


1 Introduction

The standard path integral over fermionic and bosonic variables in the holo-
morphic representation is widely used in various quantum-mechanical prob-
lems. Such an integral can be thought of as an integral over the classical
phase space associated with ordinary Fermi and Bose coherent states (CS).
These states provide a convenient basis for unitary irreducible representa-
tions {UIR’s) of the Bose oscillator group and Fermi oscillator supergroup,
whose Lie algebras consist of generators ' '

wlo ot 0.1y and {f17, 1. 1, 1), (1)

respectively. The standard commutation (anticommutation) relations are as
follows

.67} = {1, f}=1.

Symbolically CS’s can be represented as

ICS)p = explabl)0)p  |CS)r = exp(8f1)10)p,. (2)

where a is a complex number and 8 is a Grassmann parameter. By using
decomposition of unity in terms of states (2), one can obtain path integral
with respect to the measure '

DaDaD6D8, (3)
which is invariant under linear shift transformations
a — a+ ayg, 0 — 6+ 6. (4)

The corresponding classical phase space can be thought of as a direct product
of a complex plane and a complex flat Grassmann manifold. The Bose
(Fermi) oscillator group (supergroup) acts in this space through linear shifts
(4). To be more specific, unitary transformations

U(g) = exp (aobl — aob+ 8o f T — 1)

induce in the classical phase space canonical transformations (4).

Flat path integral over measure (3) turns out to be very useful in the
framework of perturbation theory, as unperturbed Hamiltonian Hg looks as a
linear combination of generators (1). But it is practically useless in attempts
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to go beyond perturbation expansion. This is merely due to the fact that
the exact diagonalization of the whole Hamiltonian H = Hg + H;»n, requires
" more general transformations than that of the harmonic oscillator-type.

Let G be a group of transformations that result in diagonalization of
H. Then its Lie algebra L is known to contain H as an element. L is then
called the spectrum generating algebra (SGA) and the corresponding group
G is known as a dynamical group. Note that a direct product of oscillator
groups generated by (1) plays a role of the dynamical group for Hyp.

A new phase space (an orbit of the coadjoint representation of L) turns
out to be a curved one. Path integral over CS’s associated with L is to be
regarded as an integral in a curved space with measure more complicated
than that of Eq.(3). An important point is that G acts in this space via
linear fractional transformations, which induce in the couespondmg path
integral, an appropriate change of integration variables.

The concept of CS’s associated with unitary irreducible representations
(UIR?) of Lie group G was firstly introduce by Perelomov (1972) and gen-
eralized to the case of supergroups by Bars and Giinaydin (1983). Let us
outline below the main features of this approach. Let L be a Lie algebra
that has the so-called 3-grading decomposition with respect to Lie algebra
Lg of its maximal compact subgroup:

L=L"eL’s L™, (5)
Lg contains the generator ¢ \of an Abelian U, factor, that gives the grading,
ie.,
=HaQ
and
@ H] =0, QL] =L, [Q,L7"]=~-L""
The elements {™ € L™ satisfy the formal commutation relations

™" e L™, n,m=-1,0+1, (6)

where L™t™ = 0 for |n + m| > 1. For Lie superalgebras the same defi-
nitions (5, 6) hold, with bilinear product (6} is now to be understood as
an anticommutator between any two odd elements of superalgebra L and
as a commutator otherwise.The important point concerning the decomposi-

tion (5) is that if there exists a set of ”lowest weight” states |lw), that are
transformed irreducibly under the maximal compact. subgroup action and -

are annihilated by all the annihilation operators L~!, then the set of states

(LYY lw), p=0,1,2,... (7)

form the basis for the irreducible representation of the whole group . It
then follows that the generalized CS's associated \nth “algebra L can ‘be’
svmbolically defined as

[C"S) = exp <Z Fla ) [{w), (8)

where a; are even or odd Grassmann parameters (depending on bosonic
or fermionic nature of the raising operators liJrl ). For ordinary Lie groups
a; are complex numbers. The CS vectors (8) provide a convenient basis for
constructing path-integral representation for the systems with dynamical
group (. the crucial point being that the irreducibility of tho states (7)
ensures decomposition of unity in terms of CS (8).

For the physical applications, especially in quantum-optical models. it is
convenient to deal with oscillator-like representations of the L-algebra gen-

~ erators. Then, all the L-generators are expressed as bilinears of Bose(Fermi)

creation and annihilation operators. As is well known. »? blinears
bib!, [0i.b1) = 85 ij = 1.2,m

generate the Lie algebra of {7, group. To extend {7, to the unitary U
supergroup, one has to add to n bosonic operators m ferniionic ones f,,. p =
1,2,...m. Bilinears b;b:( and [, f, form the Lie algebras of 7, and U, under
commutation, respectively, whercas Bose-Ferini bilinears b,—_[‘! and b,’ Sy close

into the set bib;‘-, fufj under anticommutation
wesd oy = spb g+ sble (9)
In the subsequent sections we will be concerned with the sitnplest cases

n=2and n=2,m=1.

2 U, Lie Algebra in the oscillator-like represen-
tation and U, CS’s

In the Bose oscillator-like representation the generators of {7, Lie algebra
can be taken to be

K= biby, wy = 030, Ky = 06, W = ol (10)



U, linear Casimir operator is'a number operator N = b}, + bfb;. All the
higher U; Casimirs are functions of N due to the fact that in realization
(10) we deal with fully symmetric U, representations that are labelled by
the eigenvalues of N. As is known U; = SU; @ U; which means that U,
algebra can be decomposed into the direct sum

. .. 1
{Ii.{., K., hy= E(b;bz—brl)])} T, {.N}, ()
where generators K4 , K~ , Ky span the SU; subalgebra:
[Ni, WN_])=2hy [No. Kt] = £hy. : (12)

Algebra {10) is easily seen to have 3-grading decomposition with respect to
the Uy @ U, subalgebra generated by Ky, Kj:

L+ = {I(-f-} P L= {I(._} , LO = {I‘\l’la 1"2}7

"grading being achieved with the generator K. The lowest weight state which
is transformed irreducibly under U; & U, group action and is annihilated by
the I'_ operator looks as follows

|lw) = |n,0), (13)
where |
btby |n,m) = nn,m), b¥byn,m) =mln,m), n,m =0,1,2,...

Due to Eq.(8) the Uz CS can be written in the form
la;n) = (1 + |a]) =3 exp(abfby) |n,0), (14)

where the complex number a belongs to the coset space Uy /Uiy 2 U/} which
is isomorphic to the complex projective space ("Pl. Note that €S (1)
depends upon the representation index n > 0 - the eigenvalue of linear
Casimir operator. For every value of n the basis in the U, representation
space can be chosen as

lep) = |n—p,p), p=0,...,m,

so that dimn{le,)} = n + 1. The overlap of two states [@';n) and |a;n) is
given as

(onfasn) = (14 ]a')2)7F (1 +|af?)"2 (1 + &a)". (15)

An important property of these states is that they satisfy the completeness
relation ' :

: /Ia;n)(a;nl dpg(a)=1I, = Z lep)(epl, (16)
=0

where the Us-invariant integration measure looks as follows:

n+1 d%a '
du, = .
It is easily seen that
/(a; nlep)(egla; n) dun(a) = 8y | (18)

Due to Eq.(18) for any operator F acting in the (n + 1)D space spanned by
lep) one has

SpF =) (el Fley) byy = / dun(@) (o; n| Fla;n). (19)

P,q

The averages over Uz CS’s look as follows

’ ”
(s n|Kilogn) = ﬁ%f’ (o;n|Ko|asn) = n-i-—_lgll—lf
a «
n! aoP
cnl( K WPlasn) = : :
(a,nl( ‘+) Ia» ") (n —P)!(l‘l‘ la|2)p’
n! oP
a;n|(K_Y|o;n) = ,
sl = G o fapye
(a; n| Kola; n) nl-lof® o) 20
Hfoles 21+l P00 (20)

3 Path integral

Let us consider the path integral over Uz CS for the partition function
Z = SpePH,

where the Hamiltonian H belongs to the U, enveloping algebra. Due to
Eq.(19) one has

Z= Z /d,un(a)(a;nle—ﬁHla;n).
n=0



Defining ¢ as 8/N and using Eq.(16) we write in the usual manner
- H
Z /dun(a)(a;n|aN;n)(aN;n|e"‘”|aN_,;n)(u,\/_,;n e

...e"Hlag; n)(ag; nja; n) dun(an)...dpn(ao).
Up to the second order in € one has
(aj;nle"H|a,-;n) = (a;;njoi;n) exp (—€Hn (a5, i),
where (il Hlorgs )
(ais nlaj; n)

Hnlaj,a;) =
The integration over du,(a) in accordance with Eq.(19) yields
/ dun(a)(o;nlan;n){ag;nla;n) = 4AS'1)]aN;1L)(crU:_n|

= (ag;nlan;n),

so that

2=y [ [Tew 1 (@l eolen) ex
=1

n=0 =0 i=

P4

Z Hul@j,am1) | - (21)

For any state vector |¢), that belongs to the (n + 1)D Hilbert space with
an element

. Pr()/(1+ |al®),
where Pp,(a) is an arbitrary polynomial of degree m < n (Perelomov 1972),
one has

Wl = [ dum(a)la)e
which in the components can be written as

Yu(B) = /d,un(a)(a;nlﬁ; n)Yn(a), Yala) = (Ylajn). (22)

Note that the reproducing kernel {a;n|8;n) acts as a delta function with
respect to the measure du,(a). Due to Eq. (22) the integration over dug in
(21) can be carried out explicitly to yield

oo N N
Z = Z/d,ul cdpy H(ajlaj_l)exp (—eZHn(dj,aj_1)> .
n=0 j=1 j=1 ao=an

23)

With a;_; = a; - §; it then follows

n a,—& - a;b;

Infesla,-1) = 57 e
J

0(52) , (24)
In the continuous limit this yields

n aa—aa
Z = Du (a)e\])( / / Hala, o) )',» (25)
,,ZB a(0)=a(p) 2)o TP ® " |

where the following normalization holds:

3
n aa hand aa
Dyn(a)exp (—.—/ _— ) Spl, =n+1.
a(0)=a(B) .2Jo 1+ |af? "

4 Evaluation of the U, path integral

In order to illustrate how the general formula (25) works. let us take H in
the form

H= wlb;‘bl + wzblbz + /—\blbl + /\b2b1, (26)

where wiw, > |A|? for the Hamiltonian (26) is to be bounded from below.
For the partition function in accordance with Eqs.(25) and (20) one gets

o n /3
Z = Ze‘?"(wl+“"l)/ Dy, (a)exp (—/ L'.,l(d,a)ds) .
, 0

n=0 a(U)=a (D)

where the quantity

. a a
A nA 27
+n 1+|0'12+” FPE (27)

nac —aa  n I —]al?

o= OO GO B yyilel
2 1ta T2 T

can be defined as the Lagrangian. The Euler-Lagrange equations lead to the
equations of motion

d = {aﬂlHn}v
where {,} is a Poisson bracket defined by

{A,By = =1 (9298

(1+]af?)? [0AOB 9AOB
n da 8a Oa da



This indicates that the classical phase space spanned by « and & is curved
- in fact the complex projective plane CP! ~ §? (Berezin 1975).
Due to the relation U; = SU; @ U, the general U, transformation can

be taken to be
Uy = u v €,
-V u

where |u}? + |[v]?> = 1 and 0 < ¢ < 27. The path integral in Eq.(25) can
be evaluated with the help of transformations of the integration variables
which are induced by the U, action in the coset space U,/U, & Uy. U,
acts in the integration space U;/U; @ U; through the following canonical
transformations:
ua + v .
a— o= —, (28)
—vo + u
where the group parameters ¢ and v are kept constant. The integration
measure dp,(a) is invariant under transformations (28). The same is true
for the kinetic term, for example

i3 ) i3

/ aa_ / 6 aa+v
1+]a2 ) 1+jaf-ba+a
0 o

B - B d o

/ aa db+/ ° (d “f’+”_—ad>:
1—{-|a|2 1+]a?2 \ —da+u

0

B

0
i B
(% . _ ace
/ m(lﬁ had /(lln(va - U) = / l—-l—_‘-'lTIz(l-S N
0 0 0

where the total derivative can be dropped since a(0) = a(g). Upon taking

A Jwt A |/\|
u=\V Se
[A] 2Q |,\| V20w + Q

W2+ P,

oue gets

e
. _pgeatez
A = E € ni3 2 An. s

where the path integral

be carried out explicitly. This yields

7z Cﬁﬂn
n

a N=0¢0

which gives

[ tanlaoe™®) = [ dunta)(alac®)

(1 + x)n e2ﬁ9(n+1) -1

o
28Q(n+1) _
(n+1)e /dx(e259+x)”+2 = —pa ]
0

+ wy, sinh fQ(n+ 1)

Z = -
’;)e\p( nﬁ ) sinh 3Q2
It then follows that
w + w m=n/f2
,‘ Z = Zexp( nB— 2) Z exp(—268tm),
‘ n=0 m=-n/2

. En1,112 =

w1+

! which yields the correct spectrum

(nl + n2) + n; — na), ny,ne > 0.

B . B
: . Gt — O : 1- |a|2 }
Zn = / Dy, (a)ex —E/M—nﬂ/-——d 29
; @e® | =3 | THTar Tjap®) @
a(0)=a(8) 0
can be evaluated directly through the definition (23):
;‘g Zn = limy_o / dpy ...duy H a |62(nhola )
ﬁ ap=a N =1
Namely,taking into account that
; e2cﬂl\"o.laj_l> =~ eQn aj_1e 2:9)
one gets
N
Zn = e P impy_ o / duy .. deH ajlo;_ 162‘9) {30)
ag=ay =1
By using decomposition of unity (16) the integration over dy; ...dpn_; can



At the end of this section there should be pointed out that CS’s (14)
coincide in fact with those of the SU; group which can be parametrized by
the points of the coset space SU,/U, (Perelomov 1972). This is merely due
to the fact that Us = SU, ® Uys Thus, in order to construct path integral
for a spin system with dimensionality 25 + 1 one can employ Eqgs.(20) where
one must put j = 7. For example, for the linear spin Hamiltonian

H = QKo+ MK, +MK_,
Ko|m) =mim), m=-j,—-j+1,...].
one gets
B

Z; = pH, /D _"/aa—-aad
Spe” pi(a)exp | —j Tl faf?
0

3 5] : -
H)/ |Pm 2&/ & s 2)/  _ds |, (31)
——— — -——-—S 5
T+ "7 T4l ™7 ) THaf?
(4] 0 R

which is readily evaluated with the help of substitution (28).

5 Path irﬂ:egrai over Uy CS

Thus far, we have discussed the path-integral representations for the U, Lie
algebra. From the physical point of view ordinary Lie algebras are relevant
for purely bosonic (or fermionic) systems. For example, the partition func-
tion for a superfluid helium model is expressed as a path integral over CS’s
associated with the noncompact SU;; algebra (Gerry and Silverman 1982).
In the models of quantum optics, however, there appear mostly Hamilto-
nians that include both bosonic and fermionic degrees of freedom:. .One
needs then to consider path integral over super CS’s associated with under-
ling superalgebras. For example, the compact Uy}, and noncompact OS5 Py,
superalgebras turn out to be SGA’s for Jaynes-Cummings and Rabi Hamil-
tonians, respectively (Buzano et al 1989). Note also, that there has recently
been considered the path integral for 0.5 Py, CS’s (Schmitt and Mufti 1991).
Here we consider the simplest 9D unitary Uy); supergroup that appears as
the dynamical group for various quantum-optical Hamiltonians.

In the oscillator-like representation the Uy genelatms can be tal\eu to
be (Bars, Giinadyan 1983)

Lo = {bloy, f11, 615, 6o/t @ {6165
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Ly = {0}, 0361}, Lo = {bafT, bab)}, (32)

where
{fsft} =1

1t then follows that Eq.(32) gives the 3-grading decomposition with respect
to the maximal compact subsupergroup with superalgebra Ulllrf(/ Grading

is achieved with the operator bsz The operators in the first curly brackets
in Lo forn: the basis for the 7}, superalgebra. As is known, all the irreps.
of Uy); @ U, superalgebra are 1D or 2D (de Cromblugghe and Rittenberg
1983). The basis can be taken as

1D case @ |eg) = [0.m)g &5 [0)
2D case : fey) =0 = Lom)g ). lex) = [nom) g & ]0) g,
where the use is made of the standard notation so that
f10)p = 0. A0y = 1)

The Uy, supergroup acts in the superspace which is formed as Grassmann
envelope of the U, superalgebra representation space (see, for example,
Berezin and Tolstoy 1981). The basis of this superspace is given as |ep)
in the 1D-case and |e;), ¢ler) in the 2D- case. Here ¢ is a Grassmann
parameter and vector |e;) is chosen to have an odd grading (consequently.
le2) is even- graded).

The lowest weight vectors that are transformed irreducibly under the
U1 ® Uy supergroup action and are annihilated by all L_ operators are as
follows :

[0,0)5 ®|0)r and [n.0)g ®[0)p+¢|n—1.0)y &2 [1)p. (33)
Due to formula (8) Uy CS can be represented in the form

' 06
l(.l,();”)‘ = (L4 ]al®)""2exp < )2’ ¥ e |2) (’XP(C\‘b;bl) X

( [2.0)l0) o + Vbl — 1.0} g[1) ) ) (34)
Notice that CS (34) depends upon ordinary and Grassmann parameters
simultaneously while the representation index n is now an eigenvalue of the
Uy linear Casimir operator

N =blby +blby+ fir.

11



The overlap of two states (34) is

(d,0";n]|a,8;n) = (a'in]a;n) x

o (_2 % __n #y 78 ‘(‘35)
N p_ 214 o) 214 ][> " "14+8'a)""

where (a';n|a;n) is given by Eq.(15). Unity in the representation n is
resolved as :

u=/m¢mm¢mwmwn - (36)

where the Uy, invariant measure reads as follows:

60 ) d®a  dOdo .
(37)

du, = ex .
H e""(1+|a|2 14|z =

The Uy, path integral can be obtained by the very same procedure as that
in the Us case. The new point is that there appear a more complicated
kinetic term and the antiperiodic boundary couditious for 6:

i3

Z = SpePH = Z Dun(d,'())exp ——g/ aa T ad s
0

T(0)=u(A), 6(0)=-6(5)
)

3 . :
+n/w Md+_/&&2Mﬁ ~/Mm®®’@&
0 0

1 +|af?

2 ) 1+4|a? (L+ |af?)?

where

H(a,0) = (a,0;n]|H|a,8;n).

In the case when Uy, is a spectrum generating algebra, i.e., H belongs
to the Uy, even subalgebra, path integral (38) can be calculated by the
change of integration variables in accordance with the U, group action in
the classical phase space which is isomorphic to the coset Uy /Uy ® Ut

Namely, Uy supergroup element in the fundamental representation can
be defined as

w 01 /\1
U= 6, w, 65 |, Ulv =1,
/\2 94 w3

where wy 2.3 and A ; are even Grassmann parameters and #) 3 3 4 are the odd
ones. Then, under the Uy, action the supervariable («.8) € Uy, /Uiy @ Uy

12

undergoes a linear fractional transformation (Bars and Giinaydin 1983) .

wia+ 6104+ X\
AT TATT AL
Ao+ 040 + w3 ’
- O+ weab + 6 ,
. g_ % + wa +3_ o (39)
A2 + 049 + w3 i .
The integration measure in Eq.(38) remains invariant under transformations
(39). By specifying the Uy, parameters in. Eq.(39) in the same manner as
it was done in the previous section for the Uz case, one can evaluate the
path integral (38). This is equivalent to the direct diagonalization of the
Hamiltonian by means of appropriate Uy, rotation in the super Fock space.

6 Conclusions

In conclusion, some remarks are to be made. First of all, there should be
pointed out that we are dealing with CS’s associated with finite-dimensional
Lie algebras (superalgebras). As a consequence, quantum systems with finite
degrees of freedom are only being considered.: :

The next point is that the path integral over Uz and Ua_,“ CS s turns
out to be very convenient in the semiclassical treatment. In the general
quantazation scheme for curved- phase spaces developed by Berezin (1975)
the representation index n labelling CS’s associated with a group of motions
of this phase space plays the role of 1/#. In the oscillator -like representation
this,means a large particle number limit. The stationary phase method for
integrals (25,38) as n — oo leads to the classical Euler-Lagrange equations.
The important point is that by means of the substitution @ — a/\/n the
integral (25) in the limit n — oo goes over to the "flat” one with the standard
measure DaDa. Thus, one can employ the standard -methods in dealing -
with the SU, path integral in the limit of a large total spin. This is in
complete accordance with the fact that SU; CS’s at large values of spin j
go over into the ordinary (Glauber) CS’s (Perelomov 1972). For example,
the partition function (31) in the limit 7 — oo reads as

Z; = &i

a(0)=a(g)

B B B
—Q/|a|"-’ds— ,/2j/7\ads— \/Qj//\ads , (40)
0 ’ 0 0

DaDaé exp %—/(&a — aa)ds

13



where the coefficient A is supposed to be time-dependent. The path integral
(40) is seen to be easily calculated (see, for example, Dacol 1980).

As another example there could be considered a nuclear Hamiltonian
proposed by Lipkin, Meshkov and Glik (LMG) which in the spin represen-
tation reads as (Lipkin et al 1965)

. 7 - -
H=¢|Ko+ E(I\%, + K%,

wherel{;are the SU; generators of dimensionality 2j+1 with j = 5. Here nis
a total number of particles in the LMG model, ¢ and r are real parameters.
Note that H belongs to the SU; enveloping algebra. With the help of
Eqgs.(20) at p = 2 one can readily obtain the path-integral representation for
the LMG model in the form of Eq.(25).

There should be also pointed out that representations (25, 38) hold for
Hamiltonians that belong to the U; and U,y enveloping algebras, as it has
been just mentioned for the SU, case.

The last remark concerns linear fractional transformations (28, 39). The
Uz and Uy integration measures remain invariant under the corresponding
local linear fractional transformations. This means that one could try to use
them in calculating Uz and U); path integrals with parameters depending
on time. These and related problems will be discussed elsewhere.
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