


.~ The Bogolubov theory of nomdeal gas. Bose—condensatlon for elucis -
":'datlng 4He superfluidity was one. of the first achievements of- quantum . -
" statistical physics-in studying collective phenomena of ‘the-microworld

(1]. Not only the repulsion forces between atoms but also the attrac- =~
- tion forces.[2, 3] were later introduced in-the model. - Interest in the =~

: lattu stemed from the problem of quantum crystalllzatlon of llquld he-

~lium [2]. In the original model, only.. temperature. fluctuations of the

Bose-condensate density still remained unmvestlgated the: calculatlon -
- of ‘which, as had been mentroned in- [4 5], gave a nonvanlshmg value in~

. “zero-degrees Kelvin, ¢ ... R R T

“Interest in the problem of ﬂuctuatlons of the number of partlcles un-iy;j’ g
der Bose-condensation stems from successful investigations of the depen-
‘dence of light field fluctuations on the parameters of a system in quantum .

"~ optics. One-of such opt1cal systems using pairing correlatlons between
_ photons, has been described in [6, 7] within the zero-dimensional version -

~of Bogolubov s model-of condensation of nonideal Bose-gas. We may E

assume an analogy between this effect and’ excitation corrélations in su- = -
~ perfluid liquid *He as concerns the existence in the latter of states with
_“different -statistics of fluctuations of the number of condensate bosons ‘
This information could be useful for- interpreting experiments on mea-

surement of superfluid components in liquid *He which, as is known 8],
give essentially smaller values than expected from calculatlons of mean L
occupation numbers. :

In the present paper, in Bogolubov’s model of Bose- condensatlon we .
have derived formulae for variances of the number of condensate (k =0) -

~and over-condensate (k # 0) bosons and estlmated the 1ntensrty of thelr
ﬂuctuatlons at d1ﬁ'erent temperatures o ~ '

1. Part1t1on Function in Bogolubov S Model

- The Ham1lton1an of Bose-part1cles in Bogolubov s model has the form, k

oH = +2[ b+bk+ (b+b+ka +bkb La,2+
+2btbkl_al )+‘_V'b:bklal o
k= —2771_1 : [k’ kl] =5kkl’.';
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With-an ‘accuracy wp to processes of higher order in the 'pal\alnetu ‘
~ gk(go)~! assumed small in (1). there holds the 1nteg1al of. motlon N of

“the total number of partlcles N B T _
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The partltlon function @ of the canonical ensemble with allowance for
constralnts generated by the 1ntegral of motlon (‘)) equals
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L ‘Here a trace over quantum varlables of over- condensate pamcles is wnt- «
ten as a functional integral along the tra._]CCtOI‘ICs bk, b3, b_p, b7y w1th pe-

“llodxc boundary conditions -~ . .o 0T oM

b(0) = bk(ﬂ) b;(0) = bi(B)- .

and analogous ones for the trajectorles with index L — (=Fk). Inte- -

grals over the Bose-condensate field a and the coupllng ‘par ameter y are

_numerical. The Gauss integral over the trajectories b,b* in the product.

- w1th respect to k is found from the ratio of functlonal determinants
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2 Low-Temperature Approx1mat10n :

4 half-axis of the mtegratlon‘val iable p into two parts according to'the in-_
. cquality p74(Bgo)™":

" and ‘will- determine more accurately app10\1matlon of low: tempelatures' ~

Substltutmg the result (4) mto for mula (3) \\'é get the statistical integral L

- Foran applo‘(nnate calculation of the integral ( ) let us divide the = . -
5 “The upper sign of it ¢orresponds to s‘itlall'tonden-fi”‘_
- sate densities and hlgh temperatures; the lower sign; to large condensate -

densitics and low temperatures. We W111 restrict ou15elves to the last case - e

in fol mula (5) by dividing the plane of variables-w)-and (E} — IG/ﬂQ)thoff :




“ two palts accordmg to tlle 1nequallty ﬂEL> 1 'llle 1oots of the par abola g

wluch d1v1de these parts of tlle plane :

P .
- S 16\ ?
o (w’2)1,2 = —grk (gfp’ + B—,) -

determine the regions of apphcablllty of two approxunatlons for the func-, ) o

- tlon smh(ﬂEk/ll)

ll_GXP(wkzé/2) ' 2npS BB <d:
1sinh*(BEc/1)

Z‘”"ﬂ >

. E..
k#0 k#0 k20 | B3, . Bl >4

“Finally, choosing as an eXpanSion palan]etcr of the square root- inf'f
- E'k the-ratio gep(wr)™! or the inverse value, combining all inequalities ’
*_ written down and changlng in the spmt of a semiclassical descuptlon of

over-condensate bosons the sum over. k mtcglals we derive for (5 ) the
formula ‘

Q V\/‘//ﬂgoflp/ dyc\pfb . “(6);v

o ‘ W= l/ﬁ :
o d = A——ﬂV (900’ /2—up+up)+cV/ k‘clk [Qk—u—}-
Co wk——2yop

+ (go+gk)] ¢! =27r hv.w e

,:‘V'Note that the integral over k'in the limits of 4/ﬂ < QL < o0 and the tu m-‘, ;
~with the function luin the integral in tlie interval —2gop < U < 4/8 -
give a contubutlon in the next approxnmatlon order in pﬂ_/o >4 and are -

fdlsregarded in (6)

3 Equatlons of a stat1onary phase and
- varlances of a condensate den31ty SRR

4

: Aftcr the SImpllﬁcatlons made let us ploceed from the calculatlon

gy "of Q.using the stationary phase method. as ' N..— oo,V — oo. The

o low- temperatme approximation, -that has been foxmulatcd in deriving e
-~ formula (6), is natural for a ‘numerical (nonopelatm_) ‘description of the =~

N i
. S

S Bose- condensate adopted in the model (1). A descnptxon like that is

equivalent to the ‘assumption about a large value of the interaction be- .

tween bosons of the condensate go in comparison with their interaction *

with over-condensate bosons 9k kz0- Perturbation theor y in the parame—y .

ter gx(go)~! connected with this assumptlon w111 be used later in the form

- of iterations with values g — go and v — g in the zero approximation -

where vp = gop is the coupling parameter value providing the Bogolubov -

- phonon spectrum in the formula for E;. In this case, the mtegral phase L
: (6) has the form ‘

o= ~Dp ~+V(P —R) +mQ290p —v), (7) 5

,BV 2

and the equatlons of 1ts statlonarlty

1§ R
ﬂV ap 0= —YoP + 2g°P‘ + V’
T T o COVINEE
=0=p-R—p, p=3 dk oo
Vo  0 p—R n P> ng_o * Lnie

: “determine extremal values of N 1n ﬁxst pextmbatlon order accordlng‘ R
- ‘to thc equalltles : e

ptm=R,  p+p=2R, po= V(y‘o)“t-/_f

In these equalltles ‘the densmes of the condensate pa ‘and over- condensate;

partlcles p1 are introduced. Formula (8) coincides ‘with those obtamed»_; g
in first order of the modified perturbation theory [9].  This coincidence

{is a consequence of the equivalence (-in the ther modynamlc llmlt) ! of a—:"f
. large canonical[9] and canonical (3) Gibbs ensembles. :

"For the Gauss integral (6) with a_ ‘simplified phase (7) the solutlon :

= (8) gives an asymptotlcally exact at N — o0,V — oo answer. For- .

mula (6), as has been mentloned is'a low temperature apprommatlon i

for the statistical mtegral (5) of the model (1) that in.its turn is an ap-
E proxunatlon of the Hamlltonlan thh a pamng four-boson interaction. :'-

s

'If we were interested in dlmensnonal effects of superﬂuxdlty at ﬁmte V this equnv— -

" alence wouldn’t hold since the integral of motion in-the phase space allows for the‘
-binding condition i in (3) whereas the chemlcal potentlal [9] allows for it as an expec-r .

tatlon value




Therefore, proceedrng from the calculatlon of variances of the vauable p
we w1ll be 1nterested only 1n the main’ contubutlou to t11e phase (r) at,‘

NE p P0>P1 o R R
: o
D(p /dp(p—p) exp@(/dpexp@) e
JHﬂ_V:.@O'— (P ) . 'D(P)=m-'

Here, ®, is the value of the phase ® at the extremal point determined

by equations (8) at the fixed density R of the total number of partlcles -

these equatlons result in the equality of variances of all variables
D(p) D(po) = D(pl D(R) ~o.

4 Temperature Varlances of the Condensate |

To determlne the scale of ﬁuctuatlons of the condensate and over- -
V condensate ‘bosons one should compare then ‘densities pos ;1 with vari-

- ances P-of the number of particles normahsed to the volume

D(ny) ;D(n‘i) -~ __l_
-V — V. g

S ny ,
. 0 ot n0+n1=N’ ) P =

The condensate density po tal\es the largest’ value at zero tcmpclature
ThlS value, equal to R, can be estlmated from the equallty

Qu=4/Bo " - o 1: A
"R= E/. kzdk— -(smkoTo)% C Be= -
0 : ) SRES

where ko is-the Boltzmann- constant and fl is crrtlcal tempclature Lo

Talung this temperature equal to 2 I{; the density of liquid helium eqlral
“to 0 13gr - em™3. and the Avogadro number equal to 6 1023 we ha\e

' V‘R~’102°cm =3- 1021(mol 1'=05- 10 2(utom

The 1nteractlon constant 9o between atoms of the condensate llas the", ;

d1mensron (energy ‘ voluriie). For one atom tlie encrgy £ of the vin

: ~ der Waals 1nteractron [10] for hght atoms can be taken equal to 0, OlcV i

~ particles equals

LoTo. _ :

so that: var tance -P. of tlle number of condensate and ov er- condensate i

kT 107tV T -
b= go FEeV atom - [\’_VO 71’0‘ atom (¢

The comparlson of numerical estimates for R and p shows tllat at'

B ternpelature larger than 1 K , the variance P of the number of partlcles 2

of any component exceeds the density of its number of partrcles At
temperature smaller than 1 K, the density of the numl)ex of particles

“of the condensate exceeds the variance, and in this _case, one may speak . -
about small fluctuations of the number of bosons with zero ‘momentum.,
~As for the over- condensate compoucnt at the lowest temperatures both
~ its density and its variance are small. Thus, the question of a possible .

suppresswn of variances of phonon excitations in an cqulllbuum sy stem
remains open. : ‘ e R ‘ .
" One expects that at temperature close to cntlcal the above estunates bt

are incorrect. This is due to the statement of the problem with the
Hamiltonian (1) and low- temperature approximation being lumte(l At
- _seems mexpedrent to raise the accuracy within the model (1) as it,

has been noted in [4, 5] and’as it follows from the form of Ey in for mula '

“(4), leads to the appearance of a gap-in.the photion spectrum: which-is ©
not observed experimentally’and is absent in putunbatlon theory with a’

four-boson interaction. In the last case, besides a possible more accurate

- calculation, one can’ consider quantum fluctuations ‘of the cou(lensate ‘
~ which are disregarded in the above statement of the ploblem

Using the analogy with quantum ‘optics, one can note that the srtu— |

“ation with small vauances of the density of the number of particles of
‘the Bose-condensate’ couesponds to the so- called sub-Poisson statistics

of the light field. At _temperatures close to the phasc transition temper-
ature, density fluctuations of the number of l)dltl(l(‘b of the. condcnsatex
are lalge In this case, to study their statistics . it may be cﬂ'ectl\e to

© 0 use the the01y of the Bose-field pllase operator. [11]

‘Thus for the Bogolubov ‘model, we have .given - the estimates of tlle "

~ density of the. number of particles of the Bose-condensate an(l their vari-.
- ances.” The comparison of ‘these quantities with each: otllel shows that SR

tempel ature fluctuations of the number of particles of the condensate are

'rathel sinall in tlle vruulty of zero degree I\eh in and large in tlre v l(unty ;

e




of transmon temperhture ThIS ‘means that’ the way ol mterpletmg exs
'perlmental data should depend on temperatuie. Indeed, in experiments

with liquid *He one observes the scattering cross section of neutrons as a

" function of transferred energy. -The results are presented as two Gaussian
* contours [8] associated with the condensate and over-condensate compo-
"7 nents. The >density of the number of particles. is determined by arcas
. restrlcted by. these curves. Therefore, the accurdcy. of their. construction
_is of great importance. In the case with' strong fluctuations:of the con-:
densate, reconstruction of the envelope by tlic experimental results needs -

apparently a special technique of data plO(CSSlllg
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mnyKTyaumm bose- ~KOHAeHcaTa
B Moaenu boronwbosa = .

‘MeTOAOM [REUULEELLT ¢aau B KaHOHMHeCKOM chaM6ne co
CBA3bI0 BbIMUCNEHA CTaTUCTUYeCKan cymMa moaenv boronwbosa
no HaAKOHAEHCATHLM (KBaHTOBLIM) ‘W KOHAEHCATHBLIM (knaccu-

_ ,quKMM) nepeMeHHbIM. Honyquu GopMynbl ANR  CTauMOHAPHLIX
'/3Haqumm W Avcnepcuii Yucna YacTuy obenx. KOMNOHEHT. Yuc-
NeHHble OUEHKW NOKa3biBAWT mpeBbileHNe YPOBHEM TennosbX
dnyKTyaluuih KoHAeHcaTa ero yucna. 3anonHeHns npu Temnepa-
Typax 1 K < T < Ty v obpaThyio cutyaumo npn 0 < T < 1 K;

rae To: - TemnepaTypa ¢asoBoro nepexoaa. OﬁcymaaeTcn 3Ha-

~| ‘4eHue 06HapymeHHoro obcTosTenbCcTRA ¢ ‘AN VHTepnpeTauuun

| 9KCNepuUMEeHTOB Mo HAXOMAEeHWIO. ﬂﬂOTHOCTM cserTequem KOM‘
- MOHeHTHI B mmAKOM “He : ,

Pa60Ta BunonHeHa B’ ﬂaﬁopaTopmm Teopermqecxom ¢M3MKM

,omgm 2

[Ipenpnur OUbe:nmem:oro munm T2 suepm.rx ucc'xe;xonamm Ily6u.. 1992 R

Narunin V.s. . pi7-ep-aa8

F]uctuat1ons of .Bose- Condensate

;1n the Bogo]ubov Mode1

~'The stat1onary phase method in: the canon1ca1 ensemb-

“Aﬁ1e with: constra1nts is used to calculate the statistical
|7 sum of Bogo]ubov s model ‘with respect to -over-condensa~
U;fte (quantum) and condensate (classical) variables. For-
mulae are derived for. expectation values and variances
-of the particle number of .both components. Numerical '

estimations show that the level of thermal fluctuations
exceeds its occupation number at temperatures 1K < T <°

< To and that the opposite situation is at 0 < T <1 K,
| where To is the phase transition temperature. The .im-
| portance of the-observed fact for interpretation of -

experiments in. search1ng for the density of a super-'

,f1u1d component in liquid “He is discussed.

“The 1nvest1gat1on has been Eerformed at the Laborato—‘

_ry of Theoretical sics,

o lrepnm Of lh(- -'0"" nstitute for \uclear Rcsearth Dubna 1992 0w




