


A degenerate parametric down-onversion process is known to produce optical fields
with nonclassncal propertles [1] In this process a pump “photon of frequency 2w is
down- converted into two hlghly correlated photons at the subharmonlc frequency w.
The quantum theory of this process is usually treated in the so-called parametrlc
approximation in which the pump mode is assumed as classical and nondepleted. In the
parametric approximation the time evolution of the subharmonic field can be found
analytically and is described by-a Bogoliubov transformation that maps the initial
vacuum state into an ideal squeezed state [1]. The parametric down-conversion process
turned out to be very eﬂ'ectlve in producmg squeezed states in pract:ce {2]-{6].

The parametrlc approx1matxon which i ignores the quantum ﬂuctuatlons and deple-
tion of the pump mode, is not applicable if a considerable amount of power is trans-
ferred from the pump mode into the signal mode. In such sxtuatlons the pump mode
must be treated dynamlcally and its quantum mechanical CVO]utlon must be taken mto
account. Since no close form solutions are known in this- case, some approxnmatrons'
or numerlcal calculations are needed to ﬁnd the ﬁeld evolution. meg to the energy
conservatlon the intensity of the slgnal mode cannot grow mﬁmtely, and the solutlons
become oscillatory. The field states of the signal mode are no longer the ideal squeezed
states, and their properties become different.

In a recent series of papers [7]-[9] we studied the effect of the quantum fluctuations
and depletion of the pump on the phase properties of the fields produced in the down¥
conversion process. We have shown that the quantum c!xaracter of the pump mode
essentially changes phase properties of the field at later stages of the evolution, while
at earlier stages of the evolution the signal mode properties are very close to those of
ideal squeezed states. The phase distribution of such states has two sharp peaks at
the initial stages of the evolution that reflect the two-'photon character of the process.
Because of -the quahtum fluctuations and depletion of the pump mode the two peaks
of the signal mode are broadened, and at later time the phase distribution becomes
uniform. ” L

N

The present paper extends these earlier works by calculating the long-time evolu-
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tion of phase ﬂuctuations of the field produced in the down-conversion process with
quantum pump. The fully quantum mecha.nlca.l approach using the method of nu-
merical dla.gonallza.tlon of the mtera.ctlon Hamlltoman [10] is employed for gettlng the
-~ evolution of the system. The Hermrtvlan phase formalism of Pegg and Bernett (1 1]—[13]
is used to ca.lrculate the quantum phase fluctuations. o 7‘
The two-photon down-conversion process is described b&' the following model Hamil-
tonian:
“H=Hy+ H = hwala+ 2kwb'd
+hg(ba® + bat?), ‘ (1)

. where a (a') and b (b') are the anmhllatlon (creatlon) operators of the signal mode at
frequency w and the pump ‘mode at frequency 2w, respectively. The couplmg constant
‘g . which is assumed rea.l, proportlonal to- the second order nonlinear pola.rlzablllty
coeﬂicrent of the crystal - ) k

’ Slnce Ho a.nd H; commute there are two constants of motion, Ho and H;. Hy,
determines the total energy stored in both modes which is conserved by the interaction
Hj. This allows us to factor out exp(—zHot/h) from the evolution operator and, in

fact, to drop it altogether. In effect, the resultlng state of the field can be written as

l%(t)) = exp(=iHt/R)I¥(0)), (2)

“where [(0)) is the initial state of the field. If the Fock states are used as basis states,
the interaction Hamiltonian H; is not diagonal in such a basis. To find the state
evoliition, we apply_the numerical method of diagonalization of H; [10].

Let the signal mode be initailly in the vacuum state and the pump mode in an
arbitrary state so that the initial state of the field is given by
: o0 ,
[B(©@) = D be™(0,n), 3)
#=0
‘ where b, is real. With these initial conditions the resulting state (2) can be written as

() = D bae™ 3" canalt)i2k, n — k), @

n=0 k=0

where the coeficients ¢an,k(t) are the matrix elements of the evolution operetor
cank(t) = (2k,n — k| exp(—tHt/R)|0,n), ' (5)

and they are calculated numerically by diagonalizing the interaction Hamiltonian. This

allows us to find the evolution of the state (4) and, in effect, its phase properties.
According to Pegg and Barnett [11]-[13], the Hermitian phase operator can be

constructed in an (s 4+ 1)-dimensional state space ¥ spanned either by the number

states, |n), or (s+1) orthonormal phase states, |0,,). The phase states can be expanded

in terms of the number states as

1 3 N
0,) = ———— inf,)|n), =0,1,...,5, 6
10:n) "‘/‘;ﬂ;exp(m )In), m s (6)

where

2rm
s+ 17

in

0., 0 + (7)
The value of 8y is a.rbifra.ry and defines a particular basis set of (s + 1) mutuallyb
orthogonal phase states. The Hermitian phase operator is defined as ,
3 : S
D 018 (O] (8)
m=0 ,
Physical results are obtained in the limit s — oo, and according to Pegg and Barnett
this limit has to be taken only after ¢ numbers, such as the expectation value and
variance of the phase, have been calculated in the finite basis (6). The failure of earlier
attempts to construct a Hermitian phase operator result from tak'ing this limit at a

premature stage [14].

By means of Eq. (6) we now calculate the joint phase probability amplitude

(O [0, [0(1)) = (sa+ 1) 2 (sy, + 1)71/2 ‘ |
%3 bue™ 3" exp{~i[2k0n, + (1 — B)m]}ernalt)  (9)

n=0 k=0 B

of a state (4). We use the indices a and b to distinguish between the signal (a) and

"pump (b) modes. There is still a freedom of choice in (9) of the values of 08{" which



define the phase values window. We can choose these values at will, so we take them

as
T3ab
00 = Qap— —2 10
0 Pab Sap + 1’ ( )
and we introduce the new phase values
Oup = Oy = Paby ' (11)

where the new phase labels p,p run in unit step between the values —s,p/2 and

sap/2. This means that we symmetrize the phase windows for the signal and pump

modes with respect to the phases ¢, and ¢y, respectively. We are free to choose
the parameters s, as large as they are needed, and for physical states, according to
their definition by Pegg and Barnett [12, 13], it is always possible to choose s, much
larger than the contributing number states. In this case, the parameters s,} in the
sum of Eq. (9) can be replaced to any desired degree of accuracy by the infinity. On
inserting (10) and (11) into (9), taking the modulus squared of (9), and performing the
continuum limit transition, we arrive at the continuous joint probability distribution

for the continuous variables 8, and 6, which has the form

Z bn Z cZn;l;(t)

n=0 k=0

x eXP{—i [2k0, + (n — k)6y, + k(200 — %)]}

POL0) = G

2

. (12)

The distribution (12) is normalized so as

] ] P(0.,6,)d6,d0, = 1. - (13)

Zrln
To choose the phase windows for 8, and 6, we have to assign to y, and ¢}, particular
values. It is interesting to note that the distribution P(0.,6,) given by (12) depends on
the‘pha.se difference 2, — @, only. This reproduces the classical phase relation for the
parametric amplifier, and to minimize the phase variance we choose this value equal

to 2p, — b = 7 /2.

Once the joint phase distribution P(6,,8,,) is known, all quaﬁtum mechanical phase
expectation values can be calculated with this function in a classical-like manner by
performing appropriate integrations over 8, and ;. In partucular, the phase variance

for the signal mode can be ca.lcula.tedwa.ccording to the formula

(Ade)* = (85,) = (da)’

/ dd, 62 j[ d6y P(0,,01)

x? exp[—i(n — n')(2pa — )]
B P

- X 20211,#+n—ﬂ'(t)c;n’,k(t)v - (14)
k=0
and for the pump mode we have

(Ads,)? = / dé, 62 / df, P(0,,0,)
T ey b T S ) (15)
g e 2 b g e

where we have used (12), and we take 2, — ¢, = 7/2. So far we have derived exact
analytical formulae for the phase variances. The time evolution of the phase variances
can be calculated nurﬁerica.lly using these expressions for given initial field states.

We consider the case in which the purhp mode is initially in the coherent state |3)
with the mean photon number f,. For the coherent states the expansion coefficients

b, are given by ‘
ba = exp(—=|B[*/2)BI"/Vnl, - (19)

where 8 = |B| exp(ign) and #ip, = |B|%. The dynamical behaviour of the phase variances
calculated from Egs. (14) andl(15) with the coefficients (16) is illustrated in Figs. 1
and 2, respectively, for various values of #;. The dashed line #2/3 marks the variance

for the state with random distribution of phase. From the figures we observe that the
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Figure 1: Phase variance of the signal mode (Aqﬂﬁg‘)2 as a function of gt for the pump
initially in the coherent state |8} and the signal in the vacuum state |0). The dashed
line marks the value 7r2/3 of a randomly distributed phase. The initial mean number

of photons in the pump mode fip = |B)? is: (a) 4, (b) 9, and (c) 16

phase variances oscillate irregularly around the value 72/3, and there is a collapse and
revival of these oscillations. It is also evident that the revivals occur on a longer time
scale with increasing initial mean number of photons in the pump field. In other words,
the stronger the initial pump field is, the clearer the collapses and revivals become.

In order to set \properly the time scale on which the essential :ch‘anges of phase
properties take ‘plece, we have plotted in Fig. 3 the evolution of the mean number of
photons in the signal mode, (ata), for various values of #y,. In direct contrast tvith the
parametric approximation, in which the mean number of photons in the signal mode is
a monotonic function of the time, (a'a) = sinh?(2|3|gt), the oscillatory behaviour/of the
quantum solution and, the collapses and revwals of oscillations are clearly v1s1blc The
time evolution of the mean number of photons in the pump mode can be easily derived. -
by using the conservation law (afa) + 2(b*b) = 2|8|>. Comparing Figs. 1, and 2 with
Fig. 3 one can conclude that the revival time of the oscillations of the phase fluctuations
does not coincide with that of the mean photon number; the first revival of the phasc
ﬂuctuatlons takes place when the second revival of the oscillations of the mean photon
numbers occurs. Collapse and revival phenomenon in the energy exchange between two
modes i in the process of k— photon down conversion with quantum pump has recently
been dlscussed by Drobny and Jex [15]. ‘

Note that the collapse and revival phenomenon of phasc fluctuations is sensitive
to the chosen initial state of the field. As an example, let us consider the situation
where the pump mode is initially in the number state |n) for which only one b, =1 is

nonzero. In this case the last terms in Eqs. (14) and (15) vanish and as a result we get

(Ads,)? = (Adg,)? = (17)

w3,

This result is also true for a more gcneral case in whlch both the pump mode and

the signal mode are initially in the number states. So even though the osc1llatlons
of the mean number of photons in the fields which are initially in the number states
show the collapse and revival [15], the phase variances in such fields do not exhibit the

oscillations.
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Figure 2: Phase variance of the pump mode (AqAS,;h)2 as a function of g¢. The initial

conditions and the parameters are the same as in Fig. 1.
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Figure 3: Mean number of photons in the signal mode (a'a) as a function of gt. The

initial conditions and the parameters are the same as in Fig. 1.



In conclusion, we have studied the lc;ng-time behaviour of the phase quantum fluc-
tuations in the two-photon parametric down-conversion process with quantum pump.
Our numerical calculations show that if the pump mode is initially in a coherent state,
the phase variances show the irregular oscillations around the value 7?/3 of a randomly
distributed phase and the ostéilla'.ti'ons exhibit the collapses and revivals. Wevalso have
shown that if the pump mode is initially in a number state, the phase fluctuations do
not oscillate and are equal to 72/3. It should be mentioned that the collapse and re-
vival phenomenon of the phase fluctuations considered in this paper has recently been

shown to exist also for the field in the A —photon Jaynes-Cummings model [16].'

'The.author would like to thank Prof. R. Tanas for earlier enlightening discussions

on the properties of the phase operator.
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Co]]apses and Rev1va1s ofvPhasew
5F1uctuat1ons -in“Parametric: - :
:Down- Convers1on w1th Quantum Pump

,ﬁThe 1ong t1me behav1our of the phase quantum f]uc-\:i‘
“tuations.in: the: f1e1d produced by the: parametr1c down-
fconvers1on w1th quantum pump: s’ stud1ed It s shown-

-that if: the pump - is: 1n1t1a11y in a coherent state the,

- show' the” co]]apses and rev1vals in the1r 1ong t1me
i evo1ut1on._- : L - Lo :
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~-phase’ variances ‘for both the s1gna1 and the pump- modes: G
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