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1 'Introduction -

The Jaynes-Cummmgs model (JLl\l) [l] descnbmg the interaction of a two level ‘

i atom wrth a smgle-mode quantrzed radiation Feld is of l'undamental nnportance in

quantum optrcs [2] [4], and is reallzable to a very good approxunatlon in cxpernnents

-with Rydberg atoms m high- Q superconductmg cavxtles [a] The model pre(llcts a

: varrety of mterestmg phenomena such as quantum collapse and reV|val [()] vacuum-

' ‘ﬁeld Rabr splrttmgs [7] [9] A generahzatlon ol' the JCM to the case where N Rydberg gk

: atoms mteract resonantly with a cavnty feld mode has been treated by Barnett and
Knlght (10], and Haroche and Ralmond (1 l] (see also [12] for a revrew) The two- atom

, smgle-mode ﬁeld system is also of conslderable interest. Deng has studled quantum

‘ collapses and revivals l'or thls case and shown that when the two atoms are lmtrally in -

the lower state, the probabrlrtres l'or the occupancres “of, the ground and excrted states
wl of the system mamfest two serres ol' revrvals {13] The srtuatlon where only one of the
.'k two atoms is rmtrally in the upper state has been treated by KozleroWskr et al [M] and
Buzek {15]. Two nomdentrcal atoms lrave been consrdered by Mahmood et al (16] and

. by Iqbal et al [17] The squeezmg [18] emrssron spectra []9] [21] propertres of the field

5 fphase [22], and the elfects of photon statrstrcs [23] and cavrty dampmg [24] have also

: : ‘been studred

v

Recently, Gea—Banacloche has derrved an asymptotrc xcsult for the JCM wlnch

; is valrd when the ﬁeld is" rmtrally m a coherent state wrth a large average photon LR

:number [25 26] Iti is shown that the atom is to a good approxlmatron inapure .

» state in the mrddle of the collapse regron (thrs has been first notlced by Phoemx and

nght [27} by usmg the entrOpy concepts to examme the ﬂuctuatxons in the quantum’

: ,ievolutron Of the JCM ) and the most remarkable l'eature of thrs state is that it lS S

reached regardless of the rnrtral atomlc state. - In’ thxs paper, we analyze the atomic

~and ﬁeld state evolutlon in the two—atom JCM supposmg, as in [25 26] that the ﬁeld

g yrs lmtrally in a coherent state wrth a large average photon number 'l he ergenstates '
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of the semiclassical Hamiltonian are found. It is shown that if the atoms are initially
prepared in one of these states, the system evolves in such a way that atomic and field

parts separately remain in a pure state. However, only for certain initial atomic states,

“the crossing of the “trajectories” in the Hilbert space of atomic states at half-revival

time is observed. The initial states where both atoms are excited or de—excited, for
example, do not belong to this group.

Further, we turn.our attention to some “old” problems, namely, the effects of cav-
ity detuning on atomic level occupation probabilities and emission spectra. Though
some accounts on the system dynamics with nonresonant coupling can be found in (22],
where phase properties of the interacting field have been considered, and in [28], where
the author has extended the coherent state representation formalism proposed by Pa-
padopoulous [29] to the N-atom case, most discussions in the available literature are
restricted to on resonance. We show, in particular, that far off-resonance, if the initial
state of the atomic system finds atom 1 excited and atom 2 unexcited (nonsymmetrical
excitation), the initial excitation is transferred from atom 1 to atom 2 and back, but
not to the field. Nevertheless, the field itself becomes essentially a two-state quantity
in contrast with the case of two initially excited, de-excited atoms and symmetrical
excitation where the field remains a one-state quantity with changing phase.

As lor the emission spectra, it is shown that nonzero detunings give rise to a nine-
peaked spectrum instead of an eight-peaked one obtained at exact resonance [20}.
Comparing the emission spectra in the two situations — symmetrical and nonsymmet-
rical excitations, we find that whereas the numbers and positions of the spectral lines
are the same, their heights in the first case are two times larger than those in the latter
case.

"The paper is organized as follows. In Section 2 the model Hamiltonian and its
solution are presented. In Section 3 we investigate the atomic and field state evolution

for large initial fields. The effects of cavity detuning on the time evolution of level oc-
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cupation probabilities are examined in Section 4, and in Section 5 we use the definition
. of “physical spectrum” introduced by. Eberly and Wodkiewicz [31] to study stimulated

and spontaneous emission spectra.

2 Model Hamiltonian and its solution

The hamiltonian describing the system of two two-level atoms coupled to a single-

mode radiation field in the rotating wave approximation is gi{'en by (h = 1)

2 2
H=wa*a+wd Ri+) giaR} +a*R;), : (1)

=1 i=1

where at and a are the creation and annihilation operators of the field mode with
the frequency w, wp is the atomic transition frequency, R, R are the pseudospin
operators describing the ith atom and g; is the atom-field coppling constant for the ith
atom which may be treated as real without any loss of generality.

Following [2] , we separate the Hamiltonian (1) into two mutually commuting parts
H = H0+H1, [[{0,H1]=0,

2 N
w(ata +ZR§), : _ (2)

L=

Hy-

Hy

2 -2 .
AY R+ gilaRf + Ria*), (A=wo—w),

i=1 i=1

so that the time translation operator U(t) = exp(—iHt) factors

U(t) Uo(t)Uh(2),

Uo(t) =. exp(—iHot), Uy(t) = exp(—ifht). (3)

For the model in question only four eigenstates of the free-atoin-free-field Hamiltonian

Hy

[1) = le,e,n), 12) =e,g,n+1), [3)="g,e,n+ l),. ) =lg.9,n+2) (4)

4

N
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are needed. Here le), |g) represent the upper and lower atomic states, respectively, and
|n) is the Fock state of the radiation field. The states (4) form a basis which gives the

following matrix representation of Hy and H,

Hy = (n+1)wl, : (5a)

A gvn+l gvn+1 0
I = gavn+1 0 0 Cqvn 2 (5b)
! avn+1 0 0 gvn+2 |°
0 avn+2 gvn+?2 -A

where I is a 4 x 4 unit matrix. By expanding the state vector of the atom-field system
as

l(t)) = exp[—i(n + Dw!] [C1{O1) + Co(1)|2) + Ca(£)|3) + Ca(1)14)], (6)

and using the Schrodinger equation, one gets

Cl) = —iLC(), , (7)
where
Ci(2)
co=| iy | (8)
Ca(t)

and H; is defined by Eq.(5b). A solution of equation (7) is
Ci(t) = D AL

J=1
1
A () = Z(xﬁ(n;)'(rxl)(~i)\,t). : (9)

=1
Here ) are the cigenvalues of the matrix Hy, and al is the ith element of the ith

eigenvector. The eigenvalues Ay are to be found from the fourth-order secular equation
A= N(g] + 93)(2n + 3) + A%+ A (g} + 97) + (g7 — ) (0 + D) (n 4+ 2) = 0. (10)

For nonidentical atoms and exact resonance, equation (10) reduces to a second-order

cquation with respect to A2, the solution of which has been given in [18]. For identical



atoms (g, = g2 = g) and arbitrary detuning, equation (10) factors into a third-order

equation and a first-order one with the roots

2
A o= 75[2512(211 +3) + AY? cos(0),

A = 1[292(212 +3) + A%Y2cos(0 + 2—71),
\/_

; 2
A = — r) 211/2

3 \/_[ 2n + 3) + A% c050+3) (11)
A4 - 0,

where
_ —27Ag% .
0—§arccos (9@ +3) + AR (12)

For convenience, we introduce the following notation

By = {(h = A)(d = da)[M(h +A) — 263 (n + 2]}V,
Bz = {(A2 = A3)(Az — M)[ha(Az + A) = 2¢%(n + 2)]}'12, (13)

B = {(ha = M)(ds = A2)As(ds + A) — 2¢%(n + 2)]}/%.
Hence, the elements o} can be written as

U= D+ 8) —24%(n +2))/ B
! = gvn+ 1M+ 4)/86, (14)
o 2¢*/(n+ 1)(n+2)/ B

2
I

2
&
Il

for { =1,2,3, and

4 4 1 4__L (15)

al =aj =0, 02:75’ az = 7
for | = 4. The eigenvectors of the atom-field system are defined in terms of the basis

states (4) as follows

') = D aili), B (16)

and vice versa
=2 (al) ). (17
1
On resonance, by putting A = 0 into Eqs. (11)-(15), one obtains

Az = 2v2¢%(2n + 3), Azq =0, . (18)
and
1 n+1 1 n+2
= 1 —2
W) =y I+ 512+ 518+ i),
o n+1 _l l n+2
) = Vg =32 -3+ e

+

= - mE R e ), (19
4 _ 1 7 1
WY = '\/—2—!2) - 7,213)

When the total excitation number of the atom-field system is equal to unity, only

three basis states

1) =le,g,0), |2) =lg.¢,0), 13) =lg.9.1) (20)

are possible. In this case, the solution can be written in a simple form for nonidentical
atoms and arbitrary detuning. In the interaction picture it reads

A

Mg = —Ej:f, A3 =0,
[ o= \Jh o, (21)
and
WY = /v = A + 02/ VI = B/2)12) + V(T = 2/2)/2)B3),
W) = 9/ VI + 57211 +go/ VAT + A7D)12) — V(F + A72)/(21)13)(22
%) = —g2/\/9} +d3I1) +1/\/9i +4}l2).

Once the complete exact solution is known, various quantities characterizing the

atomic and field systems can be evaluated subject to certain initial conditions. For



instance, the level occupation probabilities in the case of two atoms initially being

excited and the field being in a Fock state are given by

Pe(t) = [Cia(®), Peglt) = [Con(®)Ps Poe(t) = [Can(P,  Poglt) = 1Can(DI,
(23)
where P,, and P, are the probabilities that both atoms are in the states |e) and 19),
respectively, while P,y (P, ) is the probability that the first atom is in the state |¢) (lg))

and the other is in the state |g) (]e}). Also we have for the average number of phétons
(@*a); = n|CLa() + (n + 1) [|Con(OF + Can(OF] + (n + D|Can(O. (24)

In Egs. (23), (24) the lower index n indicates the dependence of the corresponding
quantities on the photon number. If initially only one atom is in the upper state, or
both atoms are in the lower state, n must be replaced by (n—1) and (n—2), respectively.
When the cavity field is initially prepared in a superposition of the number states,
Egs. (23) and (24) become useful after averaging the right-hand sides over the photon

number distribution.

3 Atomic and field state evolution for large initial

fields

For a large number of photons, it turns out to be more convenient to use the eigen-
states of the semiclassical interaction Hamiltonian, rather than the encrgy eigenstates,
as the basis of atomic states. The semiclassical Hamiltonian corresponding to H, in
Eq. (2) is obtained by replacing the annihilation operator a by a complex number v,
ie.,

o 2 .
Hsec = Zgi (var + v R7). (25)
i=1

Here the exact resonance (A = 0) is assumed. The eigenvalues and cigenvectors of (25)
are found to be

/\1,2 = i2g|v|, /\3,4 =10, . (26)

and

|6Y) = = [exp(2ip)e.e) + exp(iv)(le,g) + lg,€)) + |9,9)]

147 =

l\?lv—'lvlr—l

[exp(2ip)|e, €) — expliv)(le,g) + 9, €)) + |9.9)],
1% = \—ﬁ[—ew o)le.e) +19,9)] ' (27)
16 = %(le,m—m,e»,

where ¢ denotes the phase of the field v = [vjexp(iv). It can be seen from Egs. (27)
that |} is nothing but the singlet state, and D). [#2). |7°) are composed completely
of the triplet states. Lxcept the state’|?). which is a true trapping state in both
semiclassical and fully quantized t,ll(‘ori.(-s. we can expect that'in the latter case, if the
atomic state is prepared in one of the states |2'). (). 1% and the quantized-field
intcusity is large, the system would still show some Rabi oscillations but with their
amplitudes being strongly suppressed |26, 3'2, 33).
We consider now the state evolution of the system having states (27) as a starting
point. Suppose that the cavity field is initially in a colierent state
ol |‘ .
|9 fieta(0)) = |v) = exp(—v]*/2) Z = exp( inp)|n) (28)
n=0 Val
with a large average photon number n 3 1 (n = [¢]?). Then, in the interaction picture

one gets asymptotically

1 .
— ;[exp(—ﬂgt/ﬁ)cxp e, e) +exp(—igt/ Viryexp(ip)(le,g) +lg. €))

”n/'l

V!

expling)exp( :)Jlf|n (29a)

+I.(1,_(1)] exp(~=n/2) Y

n=0

; 1 . .
[6%}|v) T 5[cxp(z‘lgt/ﬁ)vxp(?:g)‘ o) — expligt{ Vi) expliv)(le.g) + lg. )
o~ n/’
+1g, (1)] exp(—it/2) Z - ¢ xpling) exp(i2gty/n)in). (29b)
n=40
zc:f‘)lv>l — ). (2001
t=0



[¢)[v)e = |9")]0). (29d)

Equations (29a)-(29c) are asymptotic in the sense that the differences of their right-
hand sides and the exact solution are vectors whose norm tends to zero (as fast as t/it)
in the limit i — oo. Since the revival time scale is of the order of v/1/g [13], Eqs. (29)
hold even over a large number of revivals, provided 7 is large enough.

The result (29) shows that the atomic and field parts separately remain in a pure
state -in the course of time. However, there is-no time at which the atomic systemns
prepared initially in any of the four basis states (27) are found in the same pure
state. Of particular interest are the states [¢') and |¢%). At half of the revival time
to = m/7/(2g) (note that there are two series of revivals in the system under consider-
ation [13] with the revival times n+/7/g and 27\/n/g; under half-revival time here we

mean that of the first series), we do find thern in the same pure state which is equal to
[— exp(2ip)le, e) — iexp(iv)(le,g) + lg.€)) + 9. 9)] - (30)

Thus, the crossing of the atomic “trajectories” occurs only if the atomic system is
initially prepared in a linear superposition of two basis states [¢'} and [¢?), for example,
in the states

(le,g) + 19, €))/V2 = exp(—ip) (1¢") — [¢%)) /V2 (31)

(symmetrical excitation), or
[exp(2iv)le,¢) + 19.9)] /VZ = (16) +14%) /V2. (32)

For these, the field state at to is a coherent superposition of macroscopically distinct

states

) (33)

= qn/?
[82(1)) = exp(=1/2) )_ —=

In other words, we have what is usually called a “Schrédinger cat”. It also follows from

Egs. (29) that an initial atomic state, which is a linear combination of |¢') (and/or
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[6?)) and |¢3) (and/or [¢?)), as time goes on, no longer becomes pure again and the
Schrédinger cat, then, does not appear. '

In Fig. 1, we have plotted Tr(p?,) versus gt for the average photon number # = 50
and for the initial atomic states () (Je, g} + |9, €))/v/2, (b) [exp(2ip)le, &) + |9, )}/ V2,
(c) le,e), and (d) [— exp(?icp)le,e) +19,9))/ V2 (= |4%)). The curves a and b represent
the time evolution of Tr(p?,) for initial atomic states being linear combinations of |¢!)
and |¢?). They show apparently the recreation of the state vector in the middle of the

collapse region. The curve c corresponding to the linear combination

le,€) = exp(—

2i0)/ V2 [(18') +16%))/ V2 - I6°))

shows that though the system reorders to a great extent at ty, the reordering is not
compléte. This is clearly due to the presence of |¢?) in the. initial state. The same
presence (and absence) of |¢%) in the initial state leads to the fact that in the long-time
region (not shown in the figure), the curve c oscillates around a value larger than that
around which the curves a and b do. It is interesting to note that both these values
are larger than 1/4 ~ the value of Tr(p?,) for a maximally mixed two-two-level-atom
system, i.e., the system does not become completely unpolarized under the influence
of cooperative interaction.

The result (29) can also be useful to predict some properties of the quasiprobability
distributions in the limit of large 7 (see Refs. [34, 35] for recent studies regarding the
quasiprobability distribations f<;r the field in the one-atom JCM). Indeed, supposing
that the two atoms are initially in the upper state, from the fact that le,€) is a linear
superposition of |¢'), |¢7)‘énkd |#%), each being a phasor in the phase plane, it follows
that as the interaction is switched on, the Q function (or the Wigner function) is caused
to split into three peaks. The one connected with |¢3) is unmoved whereas the two
connected with [¢') and [¢?) rotate clockwise and counterclockwise, respectively, in

the phase plane. This is consistent with the study of phase Apropertia of the field [22].

11
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Fig. 1 ’
Time evolution of Trp?, for initial atomic states (a) (Je,g) + l9,€))/v2 (dashed

T T

curve), (b) [exp(2i)le,€) + |g,9)] /V2 (curves a and b are alimost indistinguishable),
(c) le,e), and (d) [— exp(2ip)le, e) + |9, 9)] /v2. The field is initially in a coherent state

with 7 = 50.
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) . Fig. 2 -
Probability of finding both atoms in the upper state P.. versus gt for the field ini-

tially in a Fock state with (a) A = 0, n = 0, (b) A = 0.5g, n = 5. The atoms are

- initially excited.
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4 Atomic level occupation probabilities: Effects of
nonzero detuning

As has been mentioned previously, earlier discussions of the two-atom systems
have usually been restricted to the exact resonance. In this section, we use the solution
obtained in Section 2 to investigate the effects of cavity detuning on the time behavior
of the atomic level occupation probabilities. We show that, in some cases, they are not
as trivial as they may secm to be at the first glance. .

Consider first the initial condition where the atoms are in the upper state and the

field is in a Fock state
[£(0)) = le.ein), (C1(0) = 1). (34)

Then on resonance, equations (9), (18), (19), and (23) yield

2 . 2
P.(t) = (;;:_13) cos?(gtv/an + 6) + 2(—7%%"3);22)— cos(gty/dn + 6) + (27:1123)
(35)
Equation (35) shows that P..(t) oscillates with two commensurate Rabi frequencies,
and has a minimum value equal to 1/(2143)?, which means some trapping of the total
system energy in the atomic su[)-systcm (this trapping is most transparent in the limit
of weak fields). This is in accordance with the so-called cooperative inhibition of the
average radiated energy reported by Buzek [15] and Seke et al [36). As A # 0, three
distinct nonzero roots of Eq. (10) give rise to three noncommensurate Rabi frequencies.
Owing to the beating between these, the Rabi oscillations begin to exhibit a tendency
towards collapses and revivals, as can be seen in Fig. 2b. Note that the ('ollﬁ.pses and
revivals in a Fock state field occurring here have the same root as those taking place
in single-atom systems with prepared atomic collel'(‘ncg [?7]_,}&11(1 in_cascade three-
level systems with arbitrary detunings [38]. 'fhough in two-atom systems the Rabi
oscillations do not collapse completely, they do when the number of atoms increases [12].

The time behavior of P () is shown in Fig. 2a for A = 0. n = 0. and Fig. 2b for

~13




A = 0.5¢, n = 5, where the partial trapping of the energy in the atomic system and
the Fock state field collapses and revivals are clearly visible.
Next, we consider the field being initially in a coherent state. Then P..(t) is given
by
o _n.f 3 3
Pec(t) = exp(~71) ) | %{Zla‘ml* +2 ) loq ol cos{(An — Am,n)z]}. (36)
=1

n=0 {,m=1
(i#m)

The above equation confirms again the conclusion of Deng [13] tha“t each revival series
corresponds to a beat frequency. If a system has N eigenvalues whose absolute values
are not equal, there will be N(N — 1)/2 nonzero beat frequencies and consequently,
N(N —1)/2 series of revivals. In our case, since af ,, = 0 Vn, it follows from Eq. (36)
that there are only three series of revivals. We call them (12), (23), and (13) series. On
resonance (A = 0) A3, = 0 Vn, therefore, [A1. — Aznl = |A2n = Asin| = Ay JA1in —
A2n| = 2); . and the number of revival series reduces to two, which a.g,:rees with the
result of {13].

In Fig. 3 we have plotted the time evolution of P..(t) for a coherent initial field with
fo = 10 and for various values of the detuning parameter. . The effects of A # 0 can
be seen to have three aspects: the. time average of P.(t) is shifted to its initial value,
the heights of revival signals decrease and the revival times delay. Taking into account
the sharp peak of the photon distribution around its mean # when # 3> 1, the revival
periods can be evaluated analytically in some extreme cases. For example, when the

near resonance condition
2

§ = <1 (37)

4g%n

is met, one gets

7'12 = 2r [(/\1‘,1 - /\'zvﬁ) - (/\],ﬁ—l - ’\Z,ﬁ—l)]_l ‘
= 2
o~ VA (1 + 6—) )
g 2
Tz = 2r[(Aaa— daa) — (Agact — Agar)]
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=

Py

2% & 6
> (1+—2—+5>, - (38)

Tis = 2r [(Al,ﬁ - )\3,5) - (Al,ﬁ-—l - )\s,ﬁ-x)]—l
— 2 .
2/ (1 4 § 6) .
g

~

2 @
In general, it is difficult to follow analytically the dependence of T}, on the detuning
paramefer since ._)\, are expressed in‘l»;e:ms of A in a rather complicated way. Therefore,

we have performed some numerical calculations showing that |Asl, though does not

‘vanish when A takes nonzero values, is very small as compared with |[A;] and |Ag).

As a result, ]"(2;;) and T3y hardly differ from each other and in the figure, only two
series of revivals are seen. The computational calculations' also reveal that the height
of the revival signals of series (12) and (23) drop rapidly with increasing A and the
only series remaining in Fig. 3d is connected with the beating between A; and ;. The
revival signals of this series, contrary to the results for the single-at;m case [6], almost
do not spread in time as A increases. To explain this fact, one needs a more detailed .
investigation, possibly, in a way similar to that used in [6] employing the saddle point
technique. However, we will not pursue this problem here, but proceed to treat the
far-off-resonance limit

o . A? L
===, (39)

Y 1/ T g _

supposing thaf the field itself is large. Then, u‘siﬁg the result [;;esented in Section 2,

in the interaction picture one gets approximately for
- two initially excited atoms
P.(t)~1, Py(t) =~ P, (t) ~ Pty ~ 0, (40a)
le, e)|u)| | exp(—iAt)le, ) lvexp(~i2g’t/A)) (40b)
t=

- symmetrical excitation (C2(0) = C3(0) = 1/v/2)

Pee(t) =~ 0’ Pey(t)-‘_‘ Pye(t) ad Pyy(t) ~ 0, (41a)

N =

15
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‘ Figure 3

Probability of finding both atoms in the upper state P versus gt for various values
of detuning {a) A = 0, (b} A = 5g. (c) A = 10g, and (d) & = 20¢ and for the field

initially in a coherent state with 2 = 10. The atoms are initially excited.
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1 , .
E(Ie,y)ﬂg,e))lv) " exp(—i?g’t/A)%(le,g)-{_w, e))|vexp(i8git/A%)) (41b)

— and for nonsymmetrical excitation (C,(0) = 1)

1,1 > A" 2067
P (t) ~ 3 + —exp(—n) Z 2 cos [-——‘q-———] ,

2 = nl 2¢%(2n + 1) + A?
1 1 i 2047
Pe(t)> - — = — — — s - 9
2e(t) 3 2eXP( n)g 7 cos [‘2g2(2n+1)+L\2}’ (42a)
. 1 o 1 i
lexg)v)|,_, — 3(les9) — g, e))lv) +exp(=i29°1/ D)5 (le,g) +lg. €))lvexp(i8g't/A%)).

(420)

In the first two cases, the picture resembles that in the one-atom JCM at far-off-
resonance [2, 39]: the excited atoms are reluctant to emit a photon and the state of the
system approximately remains factored into an atomic and a field state with the field
being simply a phasor rotating in the phase plane. For nonsymmetrical excitation one
has quite another behavior. T};ough, as before, the atornic system does not radiate, the
energy initially stored in atom 1 is nearly periodically exchanged with atoﬁ 2, despite
the fact that no direct coupling between them is included in the Hamiltonian (1) and
the field mode is far detuned. Thus, here the radiation field acts like a virtual level
through which the excitation is transferred fro;'n atom 1 to atom 2 and back. The state
of the field itself is also dramatically changed. Equation (42b), which is no longer of a
product form, indicates clearly the splitting of the quasiprobability distributions into
two peaks, one is unmoved while the other rotates. Unfortunately, a Schrodinger cat
cannot be generated using this scheme because the atomic states appearing in Eq. (42b)

are all the time orthogonal.
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5 Emission spectra

Beginning from the work by Sanchez-Mondragon et al {7], the problem of spectra
of light emitted from atoms enclosed in cavities has attracted a great deal of attention.
Recently, the vacuum-field Rabi splittings, first predicted in {7, 8], have been observed
experimentally [9]. The effects of the field statistics [40, 41], cavity damping {42],
atornic coherence [33], and the correlations between the spectrum sidebands [43] have
been theoretically studied. In the system in question, the results for exact resonance
and two initially excited atoms have been reported in [19]-[21]. Here, we discuss some
aspects of the emission spectra fo.r nonzero detuning and various initial atomic states.

For simplicity, we restrict ourselves to the case of the initial Fock state field, i.e.,

the initial state of the total atom-field system can be written as
[%(0)) = C1(0)|e, &5n) + C2(0)le, gin) + Cs3(0)lg, €sn) + Cu(0)lg,g;m). ~ (43)
To calculate the spectrum, we need to know the two-time dipole correlation function

D(t,) (R (t+7)R(1))

il

(¥(0) expliH (¢ + T)IR* exp(—iHT)R™ exp(—tHE)[$(0)),  (44)

The solution (9) and (14)-(15) together with the initial condition (43) give

3

D(t, 1) = exp(iwr) Z {]CI(O)PDL,,,_;;(I) expli(Ar — Am)t] expli(\ = A.)7]
tm,k=1
+|C2(0) + C3(0)* Dy, (2) expli( Xy — A )t] expli(A; — Ak)7]
HCA O D} i (4) expli(A) = A )t expli(N — /\:')T]}, (45)
where ’
Dima(j) = data] [l (eh) + (ah) o] a7 (ah) + (ab)ap ], (46)

and the prime mark indicates the replacement of n by (n — 1) in the corresponding

quantities. The physical transient spectrum [31] is given in terms of the correlation
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function (44) by
T T~7
S, T) = 2FRe/ dr exp[(I' — iu)'r]/ dtexp[-2I(T - )]D(t, 7). (47)
) 0

Here T is the detector bandwidth and T is the time at which the measurement takes
place. Under a definite initial condition, by substituting D(¢,7) from Eq. (45) with
appropriate coefficients C;(0) into Eq. (47), after integration over { and 7, the explicit

expressions for the emission spectra can be easily obtained.

(i) Two atoms initially in the upper state

Then one finds

3

Dimi(1)
S(v,T;le, €)) = 2I‘Re’m o T T i00 = A)
X ! {exp[i(/\, - AT~ exp[—[“T —iv—w=— AN+ /\;)T]}
T+i(v—w—An+ M)

1
T—i(v—w—XA+2A})

{exp[—FT —iv—w— N+ )T - exp(—‘lFT)}).

(48)

If T'T is large, and if we ignore small terms connected with { # m [42], formula (48) is
transformed into

3
r

49

S, T;le,e)) —oliv_:lpuk TP —w— (= A (49)

In this limit, the spectrum of emitted light consists of nine lincs whose positions and
heights are determined by v = w + (A — A}), Diga(1). When A = 0, it follows from
Eqs. (19) and (46) that D3 33(1) = 0, which, in turn, implies the reduction of the num-
ber of lines from nine to eight. This is in accordance with the earlier results of Kien et
al and Chai et al [20]. For nonidentical atoms, the upper limit of the sums appearing
in Eqs. (45), (48) and (49) must be replaced by 4; consequently, the numbenl of spectral

lines increases to 16 {21]. In the dressed-state representation [44], this sixteen-peaked
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spectrum arises naturally from the transitions 1) — |¢!_,), (I = 1,2,3,4), where
the dressed states [#L) are nothing but the eigenstates of the system Hamiltonian.
When the two atoms are identical, one of the states [¢!) (|3) in our notation) be-
comes subradiant, which results in a nine-peaked structure of the emission spectrum
mentioned above. In the same way, one can explain the quantity of vacuum-field Rabi
splittings in the case of the two initially excited atoms, which is equal to 6 for identical
atoms (19, 20] and 12 for nonidentical ones [21]. We can also ﬁredict, for example,
the number of spectral lines of light spontancously emitted from an excited atom in
the presence of another unexcited one. Such a system has only three dressed states
(see Egs. (21), (22)). The decay ol these into the unigue ground state [g, g:0) will
obviously lead to a three-peaked structure of the spontaneous emission spectrum. A
closer observation of the expressions (22) reveals that for identical atoms, the number
of peaks reduces to two since then one of the dressed states becomes subradiant. These

conclusions are confirmed by more detailed analyses below.

(ii) Symmetrical and nonsymmelrical cxcitations

From Eqgs. (45), (47) one gets, in the limit of long times,

3
r
S[nTile,9) + g, eD/V2] — ZZ Ll l‘2+[l/——w (A= A1 (50)

S Tilerg)) = gs[u,r;(k,y)+|g,e>>/fz]. (51)

Jquation (51) indicates that the system of the two symmetrically excited atoms
emits light two times stronger than that of the two nonsymmetrically excited ones
does. This, clearly, stems from the fact that the nonsymmetrical state is a linear
superposition of the symmetrical and antisymmetrical states while the antisymmetrical
state is subradiant.

When A # 0, the spectra defined by Eqs. (50) and (51) consist ()I" nine lines, which

are asymmetric both in height and position. The synmunetry reappears as the detuning

21




vanishes but then, instead of eight peaks as in the case of two initially excited atoms,

only six peaks at the frequencies

vy, = wxg(Vin+2 - Vin —-2),
Vi, = wxgVin 42, © (52)
wxg(Vin +2 4+ Vin —2)

I

Vi3

survive. Note that in Egs. {52) v represent the quantum electrodynamic analogue of
the so-called cooperative additional sidebands [45]. The relations between the heights

of the peaks are

tlg i Iyn =

f f n—1 -
( 4n+‘7 471—2) o -1 (\/:n%- \/471—‘2) ) (53)

As n increases, the two central peaks vy, draw closer Lo each other and eventually

emerge into one peak at vy while the heights of the two extreme side peaks vyz go to
zero as fast as 1/n?. Therelore, the spectra will have three peaks at w and w £ 29/n
for large photon numbers with the height of the sideband peaks being {/4 that of the
central peak. Recall that this ratio is 3/4 for both atoms initially excited [20] and 1/2
for a one-atom system [8]. v

We now consider the vacuum-field Rabi splittings for the system consisting of one
initially excited atom and another unexcited one. We suppose for a while that the
atoms can be different (g; # g2). Then, using the solution (21), (22) in (44), (47) one

gets, for long times,

r
E t 54
5. T3 17)) £ llﬂ| (o +a3)* T2 4+ (v —wy— N)?’ (54)

where the initial state |;) is one of the states (20). Equation (54) shows that the emis-
sion spectrum in this case has three pcaks at [requencies wo + A with their heights

proportional to |a}[?(e} + @})?. When the atoms are identical, since o} = —aj (see
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Eq (22)), the central peak connected with A3 disappears resulting in a'two-peaked spec-
trum. Similarly as for the stimulated emission, the intensity of épontaneous—emission'
spectrum in the case of symmetrical excitation is twice larger than that in the case
of nonsymmetrical excitation, which can be interpretéd as another indication of the

superradiance.
Finally, we emphasize that for a more. general field state, which may be an arbi-
trary superposition of the number states, all the spectral characteristics will essentially

depend on the photon statistics.
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', B3aMMOAEHCTBHE ABYX BTOMOB C OAHOMA MOAOH ONA MINYYeHHA

IBONIOUMA COCTORKUA, BEPORTHOCTH uacenenuoc-reu ypoauen :
¥ CNEKTPLY ¢moopecu&tunu . E

npencraeneno TouHoe peuseHne ANA 3anaun a:auuonaﬁmm asyx uuyxypomaux nomouv'

€ OAHMOMONOBbLIM NONSM M3INYYENWR NPH HEHYNeson paccTpoitke. Mpn TOMHOM pesOHaHce npnso-' :
AeH 3CHMNTOTHYECKMIA PE3y eTET ANA NEPBOHAYAMLHO CHNLHBIX KOrEPEHTHBIX Noned. MokalaHo,
uTO echn B8 HEMANBHBIA MOMEHT BPEMOHW BTOMbI HAXOAATCR B GAHOM M3 NOSTYKIBCCHYECKHX |

. cOBCTBERHLIX cocronuuﬁ BONHOBAA dYHKUMA CHCTeMbI ATOM + NONE OCTA8TCA MONTH _haxTopu- ;

3UPOBAHMON HA BTOMHYIO W MONEBYIO 48CTb B TEYSHWO BIMMOABACTBMA, Npw orpe.neneunux’(
. YCNOBMAX, ATOMHAA YACTL SBOMOUNOHHPYET B QAMHCTBEHHOE YUCTOR coctontne, YIsyNeHo BNHAHWE

PaccTPOMKU PEIOHATOPA HE AWHAMHKY BOPOATHOCTEH HACENEHHOCTEN ATOMHMIX ypoq»eﬁ W CNeKT-

pbl rioopecueHitun, HafiieHo, ¥TO NPy HECHMMETPUYHOM BO3GYXKAeHHM, BAANEKS OT PESOHBAHCA, -

'/ none AECTBYET K&K BHPTYSMBHLIA ypOBEHb, nyTem KoToporo MEPIUA’ NEPERAETCA MEXAY aTO-
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Two-Atom Single-Made Redlation Field Interaction: Statu Evolutlon

P Exact solution for the problem of two two Ievol atoms mtaracﬁng with a llngla-modo detuned P
*. quantized radiation field is presented. On resonance, an ‘asymptotic result Is derlved for large co-

" herent initial fields. It is shown that when the atoms are initially prepared in one of the nmldw

sical eigenstates, the utorn-plus -fleld wave function almost remains factored Into an stomicand a .~ -

" field part throughout the interaction. Under certain conditions, the atomic part evolves into s -

. " unique pure state at half-revival times. The effects of tha cavity detuning on the dynamics of the .
- atomic level occupation probabilities and emission spectra ate studied. it Is found, for nonsym-

metrical excitation, thet far offresbnance the fleld acts like a virtual level by means of which -
" the energy is transferred between the atoms. Due to nonzero detuning, nine-peaked spectrs are -
observed and are given a clear explanation from the dressed-state viewpolnt. It is established that *
" in the case of symmetrical excitation, the Intensity of tho emlnion lpoctrum is two tlmu hrger,
: than that i in the case of nomynunetncal excimion

"The lnvenlgation has boen pcrformed at the Labontory of Thoomlal Phylks JINR
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