


Recently, there ha.s been renewed mterest in the brpolaron problem, triggered by a-

: : possrbllrty ofa bzpolaromc high-T, superconduchmty Brpolarons act as charged bosons :

that could’ undergo the Bose-Ernstem condensatron in a real space ln context “of

large blpolarons such a mechamsm was studxed by Vmetsku and Pa.shltsku [1] Later” o

. analogous xdeas were srgmﬁcantly developed by Emin and Hrllery [2] [3] The study of - . -

“the brpolaron stabrllty is of pnmordral 1mportance for developmg such theorres The

' modem art ‘of creatmg new materrals such as thrn ﬁlms and quantum wires makes it

L possrble to conﬁne movmg electrons to two or even one dlmensrons The conclusron that

‘a bxpolaron formatron makes ea.srer in spaces of lower drmensrons was made in many«' :

: recent papers but we show here that rt depends on a concrete physrcal mechamsm of S

: electron conﬁnement

The Frohhch Hamlltoman for two electrons mteractmg thh a phonon feld is wrrttenﬂﬂ i

'—»fa.sfollows : : B R Ty SoE S
H 2p,ln Zf“"ka ak+U(lf‘1—f‘2ll+Z[ V("‘"+e""’)+hc} '
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' i' where’ r.(p.) are the posrtron (momentum) operators of the - th electron, m is the’
: electron band ma.ss, a- (ak) are the creatron (anmhxlatron) operators of phonons wrth ’
the'y wave vector k and frequency wk The potentral U(l i~ - 7 |) stands for the drrect L
‘ (Coulomb) rnteractron between electrons the quantrtles V- are the Founer transforms of :
theelectron phonon mteractron A conventronal model people use for optrcal phonons e

= g ‘is based on the so—called Emstem drspersron law wk wD llere D denotcs the number :

. of space drmensrons to whrch electron movement rs conl' ned

In any case the real physrcal space remams three-drmensronal The drrect mteractron &

of electrons is supposed to be of the Coulomb type m an arbrtrary number of space o

; drmensrons S

: U(Ir,-—r,])_hwp D.

: | r—Tzl UD’ o

o

where we introduce a dimensionless Coulomb coupling constant Up.
Following the paper [4] one can represent the electron-phonon interaction in the

D-dimensional space as follows:

VE= th (QD ( \/—)D IF(___)> (3)

where V ls the volume of a D-dimensional ‘crystal’ and ap is a coupling constant of

the electron-phonon interaction.
At D = 3 Egs. (1-3) lead to the standard Frohlich-type bipolaron Hamiltonian with

w3p = wio and conventional coupling constants
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Up=U= , N = €ofeo- (5)

Here € is the electron charge, cem = €2/hc is the electromagnetic fine structure constant
and €, (€o) are the high frequency (static) dielectric constants. The ratio U/« is
evidently not less than v/2 what deﬁnes-the physical region of the bipolaron parameters.

Coupling constants a and U are well defined parameters which can be measured
experimentally. Being three-dimensional creatures people should be careful with a
definition of analogous parameters in worlds of lower dimensions. Often people suppose
that ap = a and Up = U and make some conclusions based on this assumption, which
is not necessarily true. The goal of the present paper is to clarify the point that
electron-phonon and Coulomb coupling constants depend on a concrete mechanism of
a realization of physically two-dimensional space.

In order to give an insight in the origin and the physical meaning of the 2D-bipolaron
problem we shall consider how can it be deduced rigorously from that in real multi-layer
structures, starting with a consistent derivation of the Hamiltonians describing both
inter-electron [5], [6] and electron-phonon interaction [7] for such structures. To be
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more concrete, consider a planar layered structure (1|2[3) consisting of semiconducting

or dielectric media with the geometry and material parameters shown in .Fig. 1.

l

€1,009 €1,0 €2,00y €20 €3,005 €3,0 L,

0 5 Z, : Z

FIG. 1. A scheme of a multi-layer structure. OZ is a stratification azis and L., Ly are

the sizes of a sample in a transverse plane, while | = 3, — 3, is a thickness of a middle layer.

For the sake of definiteness, let the electrons be in a central layer at the positions
Tn = (Pn,2n), n =1,2. The potential energy of the direct electron-electron interac-
tion depending on the 2D-vector 5= 5, — j of relative position is (6]
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€300 T+ €2,00 COt(KI)(€1,00 + €3,00) + €1,00€3,00 sinh(k{)
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+ (fg,;o — €1,00€3,00) cosh[k(z1 + 22 — 71 — £,)]
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where Jo(z) is the Bessel function. Besides the aforesaid modification of the interaction
between electrons, in a multi-layer structure there appears another phenomenon, self-
action, namely, each of electrons interacts with the rapid polarization induced by itself.

The potential energy of the self-action for the i-th electron can be.written in the form
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X e‘“(e?'oo — €1,00)(€2,00 = €3,00) + (eg‘oo — €1,00€3,00) COSh[k(22, — 21 — £3)]

+ €2,00(€1,00 — €3.00) Sinh[k(22, — 31 — 5o)]|dk, n=1,2. (1)

The phonon Hamiltonians as well as those describing electron-phonon interaction in
multi-layer structures with an arbitrary number of layers were obtained in [7). They
reflect a d;astic reconstruction of the phonon spectrum in such structures in comparison
to that of uniform media, including appearance of surface phonons related to the waves
propagating perpendicularly to the stratification axis with amplitudes decreasing when
moving sufficiently far away from a boundary plane [cf. (28) below]. The Hamiltonian

of surface phonons is
> hQE.i“z,,-“E,j’ » (8)
Ej i '

where k is a 2D wave vector and an integer j labels the surface vibration branches
possessing eigenfrequencies {1z .. In particular, for various versions of the structure
shown in Fig. 1 these Hamiltonians were obtained in [7—9]. For the sake of sirﬁplicity,
we shall confine ourselves to a symmetrical structure containing polar outer media and

a non-polar central layer, where there are two branches of the surface phénons with

eigenfrequencies:
(1)
erolk)
02 =i, =12 (9)
R FONTY
Here the effective dielectric functions
M Wy ) kl
€1,0(k) = €10 + €2,00 coth (), (k) = €10+ €200 tanh 5 )
1) Kl ) . kl
€1,00(K) = €1,00 + €2,00 COth (7) v € ,0(k) = €1,60 + €200 tanh 0} (10)

determine the dispersion laws. The Hamiltonian of the interaction of electrons with

the surface phonons is

> Z [“::.,- Ve +h-0-] FIC (11)



where the functions

sinh{k[z — (% + %)/2]} _ cosh{k[z — (% + %,)/2]}

snh(kjz) 0 9ka(®) cosh(kl]2) (12)

i (2) =

allow to classify the first and second branches as describing asymmetrical and symmet-

rical potentials, respectively. The amplitudes in (11) may be represented in the form

of Eq.(3) at D =2
) :
Ty . h .
V" = _-h o k.J
k. ihQ (L;,Lyk \/ 2mQ ) ’ : (13)

where (L;L,) is the cross-sectional area of a structure and o ; is the effective dimen-

sionless coupling function of the interaction with the j-th branch of surface vibrations

o €2 1 1 2mQy (14
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We stress that concrete forms of the above interactions depend substantially on physical

mechanisms of the electron confinement. Two of them, which are of the most practical
importance, will be considered below as examples. ‘

Quantum-Well Confinement. In a quantum-well structure electrons are confined
to a central layer due to a big gap between the bottoms of conduction bands in the
neighboring materials. Under the condition of a thin layer kl <1 (which corresponds
to the situation when the radii R of the polaronic or bipolaronic states are much greater

than the thickness /) we straightforward get from (6) a 2D Coulomb interaction

2

vle) = P€1,00 + €3,00)/2

(15)

screened by the mean dielectric permittivity of the two outer layers. If they are made

+'of the same material, €),00 = €3,00, it follows from Eq. (15) that

e?

PE€1,00

U(p) =

(16)

In the case under consideration of a thin middle layer we successively find the surface

phonon eigenfrequencies (9)

,}II_I{}) Qr, = wi,T0, klll_lf}) Q5 = wiLo, (17)
the functions (12) describing the z-dependence of the interaction a.mplitudes
. oz (5 +2)/2 . _
lim g;1(2) = 72 AmeaE) =1 (18)
and the electron-phonon coupling amplitudes (14)

. . e? 1 1 2muw Lo
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This means that the first phonon branch is inactive in the electron-phonon interaction.

Thus, the Hamiltonian (11) takes on the form
S Y v rolvre] (20)
n=1,2 F .

with the amplitudes

27 agp h 2
, (21)
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wherein both the phonon eigenfrequency and the effective coupling constant coincide

with those in a 3D-crystal of the first material:
wW2p = W1,L0, azp = a3p. (22)

Just these relations were implied by the authors of [4]. Thus, we find them to be
adequate for the electronic confinement to a superthin quantum well. Introducing a

notation Up for the 2D Coulomb potential in a conventional way [compare with Eq. (2)]

Uap h
J = hwyp——
Ulp) = hwo p Y mwp'

(23)

for Usp we obtain the same expression Eq. (5) as for the 3D-case with € and o being
related to the first material.

We discuss one of the limiting 2D-cases when electrons move in a superthin layer
between two polar media. In the intermediate region of thicknesses

2
2,00 + ,0¢3,00

‘12.00(51.00 + c3.00)

l<R<l (24)
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the general formula (62 leads to a logarithmic law (see [8]). In a real case of finite
thickness of a layer which contains electrons there exists a continuous link with another
limiting case. The latter, which we discuss now, corresponds to electrons moving near
an interface between two thick slabs.

Image-Potential Confinement. In the opposite limiting case of a thick middle layer
kl > 1 (which really means that the radii R ofvthe polaronic or bipolaronic states
are small in' comparison with‘l) the interaction (6) for electrons in the vicinity of a

boundary, say, z, ~ %1, turns-to the 2D Coulomb potential energy
2

O e ani

(25)
wherein the screening is described by the mean dielectric permittivity of the media
adjacent to the boundary. If thickness of the second layer increases, then (7) leads to
the image potential energy for the electron in the second substance not far from the

interface (1]2):

€? €200 — €1.00 1
Usa(zp) = — = - o
SA( ") 62,00 €2,00 + Cl,oo 4(27: - 21)’

20 > 3. (26)

Taking account of the polaronic effect was shown [8] to make the boundary value of the
self-action potential at z, = #, finite. The most important for our present discussion
feature of this potential is its attractive nature if the inequality €; .0, < €1,00 is satisfied
(this condition holds true, e. g., for a particular case when a dielectric layer borders on
vacuum [10]). Thus, in the vicinity of a boundary between two substances possessing
substantially different values of dielectric permittivity in a multi-layer structure, elec-
trons suffer a strong attraction to the interface. This attraction confines them to a
certain region near the interface, the extent of which along the stratiﬁcation axis may
be controlled by the geometric and material parameters of the structure [8] and hence
may be made small. In such a case the electronic motion again appears to be effectively
two-dimensional. In the case of a thick mi_ddle layer the eigenfrequencies occur to be

degenerate:

|
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f

. €1,0 + €2,00 .
lim Qg . = = 1,—'———'— =1,2. 27
G325 = wap = wiTo €100 + 62'00, J ) (27)

Supposing electrons to be near the boundary (1]2), we are to pass to the limit 7, — oo,

which makes the functions (12) identical:

lim gp .(2) = gz(2) = exp|—k(z — 21)],‘ j=12 (28)

kl—oo

Therefore under a canonical transformation

T I

the Hamiltonian (11) acquires the form independent of the ‘primed’ creation and an-

agy tag, p
by = =22

nihilation operators

Y Y [eevee™ + blvie ] gy(a), (29)

n=1,2 £

with the amplitudes (21) and the effective coupling constant

o = e? ( 1 a 1 ) [ 2muwqp (30)
® 2hwop \ (€100 + €2,00)/2 (€10 + €2,00)/2 h

resulting from (14). Then the expression for the Coulomb coupling constant of Eq. (23)

follows from Egs. (25), (30):

2 oo oo
- \/—az?)’ Tp = Dot em ' (31)

€10+ €2,00

In case if a polar substance contacts with vacuum, €3, = 1, Eqs. (21) and (30) repro-
duce the known amplitude of the interaction of electrons with surface phonons obtained
in [10]; other papers on the subject are cited in [§]. When neglecting the motion of
electrons along the stratification axis (z» = %), we finally obtain from Eq. (29) the
2D electron-phonon interaction Hamiltonian (20), wherein the limiting surface phonon
éigenfrequency (27) as well as the effective coupling constant (30) depend both on di-
electric permittivities of the polar medium and on a dielectric constant of the electron-
containing substance. In these circumstances under the inequality €,00 3> €30, from

the above displayed results it follows obviously that

9



- 6l,oo P
wop & W1,L0, @D — 2a3p, M DN = P (32)

Thus, the only difference with the quantum-well confinement is an effective increase of
the electron-phonon coupling constant.

In a 3D-space bipolarons can be formed if the electron-phonon interac-
tion is strong enough to overcome the Coulomb repulsion. To formulate this
statement numerically, it is convenient to consider a phase plane of phys-

ical parameters—Coulomb and electron-phonon coupling constants (U,»a) {12].

v /)
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FIG. 2. Phase diagram of a bipolaron formation region. Critical value Uc(a) of the
Coulomb coupling constant is presented as a solid curve. A dashed line represents its asymp-
totes U = v/2a/(1—1.). The sector above the solid line U = V20 corresponds to the physical

values of parameters. A space between the solid lines is a bipolaron formation region.

Surely, bipolarons cannot be formed at any given value of a if a Coulomb repulsion
coupling constant is large enbugh: U > U.(a). Thus, a bipolaron formation region is
restricted on a phase diagram by a curve U,() and aline U = v2a which is the border
of a physical region [see Eq. (5)]. The situation is shown in Fig. 2. Two parameters
a, and 7., whose meaning is obvious from the figure, are of importance. The best

results for 3D-case are as follows: a, lies in a range from 5.4 to 7.3 {11-14], 7. is about
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0.12-0.14 [11], [15-17]. Analogous results (including phase diagram) were obtained in
the 2D-case with asp,. = 2.9 {12] (2 in Ref.[13]) and 7;p,. = 0.158 [17]. Herefrom
people concluded that a bipolaron formation region is enlarged in 2D. '

There exists some misunderstanding of the physical meaning of the results obtained
for the 2D-case. The immediate conclusion that the bipolaron formatipn region is
larger in two dimensions as compared to the 3D-case is based on the assumption that
material characteristics are the same as for 3D samples. We demonstrated that this
is true, say, for the quantum well confinement when the results mentioned above take

the form
Wop = WLO, - (op = Q. = 2.9, 600/60 = 0.158 ’ (33)

with parameters related to the outer layer.

Our second example is the image potential confinement when electrons move on
the border of polar and non-polar media. If the dielectric constant of a polar layer is
much larger than that of a non-polar layer, we have the same relations for the phonon
frequency and the ratio of the dielectric constants, but asp — 2a3p. This leads to the
critical value a, = 2.9/2 ~ 1.4. Here a is related to the polar layer and a bipolaron
formation is easier than it was supposed before. But we can give an alternative example.
Say, we deal with a polar material for wlich € o, = 5, ;0 = 50. Then 7. =0.1and a
bipolaron formation seems to be possible (if one forgets that the criterion was derived
for n2p). Suppose, however, that for non-polar medium we have € o, = 5. Then, as it
follows from Eq. (31), nop = 2/11 = 0.18. This number exceeds the reported critical
value 72p,c.

Thus, in general the relations between parameters are more complicated and could
lead both to a narrowing and to a broadening of a bipolaron formation region. The
relation between dielectric constants ean’t be represented via the simple ratio 5 =
€ /€0. At last, a phonon frequency could be changed in a physically two-dimensional

system. So people should be careful comparing theoretical results with experimental



data. Above we presentgd the formula needed in such cases.

Note in conclusion that electrons can be confined to 1D-space as well. An example
of a mechanism is given by a (bi)polaron in a strong magnetic field [18], [19]. This
mechanism leads to specific links of coupling constants in 3D and 1D. As is clear from
our discussion of the 2D-case, other confinement mechanisms are also possible. But in
contrast with 2D where we concentrated on flat layers, one now needs the theory of
(bi)polarons in axial symmetrical layers. This will allow one to take the limit of an
infinitely small radius, that is, to study the physical 1D-space. Such a theory is now
in progress.
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was supported by the "Hubbard” project No. 91112 of Russian State Program on

high-T. superconductivity.

12

References

(1] Vinetskii V.1, Pashitskii E.A., Ukrainskii Fiz. Zh. 20, 338 (1975).

[2] Emin D., Phys. Rev. Lett. 62, 1544 (1989); Emin D. and Hillery M.S., Phys. Rev.
B39, 6575 (1989).

[3] Emin D., Physica C162-164, 799 (1989); Physica C185-189, 1593 (1991); Phys.
Rev. B45, 5525 (1992).

[4] Peeters F.M., Wu X. and DevreesebJ.T.‘, Phys. Rev. B33 3926 (1986).
[5] Fomin V.M. and Pokatilov E.P., Phys. Stat. Sol. (b) 128, 251 (1985).
(6] Fomin V.M. and Pokatilov E.P., Phys. Stat. Sol. (b) 129, 203 (1985).
[7] Fomin V.M. and Pokatilov E.P., Phys. Stat. Sol. (b) 132, 69 (1985). |

[8] Pokatilov E.P., Fomin V.M., and Beril S.1., Vibrational ezcitations, polarons and

ezcitons in multi-layer systems and superlatlices (Shtiintsa, Kishinev, 1990).
[9] Wendler L. and Pechstedt R., Phys. Stat. Sol. (b) 141, 129 (1987).
[10] Sak J., Pliys. Rev. B 6, 3981 (1972).
[11] Adamowski J., Acta Pliys. Pol. A73, 345 (1988); Phys. Rev. B39, 3649 (1989).
[12] Verbist G., Peeters F.M. and Devreese J.T., Phys. Rev. B43, 2712 (1991).
[13] Bassani F., Geddo M., Iadonisi G. and Ninno D.. Phys. Rev. B43, 5296 (1991).
[14] Adamowski J. and Bednarek S., J. Phys. C4, 2845 (1992).

[15] Mukhomorov V.K., Fiz. Tekh. Poluprovod. 16, 1095 (1982) [Sov. Phys.—

13



Semicond. 16, 700 (1982)].

[16] Suprun S.G. and Moizhes B.Ya., Fiz. Tverd. Tela 24, 1571 (1982) [Sov. Phys.—
Semicond. 16, 700 (1982)].

[17] Verbist G., Smondyrev M.A., Peeters F.M. and Devreese J.T., Phys. Rev. B45,
5262 (1992).

[18] Kochetov E.A., Leschke H. and Smondyrev M.A., Z. Phys. B (1992).

[19] Smondyrev M.A., Kochetov E.A., Verbist G., Peeters F.M. and Devreese J.T.,

Europhys. Lett. (1992).

Received by Publishing Department
on September 17, 1992.

14

e PP

Kombaﬁnmem GVII"IOI'IﬂpOHa 8 nBymepHoM ‘cnoe'

®omun B.M., Cmouoblpea MA. Lol . E17-92383

lllupoxo pacnpOCTpaHeHHblM BbIBOA 0 pacu.mpeva oGnacm

; MexaHusma ynepmaHun 3I'IeKTpOHOB B TOH KOM cnoe.

i

/" MNpenpunt OG8benHHEHHOro HECTHTYTA SAEPHBIX MCCACIOBAHMI, Ry6ua 1992

= cpopMMpoaaHuﬂ 6Mnonﬂpouos B nBymepHOM npocrpchrae Hy>+<- I
. RaeTcA - B nepecMmoTpe, nocKoany OH 3aaucwr or. KoHerTHoro‘

o Paﬁora BblnonHeHa B ﬂaﬁopa'ropvm TeOpeTW(eCKOM ¢m3m<w ’
- OVIFWI - " ' : : s

Wldely reported broadenlng of a blpolaron formatlon reglon R
. in2D should be revised in view of a concrete mechanlsm of electron
B conflnementtoa2D -layer. - R

C e

The mvestlgatlon has been performed at the Laboratory of Theo-‘ Cex
retlcal Physrcs JINR ‘ L & L

Tk . Preprint of the Joint Institute for'!\ioc'lear liésearch; Dubna 1992 S

g .kFomm V.M. Smondyrev M A s (N .‘ ‘, E17;92?383
: f Blpolaron Confmement in: Two Dlmensmnal Layers : RN






