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A degenerate parametric dow~-conversion process i~ known to produce optical fields 

with no~classical properties [lJ. In this process a pump ph~ton of frequency 2w is 
'.-- -

down-converted into two highly correlated photons at the subharmoi"tic frequency w. 

The quantum theory of this process is usually· treated in the so~call~d parametric 

approximation in which the pump mode is assumed as classi~al and nondepleted. In the 

parametric approximation the time evolution of the subharmonic field can be found 

analytically and is described by -a Bogoliubov transformation that maps the initial 

vacuum state into an ideal squeezed state [lJ. The parametric down-conversion process 

turned out to be very effective in producing squeezed states in practice [2]--:[6] . 
. , ,, ' 

The parametric approximation which ign~res the quantum fluctuations and d~ple-

tion of the pump mode, is not applicable if a considerable amount or" pow~r is t~a:ns­

ferred from the pump mode into the signal mode. In such situations the pump mode 

must be treated dynamically and its quantum mechanical evolution must be taken into 

account. Since no close form solutions are known in this case, some approximations -

or numerical calculations are needed to find the field evolution. Owing to the energy 

conservation the intensity of the signal mode cannot grow infinitely, and the solutions 

become oscillatory. The field states of the signal mode are no longer the ideal squeezed 

states, and their properties become different. 

In a recent series of papers [7]-[9] we studied the effect of the quantum fluctuations 

and depletion of the pump on the phase properti~s of the fields produced in the down­

conversion process. We have shown that the_ quantum character of t~e pump mode 

essentially changes phase properties of the field at later stages of the evolution, while 

at earlier stages of the evolution the signal mode properties are very close to those of 

ideal squeezed states. The phase distribution of such states has two sharp peaks at 

the ini.tial stages of the evolution that reflect the two0 photon character of the process. 

Because of the quantum fluctuations and depletion of the pump mode the two peaks 

of the signal mode are broadened, and at later time the phase distribution becomes 

uniform. 

The present paper extends these earlier works by calculating the long-time evolu-



tion of phase fluctuations of the field produced in the down-conversion process with 

quantu.m pump_. The fully quantum mechanical approach using the method of nu­

merical diagonalization of the interaction Hamiltonian (10] is employed for getting the . . 
r • • • • 

evolution of the system. The Hermitian phase formalism of Pegg and Barnett [11]-[13] 

is used t~ calculate the quantum phase fluctuations. 

The two-photon down-conversion process is described by the following model Hamil­

tonian: 

· H =Ho+ H1 = hwata + 21iwbtb 

+1ig(bta2 + bat2
), (1) 

where a (at) and b (bt) are the aiinihilation (creation) ~perators of the signal mode at 

fr~qu!'!ncy w and the p~mp mode at frequ~ncy 2w; respectively. The ~oupling constant 

g . , which is assumed re_a!, proportional to the second order nonlinear polarizability 

coefficient of the crystal. -

Since Ho and H1 COIJ1mute, there are two constants of motion, Ho and H1. H0 

determin~ the total energy stored in both modes which is conserved by the interaction 

H1. This allows us to factor out exp(-iH0 t/1i) from the evolution operator and, in 
·,. 

fact, to drop it altogether. In effect, the resulting state of the field can be written as 

11/J(t)) = exp(:-;-iH1t/1i)jip(0)), (2) 

· where jip(O)) is the initial state of the field. If the Fock states are used as basis states, 

the interaction Hamiltonian H1 is not diagonal in such a basis. To find the state 

evolution, we apply_the numerical method of diagonalization of H1 [10]. 

Let the signal mode be initailly in the vacuum state and the pump mode in an 

arbitrary state so that the initial state of the field is given by 
00 

jip(O)) = :~:)nein'PbjQ, n), (3) 
n=O 

where b.,,_ is real. With these initial conditions the resulting state (2) can be written as 
oo n 

11/J(t)) = L bnein<pb L ~n,k(t)j2k, n - k), 
n=O k=O 

-~•--.-:•-·- , ..... -··· • ~ --, .. ~ .... 

\~~~: •f°:,;;.:u~-~-,:1;i.:;t.,i '.a·-~(., 

.'~~~.;:~~:-;<;:y•, ~ ... ~ ·tt:Ji:~;-,1: 
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where the coefficients c2n,k(t) are the matrix elements of the evolution operator 

C2n,k(t) = {2k, n - kl exp(-iH1t/1i)I0, n), (5) 

and they are calculated numerically by diagonalizing the interaction Hamiltonian. This 

allows us to find the evolution of the state ( 4) and, in effect, its phase properties. 

According to Pegg and Barnett [11]-[13], the Hermitian phase operator can be 

constructed in an (s + 1)-dimensional state space W spanned either by the number 

states, In), or (s+l) orthonormal phase states, IBm)- The phase states can be expanded 

in terms of the number states as 

where 

1 • 
IBm) = ~ c· B )I ) - - Js+lL..,,expin m_n, m=0,1, ... ,s, 

·· • n=O 

2,rm 
Bm = Bo+ s + 1 · 

(6) 

(7) 

The value of Bo is arbitrary and defines a particular basis set of ( s + 1) mutually 

orthogonal phase states. The Hermitian phase operator is defined as 

• 
¢e = L BmlBm)(Bml• (8) 

m=O 

Physical results are obtained in the limit s -. oo, and according to Pegg and Barnett 

this limit has to be taken only after c numbers, such as the expectation value and 

variance of the phase, have been calculated in the finite basis (6). The failure of earlier 

attempts to construct a Hermitian phase operator result from taking this limit at a 

premature stage [14]. 

By means of Eq. (6) we now calculate the joint phase probability amplitude 

{Bm.l(BmblTP(i)) = (sa + l)-l/
2(sb + 1)-1

/
2 

•• n XL bnein<pb I:exp{-i[2kBm. + (n - k)BmJ}c2n,k(t). (9) 
n=O k=O ,. 

of a state (4). We use the indices a and b to distinguish between the signal (a) and 

pump (b) modes. There is still a freedom of choice in (9) of the values of B;•b which 
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define the phase values window. We can choose these values at will, so we take them 

as 

Ba,b 
0 = 

and we introduce the new phase value.s 

7rSa,b 
<pa,b - Sa,b + 1 ' 

Bµ.,b = Bm.,b - <pa,b,. 

(10) 

(11) 

where the new phase labels µa,b run in unit step between the values -sa,b/2 and 

sa,b/2. This means that we symmetrize the phase windows for the sign.al and pump 

modes with respect to the phases <pa and cpb, respectively. We are free to choose 

the parameters sa,b as large as they are needed, and for physical states, according to 

their definition by Pegg and Barnett [12, 13], it is always possible to choose sa,b much 

larger than the contributing number states. In this case, the parameters sa,b in the 

sum of Eq. (9) can be replaced to any desired degree of accuracy by the infinity. On 

inserting (10) and (11) into (9), taking the modulus squared of (9), and performing the 

continuum limit transition, we arrive at the continuous joint probability distribution 

for the continuous variables Ba and Ob, which has the form 

P(Ba,Bb) 1 I 00 

n 
(27r)2 ~ bn ~ C2n,k(t) 

X exp{-i [2k0a + (n - k)Bb + k(2cpa - <pb)]} 1

2 

The distribution (12) is.normalized so as 

1f 1f 

J J P(Ba,0b)d0ad0b 1. 
-1['-1[' 

(12) 

(13) 

To choose the phase windows for Ba and Ob, we have to assign to cpa and <pb particular 

values. It is interesting to note that the distribution P( Ba, Ob) given by (12) depends on 

the phase difference 2cpa - <pb only. This reproduces the classical phase relation for the 

parametric amplifier, and to minimize the phase variance we choose this value equal 

to 2cpa - <pb = 7r /2. 
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Once the joint phase distribution P( Ba, Ob) is known, all quantum mechanical phase 

expectation values can be calculated with this function in a classical-like manner hr 
performing appropriate integrations over 0~ and Ob, In partucular, the phase variance 

, . 
for the signal mode can be calculated according to the formula 

{Cl.Js.)2 = (JU- (Js.)2 
1f 1f 

= J dBa B~J d0b P(Ba,Bb) 
-1[' -1[' 

7r2 . = . 3 + Re L bnbn, exp[-i(n - n')(2cpa - <pb)] 
n>n' . (n - n')2 

n' 

XL Oin,k+n-n1 (t)c;n,,k(t), (14) 
k=D 

and for the pump mode we have 

1f 1f 

• 2 J 2j (Cl.<psb) = d0b ob dBa P(Ba,Bb) 
-,r -,r 

7r2 , · ·. (-l)n-n' n' • 

= ~ + 4R~,L bnbn, (n _ n')2 L C2n,k(t)ein,,k(t), 
n>n' k=D 

(15) 

where we have used (12), arid we take 2cpa - cpb = 1r /2. So far we have derived exact 

analytical formulae for the phase variances. The time evolution of the phase variances 

can be calculated numerically using these expressions for given initial field states. 

We consider the case in which the pump mode is initially in the coherent state 1.8) 

with the mean photon number nb. For the coherent states the expansion coefficients 

bn are given by 

bn = exp(-IIW /2)1.Bln ;R., (16) 

where ,8 = I.Bl exp( i<pb) and fib = 1.812. The dynamical behaviour of the phase variances 

calculated from Eqs. (14) and (15) with the coefficients (16) is illustrated in Figs. 1 

and 2, respectively, for various values of fib. The dashed line 1r2 /3 marks the variance 

for the state with random distribution of phase. From the figures we observe that the 
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Figure 1: Phase variance of the signal mode (L~Je.) 2 as a function of gt for the pump 

initially in the coherent state J,B) and the signal in the vacuum state ID). The dashed 

line marks the value 71"
2 /3 of a randomly distributed phase. The initial mean number 

of photons in the pump mode nb = J,BJ 2 is: (a) 4, (b) 9, and (c) 16. 

6 

') i ', 

lo 

f 
i 

phase variances oscillate irregularly around the value 7r
2 /3, and there is a collapse and 

revival of these oscillations. It is also evident that the revivals occur on a longer ti~e 

scale with increasing initial mean number of photons in the pump field. In other words, 

the stronger the initial pump field is, the clearer the collapses and revivals become. 

In order to set properly the time scale on which the~ essential changes of phase 

properties take place, we have plotted in Fig. 3 the evolution of the mean number of 

photons in the signal mode, (ata), for various values of nb. In direct contrast with the 

parametric approximation, in which the mean number of photons in the signal mode is 

a monotonic function of the time, (ata) = sinh2(2J,8Jgt), the oscillatory behaviohr of the 

quantum solution and, the collapses and revivals of oscillations are clearly visible. The 

time evolution of the mean number of photons in the pump_ mode can be easily derived 

by using the conservation law (ata) + 2(btb) = 2J,BJ2
• Comparing Figs. 1, and 2 with 

Fig. 3 one can conclude that the revival time of the oscillations of the phase fluctuations 

does. not coincide with that of the mean photon number; the first revival of the phase 

fluctuations takes place when the second revival of the oscillations of the mean photon 

numbers occurs. Collapse and revival phenomenon in the energy exchange between two 

modes in the process of k-photon down conversion with quantum pump has recently 
'\ , I 

been discu~sed by Drobny and Jex [15]. 

Note that the collapse and revival phenomenon of phase fluctuations is sensitive 

to the chosen initial state of the field. As an example, let us consider the situation 

where the pump mode is initially in the number state In) for which only one bn = 1 is 

nonzero. In this case the last terms in Eqs. (14) and (15) vanish and as a result we get 

• 2 • 2 ir
2 

(~<lie.) = (~</ieb) = 3 - (17) 

This result is also true for a more general c~se in which both the pump mo~e, ~~d 
the signal mode are initially in the number states. So even though the oscillati~ns 

of the mean number of photons in the fields which are initially in the number states 

show the collapse and revival [15], the phase variances in such fields do not exhibit the 

oscillations. 
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Figure 2: Phase variance of th~ pump mode (b.J8b)2 as a function of gt. The initial 

conditions and the parameters are the same as in Fig. 1. 
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Figure 3: Mean number of photons in the signal mode (afa) as a function of gt. The 

initial conditions and the parameters are the same as in Fig. 1. 
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In conclusion, we have studied the long-time behaviour of the phase quantum fluc­

tuations in the two-photon parametric down-conversion process with quantum pump. 

Our numerical calculations show that if the pump mode is initially in a coherent state, 

the phase variances show the irregular oscillations around the value 1r2 /3 of a randomly 

distributed phase and the oscillations exhibit the collapses and revivals. We also have 

shown that if the pump mode is initially in a number state, the phase fluctuations do 

not oscillate and are equal to 1r
2 /3. It should be mentioned that the collapse and re­

vival phenomenon of the phase fluctuations considered in this paper has recently been 

shown to exist also for the field in the M-photon Jaynes-Cummings model [16]. 

The author would like to thank Prof. R. Tarias for earlier enlightening discussions 

on the properties of the phase operator. 
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: TaHL\Or u~ . E17-92-311 
3aiyxaHl/le Ill B0306HOBJleHl/le OCL\lllflfl511..\Vllii -_­
cpa30BblX cjJI1yKTYal..\V11ii B napaMeTpVl'-leCKOlii 
AayH-KoHsepc111111 c KBaHTOBolii HaKa\.!Kolii ••. 

1 
_ 

-- ltl3;~~eTc51. · AOnrospeMeHHa51 •. ~son10L1111si-- KBaHTOBblX cpnyK.:. 
... Ty_aL11111ii cj)a3bl Afl51 noiielii, reHep111pyeMblX B npo4ecce nap a-

-MeTpW-leCKOlii AayH-KOHBepc111111 C. KBaHTOBOlii HaKa~KOlii. noKa-
3_aHO, 4TO, eCJll/1 MOAa · Hat<a4KIII B Ha4aflbHbllii MOMeHT BpeMe.__ 
HVI HaXOAVITC51 B KorepeHTHOM COCT051HVIIII~· TO Afl51 06e111X 
MOA", Cl/lrHaflbHOlii MOAbl Ill_ MOAbl HaKal.!Kl/1; · no51BJ151eTC51 . acpcj)eKT 
3a.TyxaHlll51 Ill B0306HOBJleHl/l51 OCL\lllflfl511..\IIIIII AV1Cnepc111111 cj)a3bl~ . 

•. . Pa6oTa BblnOflHeHa B na6opaTOPIIIVI Teoper1114eCKO~ cj)V13VIKIII 
o~~~- -

. ' " - - " . 
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