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1 Introduction 

The standard path integral over fermionic and bosonic variables in the holo­
morphic representation is widely used in various quantum-mechanical prob­
lems. Such an integral can be thought of as an integral over the classical 
phase space associated with ordinary Fermi and Bose coherent states (CS). 
These states provide a convenient basis for unitary irreducible representa­
tions ( {l IR 's) of the Bose oscillator group and Fermi oscillator supergroup, 
whose Lie algebras consist of generators 

( 1) 

respectively. The standard commutation (anticommutation) relations are as 
follows 

Symbolically CS's can be represented as 

ICS)F = exp(O/ )IO)F,. (2) 

where a is a complex number and 0 is a Grassmann parameter. By using 
decomposition of unity in terms of states (2), one can obtain path integral 
with respect to the measure 

DaDaDiJDO, (3) 

which is invariant under linear shift transformations 

a - n + no, 0 _,. 0 + Oo. (4) 

The corresponding classical phase space can be thought of as a direct product 
of a complex plane and a complex fiat Grassmann manifold. The Bose 
(Fermi) oscillator group (supergroup) acts in this space through linear shifts 
( 4 ). To be more specific, unitary transformations 

induce in the classical phase space canonical transformations ( 4). 
Flat path integral over measure (3) turns out to be very useful in the 

framework of perturbation theory, as unperturbed Hamiltonian Ho looks as a 
linear combination of generators ( 1 ). But it is practically useless in attempts 
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to go beyond perturbation expansion. This is merely due to the f~ct that 
the exact diagonalization of the whole Hamiltonian H = Ho+ Hint requires 
more general transformations than that of the harmonic oscillator-type. 

Let G be a group of transformations that result in diagonalization of 
H. Then its Lie algebra L is known to contain H as an element. L is then 
called the spectrum generating algebra (SGA) and the corresponding group 
G is known as a dynamical group. Note that a direct product of oscillator 
groups generated by (1) plays a role of the dynamical grnµp for H0 • 

A new phase space ( an orbit of the coadjoint representation of L) turns 
out to be a curved one. Path integral over CS's associated with L is to be 
regarded as an integral in a curved space with measure more complicated 
than that of Eq.(3). An important point is that G acts in this space via. 
linear fractional transformations, which induce in the corresponding path 
integral, an appropriate change of integration variables. 

The concept of CS's associated with unitary irreducible representations 
(UIR') of Lie group G was firstly introduce by Perelomov ( 1972) and gen­
eralized to the case of supergroups by Bars and Giinaydin ( 1983 ). Let us 
outline below the main features of this approach. Let L be a Lie algebra 
that has the so-called 3-grading decomposition i.vith respect to Lie_ algebra. 
Lo of its maximal compact subgroup: 

L = L-1 EB L0 EB L+1
, (5) 

Lo contains the generator Q of an Abelian U1 factor, that gives the grading, 
• I 
i.e., 

L0 =HEB Q 

and 
[Q,H] = 0, [Q,LH] = L+i, [Q,L- 1] = -L-1

• 

The elements zm E Lm satisfy the formal commutation relations 

[lm,zn] EL"+", n,m = -1,0,+l, ( (-j) 

where Ln+m = 0 for In + ml > 1. For Lie superalgebras· the same defi­
nitions ( 5, 6) hold, with bilinear product ( 6) is now to be understood as 
an anticommutator between any two odd elements of superalgebra L and 
as a commutator otherwise.The important point concerning the decomprn;i­
tion (5) is that if there exists a set of "lowest weight" states llw), that are 
transformed irreducibly under the maximal compact subgroup action and 
are annihilated by all the annihilation operators L - l, then the s_et of states 

(L+ 1 )Pllw), p=0,1,2, ... (7) 

2 

-, 

form th<• hasis for the irn•durible representation of the whole group(,'_ It 
then follows that the ge11Nalized CS's associated with algebra L can be 
symbolically defined as 

IC S) = PXJ> (~Lt' a;) llw), (8) 

where o; are even or odd Grassmann para.meters ( depending on bosonic 
or fermionic nature of the raising operators /; 1 

). For ordinary Lie groups 
o; are complex numbers.The CS vectors (8) provide a convenient basis for 
constructing path-integral representation for the systems with dynamical 
group G. the crucial point lwing that the irreducibility of the states (7) 

ensures decomposition of unity in terms of CS (8). 
For the physical applications, especially in quantum-optical models. it is 

convenient to deal with oscillator-like representa.tions of the L-algebra gen­
erators. Then, all the L-generat.ors a.re expressed as bilinea.rs of Bose( Fermi) 
creation a.nd annihilation 01wrators. As is well known. 11 2 bli1wa.rs 

b;b( [b;. bt] = b;1 i,j = 1, 2, ... n 
.I .I 

genera.tP thP Lie algebra of 1·,, group. To PXtP11<l l",, to th<' unitar_v r,,
1
m 

supergroup, one has to add to II huso11ic operators Ill fermio11ir ones / 1,, JI= 

1, 2, ... 111. llilinears bib_! a11d ./~J,! form tlw LiP algebras of C,, and C111 under 

commutation. respectively. whPn'as Bose-F<•rrni bili1wars bJ/ and b) f 11 close 

in~o the set b;bj, J1J,! un<IPr a.nt.icommuta.tion 

{b;J,!,bjJ,,} = b;Jf1!J,, + 01,,,bjb;. (9) 

In the subsequent sections we will be concerned with the simplest ca.ses 
n = 2 and n = 2, m = 1. 

2 U2 Lie Algebra in the oscillator-like represen­
tation and U2 CS 's 

lu tlw Bose oscilla.t.or-like H'JH<'senta.tion the genera.tors of U2 Li<' algebra 
ca.n be ta.ken to bt> 

/\·1 = btbi, h-2 = b1b2, l\·+ = b1b1, I\-_= bfb2. (10) 
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• 
U2 linear Casimir operator is· a number operator N = b! b2 + bi b1. All the 
higher U2 Casimirs are functions of N due to the fact that in realization 
(10) we deal with fully symmetric U2 representations that are labelled by 
the eigenvalues of N. As is known U2 = SU2 0 U1 which means that Fi 
algebra can be decomposed into the direct sum 

{J(+, IC, ku = t(b!b2 - btb1)} 4 {N}. 

where generators J(+, J(_, A"u span the SU2 subalgebra.: 

[A·+, A"_]= "1.h·u [A·u.A"±] = ±A·±-

( 11 ) 

( l"l.) 

Algebra ( 10) is easily seen to have 3-grading decomposition with respect t.o 
the U1 4l U1 subalgebra generated by /(1, /(2: 

L+ ={I<+}, L_ ={IL}, Lo= {J(1,K2}, 

grading being achieved with the generator 1(2 • The lowest weight state which 
is transformed irreducibly under U1 ;?J U1 group action and is annihilated by 
the J( _ operator looks as follows 

llw} = In, O}, 

where 

bib1ln,tn)=nln,m}, bfb2ln,m)=mln,m}, n,m=0,1,2, ... 

Due to Eq.(8) the U2 CS can be written in the form 

ja;n} = (1 + ja:1)-i exp(abfbi) ln,0}, 

(13) 

( l.t) 

where the complex number et belongs to the coset space U2/ li1 CJ Ui which 
is isomorphic to tlw co111pl<'x projertive span• C'P1 • NotP that C'S (1-1) 
depends upon the represe11ta.tio11 index n 2': 0 - the eigenvalue of linear 
Casimir operator. For every value of n the basis in the U2 representation 
space can be chosen as 

lep) = ln-p,p), p=O, ... ,n, 

so that dim{jep)} = n + I. The overlap of two states In'; n) and In; n) is 
given as 

(a';njo;n) = (l + lo'j2)-? (1 + lnl 2 )-? (1 + a'n)". (15) 

4 
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An important property of these states is that they satisfy the completeness 
relation 

J la; n}(a; nl dµn(a) =In= t jep)(epl, 
p=O 

(16) 

where the U2-invariant integration measure looks as follows: 

n + 1 d2a 
dµn(a) = -7r- (1 + jaj2)2 (17) 

It is easily seen that 

j(a;nlep)(eqla;n)dµn(a) = bpq. (18) 

Due to Eq.( 18) for any operator F acting in the ( n + l )D space spanned by 
lep) one has 

SpF = L(epjFjt-")bpq = J dµn(o)(a;nlFlo;n). 
p,q 

The averages over U2 CS's look as follows 

1012 
(a; n!K1!a; n) = n 12' (a; nlK2la; n) = n 1 + lal2 1 + la 

n! aP 
(a; nl(K+)Pla; n) = (n - p)! (1 + lal2)P' 

n! a,P 
(o; nl(JL)Plo; n} = (n - p)! (1 + lal2)P' 

n 1- lal2 
(a; nlKola; n) -- p = 0,1, ... = 2 1 + lal2' · 

3 Path integral 

Let us consider the path integral over U2 CS for the partition function 

Z = Spe-fJH, 

(19) 

(20) 

where the Hamiltonian H belongs to the U2 enveloping algebra. Due to 
Eq.(19) one has 

Z = f J dµn( a)(a; nle-,BHla; n). 
n=O 
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Defining E as /3/N and using Eq.(16) we write in the usual manner 

Z = f: / dµn(a:)(a:; nla:N; n){a:N; nle-'Hla:N-1; n){oN-I; nle-'
11 

r.=0 

... e-'Hlao; n){ao; nlo; n) dµn(ON ) ... dJLn( ao)-

U p to the second order in E one has 

where 

{aj;nle-'Hla;;n) = {aj;nla;;n)exp{-E1tn(nj,O'i)), 

1tn( O'.j, a;) = {a;; n!Hloi; n) 
{a;; nlai; n) 

The integration over dµn(a) in accordance with Eq.(19) yield::-

so that 

/ dµn(a){a; nlaN; n){ao; nla; n) = Sp laN; n)(oo: nJ 

{oo; nloN; n), 

oo N N (. N ) 
Z = ~ J g dµ; ]l (ojJO'j-1 )(aoJoN) exp -f; 1tn(O'.j, a_i-d • (21) 

For any state vector J4,), that belongs to the ( n + 1 )D Hilbert space with 
an element 

Pm(o)/(1 + Jol 2), 

where Pm(a) is an arbitrary polynomial of degree m::; n (Perelomov 1972), 
one has 

('lf!I = J dµn(a){'lf!la)(al, 

which in the components can be written as 

'lf!n(/3) = j dµn(o)(o;nJ,6;n)'lf!n(a), 'lf!n(a) = (v,Jo;n). (22) 

Note that the reproducing kernel (o; nJ/3; n) acts as a delta function with 
respect to the measure dµn( o ). Due to Eq. (22) the integration over dµo in 
(21) can be carried out explicitly to yield 

oo N ( N ) 
Z = L J dµ1 ... dµN n(ojJCXj-1)exp -( ~1tn(O'.j,frj-d 

n=O J=l J=l ao=aN 

(23) 

(j 

" 

With O'j-t = O'.j - Oj it then follows 

n o:i6i - iiioi 2 
ln(ojJ01-1) = 2 1 + loiJ2 + O(oj ). (24) 

In the continuous limit this yields 

= 1 ( 11 1i3 foi - tm 1/3 ). Z=L Dµn(o)exp -:- I l2 ds- .1tn(n,o:)ds, 
a(0)=a('") 2 o 1 + O: . o . n=O " , · 

(2-5) 

where the following normalization holds: 

1 ( n 1'3 00 _ 00 ) Dttn(n)exp -:- I l2 ds =Spln=n+l. 
a(0)=a(/3) . 2 0 1 + 0 

4 Evaluation of the U2 path integral 

In order to illustrate how the general formula (25) works. let us take H in 
the form - t t :.t . t 

H - w1 b1 b1 + w2b2 b2 + >.b2 b1 + >.b2b1 , (26) 

where w1w2 2:: !>-.J 2 for the Hamiltonian (26) is to be bounded from below. 
For the partition function in accordance with Eqs.( 25) and ( 20) one gets 

(X) ( /3 ) 
Z = L e-}t3(wi+w2

) 1 Dµn(a)exp -1 .Cn(a:,n)ds . 
n=O ,,(U)=u(P) 0 

where the quantity 

. n chi - no n I - Jnl 2 
... o o . _ 

Ln=-1 112 +-(w1-w2) 112+n>-. I J2+n>-. 112 (2,) 2 +o: 2 l+o l+n l+o 

can be defined as the Lagrangian. The Euler-Lagrange equations lead to the 
equations of motion 

O'. = {o:,1tn}, 

where {, } is a Poisson bracket defined by 

{A B} = ( 1 + JuJ
2

)
2 [8A aB _ iJA aB]. 

' n oa 80: 80: 80 
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• 
This indicates that the classical phase space spanned by a and o: is curved 
- in fact the complex projective plane CP 1 ~ 5'2 (Berezin 197,5). 

Due to the relation U2 = SU2 0 U1 the general U2 transformation can 
be taken to be 

[! = ( U V ) i,t, 2 _ _ e , 
-vu 

where lu!2 + lvl2 = 1 and O ~ <P < 271'. The path integral in Eq.( 25) can 
be evaluated with the help of transformations of the integratiou variables 
which are induced by the U2 action in the coset space U2/U1 0 U1. F2 
acts in the integration space Uif U1 0 U1 through the followiug canonical 
transformations: 

!LO:+ V 
n-n= 

-VO'+ II 
(28) 

where the group parameters u aud v are kept constant. Till' integration 
measurP d11 11 (n) is invariant 1111dN transformations (2X). Tlw sa11w is trn<' 

for the kinetic term. for examplP 

/J ii 

---ds ~ --- ----ds = J o:a J a uo: + v 
1 + lo:12 1 + la:1 2 -vo + i1 

0 0 

J l :tal'd, + J l :~al' (a~:,:". -aa) 
0 0 

f3 /J /J 

J ao,·· 12d.~ -j dln(va - u) = j ac,·t 12d·", 
l+u l+a 

0 0 0 

where the total derivative ca.11 be dropped since a(O) = 0:(/3). Upon taking 

[f ✓w + n ff '"' 
u = V j:\f 2n ' v = V j:\f J2n( w + n ' 

~-- W1 -W2 
n = ✓w2 + 1"12, w = 2 ' 

one gets 
i)(., 

Z L 
- , ... 1+"'2 = e n/_, 2 Z -'n, 

n 

8 

l.J'l l· .; 
;.I 

'j·I .. i. i 
1

'.11 ,,1 

where the path integral 

( 

/3 • /3 2) . n o:a - o:o 1 - !al 
Zn= J Dµn(a:)exp -2 J 1 + lo-12 - nn J 1 + lol2ds 

ac(O)=ac(/3) 0 0 

(29) 

can be evaluated directly through the definition (23): 

N 

Zn= limN-oo J dµi ... dµN n {ojle2'°K0 1oj-1), 
c,o=aN J=l 

Namely,taking into account that 

e2,m.:o_lai-1) = e-,Onlaj-1e2,n) 

one gets 

f30n1• Zn = e- llllN-,x, 

N j dµi ... dµN IT (ail0:i_1e2,0 ). 
j=l uo=oN 

(30) 

By using decomposition of unity ( 16) the integration over dJt1 ... dµN-1 can 
be carried out explicitly. This yields 

Zn e/3011 

which gives 

J (ctNlo:oe2N,n) = J dµn(o)(alae 2f3°) 

ON=Dio 

00 

(n+l)e2f30(n+I)/dx (I+xt 
( e2f30 + x )n+2 

0 

e2f30(n+l) _ 1 

e2f30 - 1 

00 

Z = I:exp(-n/3W1 +w2) sinh,Bn(n+ 1) 
n=O 2 sinh ,an . 

It then follows that 

oo m=n/2 
"'"' W1 + W2 "'"' Z = L exp(-n/3 

2 
) L exp(-2,Bnm), 

n=O m=-n/2 

which yields the correct spectrum 

WJ +w2 
En 1 ,n2 ~ 2 

(n1 + n2) + n(n1 - n2), n1,n2 2'. 0. 

9 



• 
At the end of this section there should be pointed out that CS's ( 14) 

coincide in fact with those of the SU2 group which can be parametrized by 
the points of the coset space SU2/U1 (Perelomov 1972). This is merely due 
to the fact that U2 = SU2 ® Ui, Thus, in order to construct path integral 
for a spin system with dimensionality 2j + 1 one can employ Eqs.(20) where 
one must put j = ~- For example, for the _linear spin Hamiltonian 

H = fH{o +AK++ )..JC, 

Ko Im)~ _mlm), m = -j, -j + 1, .. . j. 

one gets 

·. 0:0 - 00: 
( 

/3 ' 

Zj = Spe-/JH; = j Dµj(o:) exp -J / 
1 
+ laf ds 

/3 2 /3 - /3 ) . 1 - lo:I . . - o: . o: +n1f l+lo:12ds-2JAJ l+lcrl2ds-2JAJ 1+la-12ds 
0 · 0 0 

, ( 31) 

which is readily evaluated with the help of substitution (28 ). 

5 Path integral over U211 CS 

Thus far, we have discussed the path-integral representations for the U2 Lie 
algebra. From the physical point of view ordinary Lie algebras are relevant 
for purely bosonic ( or fermionic) systems. For example, the partition func­
tion for a superfluid helium model is expressed as a path integral over CS's 
associated with the noncompact SU1,1 algebra (Gerry and Silverman 1982). 
In the models of quantum optics, however, there appear mostly Hamilto­
nians that include both bosonic and fermionir degrees of freedom. One 
needs then to consider path integral over super CS's associated with under­
ling superalgebras. For example, the compact U111 and noncompact OSP212 

superalgebras turn out to be SGA's for Jaynes-Cummings and Rabi Hamil­
tonians, respectively (Buzano et al 1989). Note also, that there has recently 
been considered the path integral for OSP112 CS's (Schmitt and Mufti 1991). 
Here we consider the simplest 9D unitary U211 supergroup that appears as 
the dynamical group for various quantum-optical Hamiltonians. 

In the oscillator-like representation the U211 generators can be taken to 
be (Bars, Gi.inadyan 1983) · 

Lo = {bt b1, Jt J, btJ, bift} EfJ {bjb2} 

10 

L+ {bjf, bjbi}, L_ = {bdt, b2bt}, (32) 

where 
{f,Jt} = 1. 

It then follows that Eq.(32) gives the 3-grading decomposition with respect 
to the maximal compact subsupergroup with superalgebra U111 tf;U1 • Grading 

is achieved with the operator b1b2 • The operators in the first curly brackets 
in Lo form the basis for the Ui11 superalgebra. As is known, all the irreps. 
of U1p (:) U1 superalgebra an' lD or 2D (de Crombrugghe and Rittenberg 
1983). The basis can be take11 as 

l JJ rasp : !cu) = IO. Ill) H ::. IO),.-

"2.D case : let)= 1,,·- I. m)H •:::i ll)F. lc2) = 111.m)H ,~: IO)F. 

where tlw use is made of tlw staudard 11otatio11 so that 

JIO)F = (). 1t1o)F = ll)F· 

The U211 supergroup acts in the superspa.ce whir-h is formed as Grassmann 
envelope of the U211 superalgebra representation space (see, for example, 
Berezin and Tolstoy 1981 ). The basis of this superspace is given as leo) 
in the lD-case and k2 ), (jF 1 ) in the 2D- case. Herc ( is a Grassmann 
parameter and vector jc1 ) is chosen to have an odd grading ( consequently. 
le2) is even- graded). 

The lowest weight vectors that are transformed irreducibly under the 
U111 0 U1 supergroup action and are annihilated by all L_ operators are as 
follows 

10,o)B 0 IO)p and ln.O)a M IO)F + (In - 1.0)H ,~:• ll)r:- (:n) 

Due to formula ( 8) U211 CS can be represented in the form 

lo,0; n) 2 /2 ( II 00 ) t (l+lnl )-" Pxp -- I 12 <'Xp(nb2b1)X 
2 I+ n . 

( ln,O) 8 1O) 1.• + /n0ln - 1.0) 8 1l)F). (34) 

Notic(' tha.t CS (3..J) depe11ds upon ordinary a.nd Gra.ssma.1111 parameters 
simultaneously while the r(?}>resentation index n is now an eigenvalue of the 
U2 11 linear Casimir opera.tor 

N = blb1 + blb2 + 1t.r. 

11 



The overlap of two states ( 34) is 

(a',0';nlo,0;n} = (o';nlo;n} x 

( 
n 00 n 0'0' 0'0 ) 

. exp -21 + 101 2 - 21 + lo'l 2 + n 1 + a'a ,(3.5) 

where (o'; nlo; n} is given by Eq.(15). Unity in the representation n 1s 
resolved as 

In= J lo,0;n}(o,0;nldJt11 (0',0), 

where the U211 invariant measure reads a.s follows: 

(:H,) 

( 
00 ) cl2o d0d0 

dµn = exp 1 + lol2 1 + lnl2 ---;: (37) 

The U211 path integral can be obtained by the very same procedure as that 
in the U2 case. The new point is that there appear a. more complicated 
kinetic term and the antiperiodic boundary conditions for 0: 

z · H , J . ( n id on - 6ci 
Spe-/3 = L Dµn(o,,0)exp - 2 1 

+lol2 ds 

'h(O)=a((J). 0(0)=-0(,'3) 0 

(3 · _ • :.. /3 • _ /3 ) 
n 00 - 00 n ( aa - ao )00 

+2 J 1 + lo:12ds + 2 J (1 + lo:12)2 ds - J H(o:,0)ds ' (38) 
0 0 0 

where 
H(a,0) = (n,0;nlHln,0;n). 

In the case when U211 is a spectrum generating algebra., i.P., H belongs 
to the U211 even subalgebra, path integral (38) can be calculated by the 
change of integration variables in accordance with the U211 group action in 
the classical phase space which is isomorphic to the coset U21i/U111 .® U1. 

Namely, U211 supergroup element in the fundamental representation can 
be defined as 

( 

Wt 01 A1 ) 
lf = 02 W2 03 , [l t [T = 1, 

A2 04 W3 

where w1,2 .:i and >. 1,2 are eve11 Cra.ssmann parameters and 01,2 ,3 ,4 are the odd 
ones. Then, under the U2p action the supervariable (a,0) E U2p/U1p () U1 

12 

undergoes a linear fractional transformation (Bars and, Giinaydin 1983) . 

W10 + 010 + A1 
0:-+------, 

A20 + 040 + W3 

0 
~ 020 + w20 + 03 

A20: + 040 + W3. 
(39) 

The integration measure in Eq.(38) remains invariant under transformations 
(39). By specifying the U211 parameters in Eq.(39) in the same manner as 
it was done in the previous section for the U2 case, one can evaluate the 
path integral (38). This is equivalent to the direct diagonalization of the 
Hamiltonian by means of appropriate U211 rotation in the super Fock space. 

6 Conclusions 

In conclusion, some remarks are to be made. First of all, there should be 
pointed out that we are dealing with CS's associated with finite-dimensional 
Lie algebras ( superalgebras ). As a consequence, quantum systems with finite 
degrees of freedom are only being considered. 

The next point is that the path integral over U2 and U211 CS's turns 
out to be very convenient in the .semiclassical treatment. In the general 
quantazation scheme for curved phase spaces developed by Berezin (197.5) 
the representation index n labelling CS's associated with a group of motions 
of this phase space plays the role of 1/fi. In the oscillator -like representation 
this ,means a large particle number limit. The stationary phase method for 
integrals (25,38) as n - oo leads to the classical Euler-Lagrange equations. 
The important point is that by means of the substitution o -+ o/ ,/n the 
integral (2.5) in the limit n ~ oo goes over to the "flat" one with the standard 
measure DaDiJ:. Thus, one can employ the standard ·methods in dealing 
with the SU2 path integral in the limit of a large total spin. This is in 
complete accordance with the fact that SU2 CS's at large values of spin j 
go over into the ordinary (Glauber) CS's (Perelomov 1972). For example, 
the partition function ( 31) in the limit j _, oo reads as 

e1113i j DaDaexp (~ J(&a - C<O)d, 

a(O)=a(/1) 0 

zi 

/3 /3 /3 ) 
-n j lnl 2ds - J2] j ">.ads - J2] j >.ads , 

0 0 0 

(40) 
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where the coefficient ,\ is supposed to be time-dependent. The path integral 
(40) is seen to be easily calculated (see, for example, Dacol 1980). 

As another example there could be considered a nuclear Hamiltonian 
proposed by Lipkin, Meshkov and Glik (LMG) which in the spin repre~en­
tation reads as (Lipkin et al 1965) 

H [ l
.• r '( 1·•2 1·•2 ) ] = f \o + 

4
j \ + + \ - , 

whereKiare the SU2 generators of dimensionality 2j + 1 with j = r Here n is 
a total number of particles in the LMG model. f and r arP real paramelt'f's. 
Note that H belongs to the Sl'2 enveloping algebra. With lhP lwlp of 
Eqs.(20) at p = 2 one can readily obtain the path-integral represeut.ation for 
the LMG model in the form of Eq.(2.5). 

There should be also pointed out that representations ( 2.5, 38) hold for 
Hamiltonians that belong to the U2 and U211 enveloping algebras, as it has 
been just mentioned for the SU2 case. 

The last remark concerns linear fractional transformations (28, :39). The 
U2 and U211 integration measures remain invariant under the corresponding 
local linear fractional transformations. This means that one could try to use 
them in calculating U2 and U211 path integrals with parameters depending 
on time. These and related problems will be discussed elsewhere. 
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