
ation process yields an a-like loss peak also at T < T; and can modify 
x'(w, T) and x"(w, T). F~r inst~nce theloss peak at Tc* can be remark-
a:bly ~ymmetric (see [15]). · 
ii) According to the generalized kinetic equation approach of [33, 32] 
hopping processes can be incorporated into by an improved expression 
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for the relaxation kernel (7) 

Mq(z) = Mq(z)/(1 -c5q(z)Mq(z)), (36) 

where the new kernel Oq( z) contains the correlation functions of the 
type (ur(t)luk(0)) (oq(z -t 0) ~ z). In consequence of this relaxation 
process the ideal central peak is smeared, i.e., at T < T; the a~like re
laxation peak remains in x"(w, T). This peak, however, does not show 
any critical scaling behaviour, as happens for the systems with a broad 
distribution of relaxation times. 

Hence under certain but not yet very clear circumstances the typical 
scaling dynamics of the freezing transition can be masked and the crit
ical scaling behaviour of a.:relaxation be not observable at all. In spite 
of that the critical ,8-relaxation should be seen in the systems, where 
the time constants of the hopping processes are large enough in compar
ison with the characteristic time scale 1/w/3 of ,8-relaxation. Therefore, 
the chance of finding a dynamical freezing transition ·increases, if •the 
measuring frequency is taken sufficiently high, but not too high. 

So far a clear indication that the freezing transition would take 
place was observed only for supercooled liquids and polymers above 
T9 (see [8, 14]). On the other hand interesting data were obtained 
for a plastic crystal of Difluortetrachlorethane (DFTCE). Using the 
Brillouin scattering technique ( w ~ 1 - 10 GHz) Kriiger et al [34, 35] 
detected a frequency independent maximum in the damping r(w, T) of 
longitudinal a~oustic phonons and a first hint to the scaling behaviour 
r(w, T) ~ (T - Tc")- 11 for T < T; ::::: 160 - 170K. Furthermore, the 
longitudinal sound velocity changed its slope at Tc*. Assuming a linear 
coupling of the order parameter and elastic degrees of freedom in this 
plastic crystal, a change in eigenfrequencies (w;,L = CLq2

) and damp
ing, r(w, T), of longitudinal acoustic phonons can be determined via 
dynamical susceptibility as follows: 

b.CL(T) ~ x'(wq,L, T) and b.r(w, T) ~ x"(w, T). (37) 
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' On the basis of these relations the Brillouin scattering results for DFTCE 
can be interpreted in the framework of the A-type freezing transition 
discussed above. In this connection it is worth noting that the DFTCE 
possesses a real glass transition at T9 = 90K, where the sound velocity 
experiences a cusp-like change and the specific heat has nearly a jump. 

However, it is early to make any final conclusions about this sys
tem. The experimental data must be carefully verified and a detailed 
analysis in terms of the mode-coupling theory has to be made. These 
are the plans for the future. 

We finalize this section with a remark on the attempts made to ex
plain the central peak phenomenon by defect induced condensation. In 
[36] a theory was elaborated for unstable lattices with a finite concentra
tion n of defects. This theory predicts a defect induced phase transition 
at Tc(n) > Tc(pure), where the order parameter becomes substantially 
non-zero only at defect sites, but at T :S Tc(pure) the whole system 
becomes long range ordered. Interesting T, q _and w dependencies of 
the central component of the order parameter fluctuation spectrum 
were found. A striking difference from our theory is connected with 
the anomalous critical behaviour of the static susceptibility at Tc( n ). 
The mode-coupling theory for the dynamical freezing transition does 
not predict any anomalies in isothermal static susceptibility and only a 
cusp is allowed for the static limit of the dynamical response function. 
Therefore, a simple criterion can be used to distinguish between the 
dynamical freezing mechanism of the mode-coupling theory and the 
defect induced condensation, proposed by Schwab! and Tauber [36]. 
To our knowledge the data on the static susceptibility for systems with 
a structural phase transition contain no indication of any remarkable 
anomalies above Tc. Therefore, we hope that the dynamical freezing 
transition is to be observed in these systems, also. 
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5 Conclusions 

The presented results of the numerical investigations of the w- and 
T-dependence of the dynamical response function near T; within the 
scalar cp4-lattice model offers some suitable possibility for the experi
mental confirmation of the existence ·of the freezing transition above the 
temperature of the structural phase transition. The used mode-coupling 
approach predicts either i) a B-type transition in pure systems, where 
an a-relaxation peak freezes in at Tc• or ii) an A-type transition for the 
systems with strong enough defects, where the central peak begins to 
appear with zero intensity. It seems that the possibility of experimental 
observation appears more realistic in the latter case. 

To the best of our knowledge the experimental data on the inten
sity of the central peak do not contain any direct information about 
the transition region T ~ Tc• ( cf. [3, 2, 37]). A crude estimate of 
the central peak intensity always points to the A-type transition, if 
any freezing transition exists at all. The examples are the compounds 
SrTi03 [38, 3, 2], RbCaF4 [39, 3], and the TSCC [40, 41, 37] samples. 

In case of a B-type freezing transition the temperature T; lies very 
near the phase transition point Tc. Therefore, the critical fluctuations 
certainly mask the anomalous fluctuations that belong to the freezing 
transition. Nevertheless, a careful study of the w-dependence of the 
order parameter susceptibility at temperatures T > Tc might provide 
some hint of the freezing transition occurrence. And especially, the 
existence of the scaling behaviour of two types around the a- and /3-
transition would give a strong indication of the new phenomenon taking 
place, though the mode-coupling theory could be too crude to correctly 
describe the scaling exponents ( cf. [21]). 

In case of an A-transition the situation is more favorable for carry
ing out an experimental test. Here, the temperature T; lies far from Tc. 
So the critical fluctuations can be excluded. Then the T-dependence 
of the dynamical response function for the reasonably high measuring 
frequency w must reveal some peculiarities characteristic of the A-type 

21 



freezing transition tis such transition occurs. The key point is the w

independent loss-peak ( or susceptibility-cusp) at a sought for tempera
ture Tc•, as well as the characteristic behaviour of the loss-peak wing. 

Besides direct measurements of the order parameter susceptibility 
(mechanic, dielectric, or magnetic) indirect ones appear also very useful 
for the solution of the considered problem. First of all we think about 
the neutron- and Brillouin-scattering investigations (see [10, 11, 14, 42]). 
The other methods, like ultrasonic and NMR measurements also of
fer the ways of detecting anomalies of the above considered kind at 
freezing transition. A very good candidate to be used in the inves
tigation of a freezing transition at T; > Tc is the TSCC compound 
( cf. [40, 41, 37]). TSCC is a strongly anisotropic system with a one
component order parameter, i.e., this system can be well described by 
the scalar cp4-lattice model of structural phase transitions. In fact in 
TSCC the central peak was found above Tc in the temperature range 
Tc < T < T; = Tc+ !::..T*, where !::..T* ~ 20K. Investigation of the 
w- and T-dependence of the dynamical scattering function for this sys
tem, as was done for Cao.4Ko.6(NO3)1.4 by Cummins et al [14], would be 
very interesting. A corresponding consideration of the other systems 
with structural instability, especially of perovskites, would be also very 
desirable. In this connection it cannot be excluded, that the recently 
found anomalies in dielectric [43], EPR [44] and neutron scattering [45] 
measurements on SrTiO3 at T0 ~ 40K will be related to the dynamical 
freezing transition of the above discussed kind. Of course, in this case 
the· quantum corrections have to be incorporated into some adequate 
theory ( cf. [46]). As the result one may hope to find the answer to the 
still open question of the existence of the freezing transition in crys
talline systems with structural phase transitions. 

At that one should keep in mind the following circumstances. The 
dynamical scattering function is determined by the density-density cor
relation functions and can be approximated by the order parameter 
correlation function only in the lowest order. Therefore, it is necessary 
to include in the mode-coupling theory the higher order fluctuation con
tributions. In principle it is possible, that the freezing transition can 
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be observed only due to these contributions ( cf. [8]). Now we deal with 
some theoretical approaches to this question. 

As is mentioned in Chapter 4 it would be also of interest to reanalyze 
the experimental data obtained for crystalline or disordered systems 
showing a glass-like transition at the temperature T9 • An intriguing 
question is whether a dynamical freezing transition occurs above the 
thermodynamic glass transition in such systems, also. The findings for 
DFTCE [34] are therefore of great importance and hence a detailed 
analysis of all available experimental data for DFTCE is very desirable. 
It would be important as well to clarify the differences and similarities 
between the freezing-like transition in DFTCE and in the systems, e.g., 
with an orientational glass transition (see [15]) and a spin glass transi
tion. It is likely that in the latter case the kinetics in a fixed stochastic 
energy barrier landscape dominate in the behaviour of the dynamical 
response function and it might even happen, that no dynamical freezing 
transition in the above sense takes place. 

Finally, we want to point to the problem of clearing up the micro
scopic structure of the frozen state at temperatures Tc(g) < T < T:Cg)· 
In the above reported numerical treatment only the diagonal part of the 
relaxation function was taken into account. Exploiting the q-dependent 
diffuse scattering in the neutron- or X-ray diffraction experiments one 
can obtain essential information on the correlated cluster formation in 
the quoted temperature range. 
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