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"tecKoe MOAemtpoaaHHe KOrepeHTHblX 3¢>¢>eKTOB 

B A1-100flbHblX cnMHOBblX CHCTeMax 

E17-92-21 

npeACTaenAtOTCA pe3ynbT3Tbl nepeoro, H3CKOflbKO HaM H3B8CTHO, HCCJ18AOB3HHA Kore­

peHTHblX 3Q>ctieKTOB B nonApH30B3HHblX CnHHOBblX CHCTeMaX Ha OCHOBe MHKpOCKOnH'tecKOH 

MOAemt, a He cf>eHOMCHOJlOl'"M"tOCKHX ypaeHCHHH 6noxa. npoBO.tlHTCA KOMObtoTepHoe MOAC­

m1poeatt1,1e AnA CHCTCMbl AAepHblX HJlH 3JleMeHrapHblX cmtHOB, B33HMOACHC'TeytoutHX nocpe,o.­

CTBOM peam1CTH'tecKHX AHOOJlb-AHOOJlbHblX CHJl , AttanHJHPYK>TCA PaJI1WtHbl8 HiN3JlbHbl8 

H BHCWHHe ycnoBHA crn1HoeoH CHCTCMbl, K3K CBA33HHOH, T3K H HecBA33HHOH C pe3otiaTOJ)OM, 

B np1,1cyTCTBHH BHCWHero nepeMeHHOfO nonA, MJlH 6e3 H3K3"4KH . nocKOJlbKY (peHOMeHOJlOfH­

'48CKHC ypaBHCHHA npe.Qnonarater O,DHOPOAHOCTb C~TeMbl, OOHATHO, 'fTO TOflbKO MHKpOCKO­

nwteCKaA MOACflb OOJBOJlACT 3KKypaTHO noKaJaTb, KOrAa B AeHCTBMT8flbHOCTH OORBl1A8TCA 

KorepeHTHOCTb . .0.M 3Toro BBOAATCA Ko3<l>ct,Hu,MeHTbl KorepeHTHOCTM H Tt.UaT811bHO HCCne• 

.a,yercA M)( epeMeHHOe noee,o,eHMe. noA'fepKMBatoTCA oco6eHHOCTM, CBA3aHHbl8 C AHnonbHblMH 

B33HMOAe0CTBMAMH cnMHOB M OTCYTCTBYK>I.UH8 B ct,eHOMeHonorwtecKoH rpaKTOBKe, OCHO· 

B3HHOVI Ha ypaeHeHMAX 6noxa. 

Pa6ora e•ononHeHa e na6oparopHH reoperHsecKoH <j,HJHKH 011Al1. 

Coo61.lleHHC Om,eJlHHCHHoro HHCTHryra llJlCPHhlX HCG1e;ioeaHHii . Ily6ua I 992 

Belozerova T.S. , Henner V. K., Yukalov V .I. E17-92-21 
Microscopic Modelling of Coherent E fleets In Dipole Spin Systems 

Here we present the first, to our knowledge, Investigation of coherent effects In pola· 
rized spin systems on the basis of a microscopic model but not using the phenomenological 

Bloch equations. A computer simulation is realized for a system of nuclear or electron spins 

Interacting with realistic dlpole·dlpole forces. Different Initial and external conditions are ana· 
lyzed for a spin system either coupled with a resonator or not, In the presence of an external 

oscillating field or without this pumping. As far as phenomenological equations presuppose 

the uniformity of a system, It Is only a microscopic model that is able to accurately show when 
the coherence does really appear. To this end, we Introduce the coherence coefficients and 

thoroughly consider their time behaviour. The pecullarltles due to dipole spin Interactions, 
which are not present In the Bloch equations, are noted. 

The Investigation has been performed at the Laboratory of Theoretical Physics, JINA. 
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I .. INTRODUCTION 

. . . . 

Close analogy between optical _and radiofrequ<:;ncy superra:diance is well, acknowl· 

edged:Optical coherent superradia~ce is thoroughly studied both experimentally and . 

theoretically. For review one can consult Refs. 1-5. Radiofrequency superradiance is 
' , . •. I 

. known a bft less, although it has been observed in a number _of experiments 6- 17 and 

/ theoretically considered in several pap~rs 18,:.. 22 • 

All theoretical considerations of radiofrequency superradiance have been doi1e by, . 

,tising the phenomenological Bloch equations.' Th~ latter treat ·the ~hole syst~~ as· 

a uniform object h~ving uniciue total magnetization. Therefore, the assumptio~ of 
i / ! . •• ,' -~ ' ' -· ' • 

. ":' ~~herence is already incorporated into the Bloch approximation. In this way, the 

• . Bloch equations are not able to describe the onset of coherence and to accurately 

/ st~dy the peculiarities of coherent effects occurring· in real spin systems.: It _i·s. just 

' the aim of the present paper to give a .thorough analysis of the latter questions by .. 

· considering a microscopic spin model ~ith realistic dipole interactions. 

II. DIPOLE SPIN MODEL 

. L;t us consiaer a system of N spins whose sites in real s·pace are' enumerated 

.with the ind.ex i = 1, 2, ... , N , and which interact with each other thr~ugh dipole 

· 'f~rces. The Hamiltonian of this system can be written 23 in the form 

(1) 

· ... · in which the dipole interaction is 
, - . l . • 

µ2 ➔ ➔ 3µ2 ➔ .. ;' ➔ ➔ 
H;j= 3 S;S; - - 5-(S; · r;;)(S; · r;;), 

r;;, r;; . ~ 

(2) 

·· where S; is a spin operator; 



, is. the gyromagnetic ratio whose sign coincides with t.he sign of a particle charge; 

Hef J is an effective magnetic field acting on the system. 

Th~ total· effective field Helf can contain a constant external field lioez , 

an alternating magnetic field H1ex cos wt and, when the sample is placed into a 

resonator, a back acting field Hindere• induced by rotating spins of the system: 

Helf= Hae.+ Hiex cos wt+ Hindere~ . , (3) 

Consider a case of a cylindrical resonator with the axis directed along c,es . Let, 

for definiten.ess, this be a coil having n turns of cross section Ares , a length l , · 

resistance R, inductance L and capacity C. The back acting magnetic field ?fa 

high quality resonator, following Bloembergen and Pound 18, can bewritten as 

41m 
Hind = cl R Uind , 

where the voltage induced in the coil by moving. spins is 

411' , I µ :.. _ 
Uind = --n'f/pA,es NL Sieres; 

C . • i 

'f/ being a filling factor; p , a density of spins, 

V 
~ -- ' "I ~i V..es V..es = l Ares , 

N 
p= V. 

·For the induced magnetic field ( 4} we get the expression 

' 411'µ :.. _ 
Hind = -N'f/pQ L Sieres ; 

,w, i 

in which Q is the quality factor of the circuit, 

Q~wL. 
R' 

1 
LJ! = -/LC' 

41l'n2 

L - ·~- ·Ares , - lc2 

( 4) 

(5) 

(6) 

(7), 

(8) 

a~d the characteristic circuit frequency w is· assumed t~ be in resonance with the 

frequency of the alternating field in Eq. ( 3) . 

The differenc~ between thedassical case considered by·Bloembergen and Pound1 8 ' 
. . . - . ' " 1'. 

and' the quantum case is in the meaning of the notation Si . In the classical case 

2 

• ~ i., 

\ 

1 
r 
! 

I 
I 
I 

l 
l 
1 
1 

I \·t 

this is nothing but a time deriv.ative of the spin S; . In the quantum case Si means 

an ~dditional operator commuting with spin operators a~d, under averaging, having 

the property (Si) = a(Si)/at . Such a definition of the operator Si is given so 

that the Heisenberg equations for the considered system would yield, when retur~!ng 

to the classical case, the corresponding classical equations of motion. Note that if 

we use the mean-field method, the Hamiltonian of our system would not contain .the 

terms bilinear in spin operators, the term Si ~ S; will change to Sj ~ ( S;) and 
• • 

the commutator of S; with Si does not appear. The equations of motion for th,e 

classical quantities \Si) are the same for both the cases. 

To write the Heisenberg equations for the spin operators Sf and S; = Sf ±Sf ; 

we direct the ,coil axis along the axis x , so that . Cres = ex , use the notation 

Wo =,Ho, W1 :=,Hi, (9) 

and introduce an important quantity, cal.led the coupling constant, 

211' ' 
g = nw 'f/pµ2Q = goN ; 

211'µ2Q - --, 
9o = nwV..es 

(10). 

which describes the ~tiength ofa coupling between the spi~ system. and the resonant 

coil. 

In this way, as equations of motion for the microscopic model with Hamiltonian 

( 1) we obtain the following equation for the z-component of a spin operator 

·teas• 
Zn-' 

at 
nwi (S-:- - St) cos wt - gon (S-:- - St):!:_'°' (S-:- + s+) + 

2 ' ' 2 ' ' at ~ 1 1 

' ' : J 

'°' [aii(s·::. ·s+ s+s-) ( s+ * s-) s· ·' + ~ 4 i j - i j + Cij i - Cjj j j + 
j(,1ci) ' 

+ e;;St st - ef;S; s;] 
andthe equation for the ladder operator 

·teas-:-. u,-• 
at 

. , . ·. , . a'°' . +. = -nwoS;- + nw1Sf cos wt - goSf at~ (s; + S;) + 
j 

3 

(11) 



+ " [a;i (s7 S-:- + 2S:-s~) + r-1· (s:-Sf- - 2S7 S:) + L..,2 11 &3 '1 11 13 
j(,fi) • . . 

+ c;j s;-sj- - 2e;j s: st] (12) 

in which 

2 

a·· = !:._ (1 - 3cos2 t'J··) 11 - J 11 
r;i 

r•• = _
3
µ

2 

sin(2t'J··)exp(-icp··) '11 - 4 J 13 13 > 
r;i 

3µ2 . 2-a ( 2· ) e·· = ---sin u··exp - icp·· 11 - 4 J 11 13 > 
r;i 

where t'J;j and cp;j are the spherical angles corresponding to the vector· 'Gi . . 
The radiation processes occurring in the system can be studied by measuring th~ 

power of current absorbed by the coil 

P(t) = (U;!d) = Pinc(t) + Pcoh(t) , 
2R - (13) 

which is presentable as a sum of the incoherent and coherent parts, respectively, \ 

P;nc(t) = ngo L ( sr) 2 , 

i 
Pcoh(t) = ngo L ( Sf s:). 

i,fj 

Another characteristic is the intensity of magnetodipole radiation 

I(t) = l;nc(t) + lcoh(t) , (14) 

also consisting of two terms 

. 2µ2 (:::.)2 Jinc(t) = 
3

c3 L S; , 
i 

2µ2 (:::.:::.) fcoh(t) = 
3

c3 L S;Sj , 
iii 

the intensities of incoherent and coherent radiation .. 

The radiation intensity ( 14) can be measured, in principle, by usual detectors 

of propagating radiofrequency waves, to distinguish the·signal of harmonic pumping 

and complicated I(t) .is not difficult. The main difference between ( 13) and ( 14) 
. . . . 

is that the power of current ( 13) is observed in a resonance circuit surrounding the 

4 

~ 
1 

J 
' 
"j 

',. \ 

sample c~nsidered and bound ~vith it by the back action characte~ized by the coupli~g 

constant (. 10),.while the intensity of radiation ( 14) should be measured by detectors 

that arc not coupled with the spin system, being sitt1ated out of the latter. When the 

system ·is not pl_accd inside a resonator, the sole measurable radi_ation characterist_ic 

is intensity ( 14). "Although a problem can arise when measuring the intensity of 

radiation ( 14) because of its smallness. For example, in the case of proton spins, 

if we _take _Wo ~ 108s-1 and ,N ~ 1022 ' we get I(t) ~ 10-sw , which is quite 

small and is rather difficult to ,measure._ However, in the case of electron spins with 

w0 .~ 10°s~1 and the.same number of spins N ~ 1022 
, the intensity J(t) ~~11 

reach tens of watts and is easily detectable. Therefore, the. magnetodipole radiation 

from protons seems to be too sm~ll to be measured, but that from electrons can be 

easily· obscrv:ed, even· though in rt!ality. the number of coh~rently radiating particles 

N is sufficiently s~aller because_ c:if inhomogeneous broadening. I~ all the cases the. 

pow~r 5>f current ( 13) is higher than the intensity of radiation ( 14) by a .factor of 

Q>..3 /(2-ir) 2 ½-es , which is quite large for the radiofrequency wavelength·>,. and for 

-high quality resonafors18 • 

To study- the onset of cohercn~e and all peculiarities of coherent effects in real 

systems,' it is very convenient to .introduce the coherence coefficients24
-

26
, defined 

here by the equations 

Pcoh(t) 
Kcoh(t) = Pinc(t) ' 

fcoh(t) 
Ccoh(t) = Jinc(i) • (15) 

Let us stress that the introduction of the coherence coefficients (,15) is based on 

the possibility of separating out in Eqs. ( 13) and ( 14) of the corresponding inco­

herent and coherent-terms, which is admissible only for a microscopic model. 

'. ~,.. ,, '''.':_,.,:-;1: . 

. j: -l.,/-:; ., i'!•.• :•· 
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III. RESULTS OF NUMERICAL INVESTIGATIONS, 

We solve the equations of motion ( 11) and ( 12) by using a standard method of 
I • • , 

cor_nputer simulation which is applied for treating the dynamics of spin systems 27•28 • 

In this approach spins are considered as classical vectors, their initial distribution 

is given by the Monte-Carlo technique, and the differential equations of motion are 

numerically solved by the Runge-Kutta method. 

To check that the qualitative behavior of the system does not depend on ·the 

number of spins, we have realized three variants of calculations with N = 27, 125 

and 343 . For all these· cases the time behavior of.the system has been found to be 

qualitatively the same. Therefore,in what follows we present the results of calculations • 

accomplished with N = 125. 

Everywhere below tiine is measured in units of T2 = na3 / µ 2 , where a is a 

mean interparticle distance, and frequencies in units of T21 • We have calculated 

the coherence coefficients I<coh = I<coh(t) and Ccoh = Ccoh(t) and the radiation 

characteristics ( 13) and ( 14) which, for convenience, are made dimensionless by 

passing to the quantities 

T.2 
P = - 2 P(t), 

ngo 

We present as well the average polarization 

_ 3c
2
Tt I(t) . · 

I - 2µ2 • , 

, 1 . 
Pz(t) = NL (St) = Pz(t) ' 

i 

in which the spin of a particle is assumed to be 1/2. 

It is worth of noting · that in our microscopic model we do not take into account 

the spin-lattice interaction as far as its intensity is much smaller than that of the 

dipole interaction ( 2), that is, the spin-lattice relaxation time is much larger than 

T2. 

The polarized spin system is supposed to be prepared in a strongly nonequilibrium 

state. This means that if pi0> > 0, then the external magnetic field is overturned 

6 

·~ 

; .. u. 

~ 

I 

in the case of positively charged particles (Ho < 0) and is parallel to ez in the 

case of negatively charged particles (Ho > 0). In both the cases w0 = ,Ho is to 

be negative if pi0l is positive. When the initial polarization pi0> is negative, theri 

w0 is to be positive in order to make the initi!ll state strongly unstable. Therefore, 

the general condition showing that the system is initially i~ a nonequilibrium state 

• (0) 0 
IS WoPz < . 

Figures 1-3 show a. transition of the spin system from such ·a strongly nonequi­

librium state to its equilibrium state when. the system is coupled with a reson!Lnce 

circuit (go =/- 0) but the alternating pumping field is absent (w1 = 0) . Figure 1 

demonstrates the influence of the coupling constant g0 on the delay time and on 

the duration ofa radiation p~lse.-The dependence of the l~tter characteristics on the 

value of w0 and on the initial polarization pi0l is illustrated in Fig. 2 and Fig. 3, 

respectively. In Figs. 1-3 the time behavior of the power P is completely anal~gous 

to this function measured in the corresponding experiments13- 17• The first coherent 

burst is typical of superradiance 11•12 · when P ~ N 2 , after which the incoherent 

maser generation continues. The Bloch equations, which assume the existence of 

coherence, can reasonably describe the superradiating pulse itself, but are not able 

to describe the incoherent maser generation ( see Refs.11,12,19-22). This _is because 

the Bloch equations correspond to the classical approxim.'ation, while the incoherent 

radiation is of quantum nature. · Our microscopic model allows us to. pictur~ the whole 

process with both. its coherent ~nd incoherent parts and to. obtain a good agreement 

with experiment13- 17• By tracing the time behavior of the coherence coefficient, de­

fined in ( 15), we can unambiguously d~cide when the process is really coherent and 

when is not. 

If the spin system is not coupled with a resonator · (g0 = 0) and there is no 

alternating pumping (w1 = 0), then the coherence can appear only in the situation 

typical of free induction, when the initial polarization· p1°) is more important than 

pi0>. This case is illustrated in Fig.4. The description of free induction by the Bloch 

7 
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FIG.!.· The coherence.coefficient Kcoh, power-of current P and.polarization Pz as 

:functions of time (measured in units T2 ) for the case of the spin system coupled with 

a resonator but without external pumping (wi = 0) .. ,The solid line is for 9o = 0.1; · 

the dashed line, for g0 = 0.01 . The Zeeman frequency is. [ Wo I= 40 (in units.of 

•. r2-1). 
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corresponding curves for the polarization Pz practically coincide. 
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equations displays the disappearance of coherence d~ring the. time T2 • Contrary to 

this, we see in Fig.4 that for t > T2 there are oscillations of coherence with a period 

close to T2 • These oscillations are due to the no~uniforinity of the system, since in 

our case not all spins ha;e initially the same di;ection. As is evident, such oscillations · 

of coherence cannot appear in the Bloch description where all spins, by supposition; 

are unidirected. 

Finally, we show that coherence can be obtained in a system without a resonator 

(g0 = 0) but in the presence of a reso~a~ce external pu~ping · (w1 -::/- 0). This is. 

demonstrated in Fig.5. Such a regime cannot· be accurately described by t!"ie Bloch 

equations;since, as has been discussed by Redfield 29
, with radiofrequency fields,when 

the ·energy of spin alignment in these fields is comparable to the .energy· of typical 

dipole spin interaction, the simple phenomenological con2ept of a T2 relaxation time 

breaks down. 

IO 

In conclusion, we would like fo emphasize that the model considered in the present 

paper m11kes it possibl_e to correctly porfray different coherent effects in spin systems 

not only because this model is microscopic but also owing to a dire_ct numerical 

solution of nonline_ar equations of motion. If we would start from a microscopic 

description but invoking perturbation theory, as was done in Ref. 30 at very high 

p~larizations p. such as discussed in our work, then we. would be able to depict 

solely an incoherent behavior of t,he system. 
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