


1 Introduction

The problem of the quantum description of the optical field phase has been the
subject of considerable study for many years [1]. This is connected with the difficulty in
constructing a linear Hermitian phase operator. Within the past few years the notion of
phase variables in quantum systems has been greatly clarified. Pegg and Barnett [2]-[4]
have shown how such an operator can be defined for quantized electromagnetic fields.
This new formalism makes it possible to describe the quantum properties of optical
phase in a direct way within quantum mechanics on the basis of the Hermitian phase
operator and its eigenstates.

A quite different approach to the concepts of the phase variable has also been
widely used in quantum optics [5]- [7] and which involves quantum quasiprobability
distributions such as the Glauber-Sudarshan P function, the @ function and the Wigner
function rather than Hermitian operators and their eigenstates. These quasiprobability
distributions depend upon the complex eigenvalue a of the non-Hermitian annihilation
operator, which can be expressed in terms of a radial variable |a| and a “phase” § both
of which are real. If we integrate over the radius, the resulting distributions are periodic
in the phase angle and, for the most of states they satisfy all properties required by
a proper phase distribution [5, 6]. In recent papers, we have compared the Pegg-
Barnett phase distribution with those distributions obtained from the Wigner and @
functions by integrating them over the radius for the multi-photon down-conversion {8]
and displaced nurnber states [9].

In recent years, special attention in quantum optics has been paid to a class of
optical field states that are called squeezed states (for a recent review see, for example,
special issues of two optical journals [10] devoted to this subject). These states show
reduced fluctuations in one quadrature component of the electromagnetic field and
enhanced fluctuations in the other. They are manifestations of the quantum nature
of the radiation field and have recently been generated by using several experimental
setups and optical systems [11]- [17]. There is also good reason to believe that number

states of the electromagnetic field will be generated in the near future. Filipowicz,
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Javanainen and Meystre [18] have shown that if inverted atoms with a well-defined
velocity are injected inside a micromaser cavity, it is possible for the field to evolve
towards a number state. The number states and the thermal states are defined only by
their photon number and average photon number, respectively, and have a completely
random phase. However, if we use the number states and/or thermal states as an
input field in a squeezing device, such as a parametric amplifier, the properties of
these states become phase dependent. So it should be interesting to study their phase
properties. The squeezing effect itself is a completely non-classical phenomenon, and it
is essential to use quantum theory in the description of its phase properties. Statistical
properties of the squeezed number states as well as the squeezed thermal states have
been described in detail elsewhere [19, 20]. Higher-order squeezing properties and

- correlation functions for the squeezed number states have also been studied [21]. The
phase fluctuations in the squeezed number states have been considered in the weak-
squeezing limit case by Nath and Kumar [22] using the Pegg-Barnett Hermitian phase
formalism.

_ The purpose of this paper is to study the phase properties of the squeezed number
states and squeezed thermal states. We use the Pegg-Barnett Hermitian phase formal-
ism to find the phase distribution functions for the squeezed number states and squeezed
thermal states. The Pegg-Barnett phase distribution is compared to the phase distri-
butions obtained from the Wigner function, @-function and the Glauber-Sudarshan P

function by integrating them over the radial variable.

2 Phase distributions

The squeezed number states are defined by acting with the squeeze operator

S(r,¢) on the number state |N), that is

IN)(riey = S(r, ) IN), (1

where

S(r,p) = exp z( Zomte _ g1tptiey) (2)

The number state decomposition of the squeezed number state (1) can be written as

Ny = O naIN) g =Y In)alS(r, @) IN)
> bac*nIn), (3)
where [19, 20]
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with ¢ being an angle which describes the orientation of the quadrature phase uncer-
tainty ellipse, and H,(z) is the nth ordér Hermite polypomial.
The squeezed thermal state is the Bose-Einstein weighted sum of the squeezed

number states with density matrix [19]
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where 7 is the average photon number of the thermal input field.

Having the number state decomposition (3) of the squeezed number states as well
as the density matrix (6) of the-squeezed thermal states, we can employ the Pegg-
Barnett [2]- [4] Hermitian phase formalism to find the phase distribution functions for
such states. The Pegg-Barnett (PB) formalism is based on the observation that the
Hermitian plhase operator can be defined in a finite (s + 1)-dimensional state space ¥
spanned by the number states |0),|1),...,|s). The main idea of the PB formalism is
to evaluate all necessary expectation values on this finite dimensional state space, and
only after that the value of s is allowed to tend to infinity. A complete orthonormal
basis of (s + 1) phase states is defined on ¥ as

10m) = —\/;—1_+—_12exp(z'n0m)|n), (7 -

n=0
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where

2rm
6, = 0 —_ =0,1,...,8).
bt e (m=0.1,) (8)

The value of 8 is arbitrary and it defines a particular basis set of (s + 1) mutually
orthogonal phase states. The Hermitian phase operator is then defined as

D 0m10m) (O l. (9)

m=0
The phase states (7) are eigenstates of the phase operator (9) with the eigenvalues 6,,

restricted to lie within a phase window between 8y and 8y + 2«.

The expectation value of the phase operator (9) in a state |¢) is given by

(] dol) Zo (B[ ” (10)

where |(6,,]%)|? gives the probability of being in the phase state |0.,). We are free to
choose the parameter s as large as it is needed, and for physical states, according to
their definition by Pegg and Barnett [3, 4], it is always possible to choose s much larger
than the contributing number states. In this case; we can simplify the calculation of
the sum in Eq. (10) by replacing it by an integral in the limit as s tends to infinity.
Slnce the density of phase states is (s + 1)/2x, we can write Eq. (10) as

Bo+2m
(Wldol) = / 0 P®)(9)dp, ()
)

where the continuum phase distribution P®)(8) is introduced by

p(PB)(a)

i (12)
where 8,, has been replaced by the continuous phase variable . Once the phase
distribution functionv P.‘PB)(()) is known, all the quantum mechanical phase expectation
values can be calculated with this fu(nctioél in'a classical-like manner by integrating over
0. The choice of 4 defines the particular window of phase values.

In the case of the squeezed number states we have

OmlN) ) = 7?—?2 b exp[—i(nbm — @ )]
—t"Vw.

T Z b, exp[—m 99)]. : (13)

n=0

1

We choose 8 as to

bo=p— —, (14)
that is, we symmetrize the phase window with respect to the phase . On inserting (14)
into (13), taking the modulus squared of (13) and taking the continuum limit, we arrive

at the continuous phase probability distribution PS(EB)(o) for the squeezed number
states which has the form
PS(;B)(0) {l+22b by cos[(n — k) 0]} (15)
n>k _
where b, are given by Eq. (4), and the phase window is now from —x to x. This form
of the phase distribution is common for the partial phase states [3. 4]. However, due
to the particular choice of b, this phase distribution shows some interesting features
that characterize the squecezed number states.
Other phase distributions P{?) and P") can be obtained by integrating the Q(a)
and W(a) functions, respectively, over the radial variable |a| [5, 6]. As we have pre-
viously shown [8, 9], all three phase distributions can be unified into one analytical

formula which has the form

PB0) = % {l + '.ZZ by, b cos[(n — K)O)G) (n, Lt)} . (16)
on

n>k

where the coefficients G**}(n, k) distinguish between three distributions, and they are:

(i) for the Pegg-Barnett phase distribution

G, k) =1, (17)

(ii) for the distribution PNJ) = fQ (y)|n|(l|cy| obtained by integrating the @ func-

tion over the radius (8]

Cl(n +£)/2 +1]

(@) (1) k) —
G (n, k) i , (18)
(iii) for the distribution PW)(9 f W (a)lald|a| obtained by integrating the Wigner

function over the radius [‘)]



P
GCM(n,k) = Z(_l)P—mQ(In—klnm)/z

m=0

. (Z)(pfm)G“”(m,ln ~ k| 4+ m), (19)

where p = min(n, k), ¢ = max(n,k). All the coefficients G**)(n, k) are symmetric,
G (n, k) = G(’)(k,nj, and G”(n,n) = 1. Relation (16) is quite general and can be
applied to any states with known amplitudes b,. Here, we apply it to the squeezed
number states. The phase distributions for the squeezed thermal states can be obtained
by summing the phase distributions for the squeezed number states over the photon
number N with the Bose-Einstein weighting factor a" /{1 4+ a)V+!,

The Wigner function for the squeezed number states has the following sirﬁple ana-
lytical form [19]

¢

2 1
Wsn(a) = ;exp [2(a-a Ve —

x(=)VLyl(a + a*)%e? — (a — a”)%e™?) (20)

1 2 2r
;(a+a }e

where Ly(z) is the Laguerre polynomial of an order of N. The phase distribution
(W) (9) for the squeezed number states can be calculated in a straightforward way

from the Wigner function (20) by integrating it over the radial variable which gives

1
m(cosh 2r + sinh 2r cos 20)°

PYO) = (21)

It is interesting to note that the phase distribution Ps(n' )(0) appears to be independent
of the photon number N — it depends only on the squeeze parameter r. Asymptoti-
cally, in the limit of large squeezing (r — oo) the distribution (21) becomes a sum of

two symmetrically placed delta functions
(W) ’
Pey '(0) = [6(0 —7w[2)+ 80 + 7/2)]. (22)

In Fig. 1, we show the plots of the three phase distributions calculated according to for-
mula (16) with the coefficients (17) and (18) and formula (21) for the squeezed number
states with » = 0.5 and N = 0,1,2,3. We see that there is a significant difference in a

behaviour of three phase distributions when photon number N is small. When photon
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Plots of the phase distributions P®PB)(@) (full curves), P(*)(8) (dotted

curves), and P(@)(0) (dashed curves) for the squeezed number states with r = 0.5

and N =0,1,2,3.

number N increases the phase distributions Pé:B)(H)

and for the values of N > 4 these three curves become already indistinguishable.

nd P(Q)(ﬂ) approach PS(:,V)(H),

Let us now consider the phase distributions for the squeezed thermal states (6).

As we have mentioned above phase distributions for the squeezed thermal states can

be obtained from those for the squeezed number states by summing over the photon

number N with the Bose-Einstein weighting factor a”V/(1 + a)V+!. When the input

average photon number is small, i.

e.

7 < 1, the only important contribution of

the sum comes from the squeezed number state N = 0 (a squeezed vacuum). Thus

phase distributions for the squeezed thermal state of i <

1 are similar to those for
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Figure 2: Same as in Fig. 1 but for the squeezed thermal states with » = 0.5 and
7=0.1,0.5,1,5

.the squeezed vacuum. However, when 7 is large the contributions from appropriately
large photon number states are more important. So, in the case n > 1 the difference
between three distributions is small, just as for the squeezed number state with large
N. Since Pé:l)(ﬂ) does not depgnd on the photon number N, the distribution PS(-?I)(O)
for the squeezed thermal state is equal to that of the squeezed number state, which

is given by Eq. (21). The Q function has, in the case of squeezed thermal states, the

following quite simple analytical form: -

1
mitcosh r{(1 + 1 /)2 — tanh? r]1/2
X exp {_(l +1/7+ "a"hi")")‘lz +_('012 + 0'2)2(1 +1/(272))tanh r 23)
af(1 + 1/7)? —~ tanh® r]

Qsr(a) =

from which the phase distribution Ps(-?)(O) is easily calculated to be

- 2 112
Ps(r?)(e) _ cosh r[gl +_1/n) tanh' 7] . (24)
2x[cosh 2r 4 cosh® r/n + (1 + 1/(27)) sinh 2r cos 26}

Asymptotically, in the limit of large 7 formula (24) goes over into formula (21) for
PS(";Y)(O). In Fig. 2, the behaviour of the above mentioned phase distributions Ps(-';B)(B),
PS(;Y)(O) and Ps(.g)(é‘) is shown for r = 0.5 and 2 = 0.1,0.5,1, 5. From the figures we see
that the distributions PS(¥B)(0) and Ps(g)(é‘) become narrower as 7 increases and for the
large 7i the three curves.completely coincide. This means that in the case of squeezed
thermal states the distribution PS(;V)(G) is the narrowest limiting distribution that can
be approached by increasing the average photon number of the thermal input field. It
is worth to note the following interesting feature of the squeezed thermal states: the
minimum value of the quantum phase fluctuations can be approached by increasing
the thermal fluctuations.

Finally, we consider the phase distribution obtained by integration of the Glauber-

‘Sudarshan P function over the radial variable. The Glauber-Sudarshan P function is

well-defined for a classical state, but it is either negative or does not exist for states
exhibiting nonclassical behaviour. As it has been shown by Kim et. al. [19], if the
quadrature variances are larger than the minimum uncertainty limit, i. e. (2n+1)e % >
1, it is possible to describe the squeezed thermal state in terms of a well-behaved P

function which is positive everywhere and can be written as

1
Pst(a) x|(ne + sinhr)(7e~ — sinh r)}}/?
— A*\2a—r =\2,7
X exp {a Q)_e - §a+a).e . (25)
4(ne” + sinhr)  4(ne~" —sinhr)
The phase distribution ‘Pg}(O) associated with the P function is then given by
PR®) = [ Perealdl
LV K o e . . 3 N
1 [(Re” + sinh r)(7ie™" —sinhr)]*/2 (26)

5;(1‘1 + 1/2)(cosh 2r + sinh 2r cos 20) — 1/2°

In- the Ia:fgé @ limit the distribution P.;;)(O). (26) goes over into PS(;V)(G) given by

~ Eq. (21). In Fig. 3, we display Ps(?(ﬂ) for r = 0.5 and n = 1,5. For comparison we
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Figure 3: Plots of the phase distributions PP)(8) (full curves) and P")(0) (dotted

curve) for the squeezed thermal states with r =0.5and 2 = 1,5

have also plotted the phase distribution Ps(";y)(O) calculated according to formula (21)
with r=0.5. It is clearly seen that the larger 1 the broader PS(?(G).

3 Conclusions

In this paper we have studied the phase properties of the squeezed number states
and the squeezed thermal states applying the Pegg-Barnett Hermitian phase formalism.
We have compared the Pegg-Barnett phase distribution with the phase distributions
P™)(9), PR)(8) and PP)(0) obtained by integrating the Wigner function, the @ func-

tion and the Glauber-Sudarshan P function, respectively, over the radial variable. We

10

have shown that the phase distribution associated with the Wigner function does not

depend on the photon number and has the same form for both kinds of squeezed states
considered in the paper while all other phase distributions approach P")(#8) in the
limit of highly excited states. We have also shown that in the case of squeezed ther-
mal states a rise in the thermal fluctuations leads to a decrease in the quantum phase
fluctuations, and the minimum value of the phase fluctnations. that can be approached
in this way, is defined by the phase distribution P(")(8) obtained by integrating the

Wigner function.
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Yvmoe A.B., Tanyor L., Mypaaxmetoe 6.K. E17-92-271
®a3zoBne pacnpeaeneHus ANA CHaATOro
HOKOBCKOro W CHMATOTO XaOTWHECKOT0 COCTORHWA

WccnenoBany $a3oBbie CBOACTBA CHATOro (OKOBCKOrO M CHMATOro XaoTU4ECKOro
cocTosHuiA. MMonyueHoi TouHbie aHanNUTU4ecKue GopMyns ANA Ga3oBWX pacnpeaene-~
HWA, OCHOBAaHHbHIE HA PA3NWYHBIX NOAXO0AAX K OMUCAHWO a3k, ¥ NPOUNNICTPUPO-=
BaHu rpajuuecku. MokaszaHo, 4To dazosoe pacnpeaenewue P(Y) (8), ceazaHHoe
¢ ¢yHkumeit Burvepa, He 3aBMCMT OT uucna GOTOHOB M WMeeT OAWHAKOBYIW (GOpMY
ana obowx paccMaTpuBaembiX COCTOAHWA, TOrAa Kak Apyrue pacnpeaeneHws, Ta~
Kue Kak pa3zosoe pacnpeaenenue flerra-bapHeTTa U daszoswe pacnpeaenenmns,
cBA3aMHbie ¢ Q-dyHxyveit u 'P-dyHkumed Mnaybepa-Cyaapwara, coBnagawt c
P(¥) (8) B npeaene BbICOKOBO3BYMAEHHHIX COCTORHWA.

Pabiota BwnonHeHa 8 NabopaTopum TeopeTuuecKoit dmanku OUAW.

Mpenpunt OGLEAMHEHHOIO HHCTHTYTA LaepHHX Heeaeaosanuil. lyGua 1992

Chizhov A.V., Gantsog Ts., Murzakhmetov B.K. ; £17-92-271
Phase Distributions of Squeezed Number
States and Squeezed Thermal States

Phase properties of squeezed number states and squeezed thermal sta-
tes are studied. Exact analytical formulae for phase distributions ba-
sed on different phase approaches are derived and illustrated graphical-
1y. It is shown that the phase distribution P(¥) (g) associated with the
Wigner function does not depend on the photon number and has the same
form for both kinds of squeezed states under consideration while all
other phase distributions, such as the Pegg-Barnett phase distribution
and the phase distrihutions associated with the Q function and the
Glauber-Sudarshan p function, approach P (¥)(8) in the limit of highly
excited states.
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