


1 Introduction

One of the fﬁndamental models in quéntum optics is the Jaynes;-‘Cumrr‘xing.,'s'modev:kl

(Jc M) of a single two-level atom coupled to a single- mode cavxty radiation field [1]
In spite of its apparent matllematlcal simplicity, the model 1)10V1(les us thh a lot
of mtclestmg and unexpected results (for a review see [)] [5] In paltlculal, in the'
JCM, the familiar Rabi oscillations are affected by the dlstnbut)on of photon numbers,
which causes a dephasing or "collapse” as the range of possible R#bi'fl’eqtle;lcies Vin-
terfere [6] The discrete nature of the photon number distributions leads to a further
purely quantum mechanical effect when the dephased Rabi oscillations rephasé or "re-
vive” [7]. This phenomenon has heen observed in experiments with Rydberg atoms in
supcrconﬂuctiug nticrowave cavities [8]. |

Recently, it has been shown that the collapses an(l 1ev1vdls of Rabi osc1llat10ns‘
in thc JCM may be treated in terms of interferences of quasmmbablht)es ina phase
space [9, 10] or phase density probability distribution in a polar diagram [11] (see
also’ [12]). - The evolution of the field in the JCM towards a coherent superposition
of macroscopically distinct quantum states, that is, a Schrédinger-cat-like-state, has
been discussed at length in [13, 14]. The observation of such macroscopic-superposition
states remaius an outstanciing problem in fundamental physics. . ’

In [10], an example of the time evolution of the phase probability diétribution in
the prcsenée of the cavify damping has becn presented graphically. However, little
attention has been paid to analyzing effects of photon leaka\.gc on phase properties of
the field, and since the master equation is solved exactly, the efpression for the phase -
pfobability distribution is complicated. |

QOur aim in this Letter is twofold. Firstly, we use the dressed atom approximation
technique [15,\ 16] to derive explicit expressions for.the phase variables which prove
to have rather simple forms. This (dressed atom) approximation is made undér the

assumptions of very high-Q and zero temperature cavity. Both these conditions can
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now be realized in most of the Rydberg maser experiments (8, 15, 17]. Based on the
obtained formulae, it is shown that in the presence of the cavity damping, the ficld

goes faster over into a state with uniform phase distribution. Secondly, we compare

phase distributions obtained by integrating the Wigner and Q functions over the radial

variable with that using the Pcgg-Barnett Hermitian phase formalism {18]-[20] and
show that they have a quite similar behaviour. This is in agreement with tle area-of-

overlap-in-phase-space concept [21].

2 Solution for density matrix elements in the high-
Q limit

The master equation describing the dynamical model of one two-level atom coupled
to a single damped cavity mode at zero temperature reads (h = 1), in the interaction

picture,

dp
ot~

where the interaction hamiltonian H in the rotating wave approximation is given by
=g(Rta+ R a'). ‘ (2)

Here R* are the transition operators for the atom; «* and a are the creation and anni-
hilation operators of the field mode; g is the coupling constant and the exact resonance
Watorn = Wfield = w is assumed. The last term in iq. (1) arises due to finite Q (= w/2K)
of the cavity. Thus, 2« represents the rate of loss of photons from ﬂle cavity.
To solve (1) we work in the dressed-state representation, i.e., the representation
consisting of the complete set of eigenstates of H, which are imown to be given by
Hl0;9) = ~-§f0;g),
HlpT) = i),
lpE) = %(ln;e)i]nqtl;g)), n=0,1,.., 00, &)
A= tgVn it

—i[H, p] — x (a*ap — 2apa*t + pa*a), (1)

lere |n,€) and |n, g) refer to states with n photons in the cavity field mode and the

atom in the excited and ground states, réspectively. For the annililation operator a
\

we have

Z Vi (n = Le)(nie| + [n — L g){(n; gl)

n=0

a
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Similarly, the photon number operator can be written as
Ly : D= (et ). o)
wta= 23 [0+ 1) (e + ) wrl) - (81 + e e
“ n=0 .
By defining |
: W(t) = ('\])(IIH)/)( yexp(—iHt), (6)
and substituting (4) and (5)into (1), we obtain an equation for W(t) which contains
time-dependent and time-independent terms. 1t ‘can be shown that the contribution of
the oscilla‘t..ing terms is of the order #%/¢? and can be neglected within the dressed-atom
‘ (secular) approximation {15, 16]. Then the equation for W(t) is found to be

W0 = 10,00 VIR B0l + 0s0) VO 001
+~/2i{(\/n FT+ VA [l ) (e I |+ ) (e VL) ]

n=1

FVATT~ Ay [[:Lv:_l)(zl);IW(i)|¢:)(¢':—1‘ + |¢;_,>(¢’,’.‘IW(t)W'.T)(s":_xI]}

o230 0n + D[R + DRIV + ).

n=0

From Eq. (7), it casily follows that [16]

i WIWOIL) = explontin+k+ DIGEVOI), (0 b o= +.7)
i WHWOWE) = exlostn+k+ DIETDVORD. (k)
i’ (0 gW()|pE) = cxp[——);l(n-}-1/2)](0:‘0!“"(” W) L)
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Equation (8) along with its Hermitian conjugates dotmmm( all the off-diagonal
elements of W(t). In calculations of the phase variables, the (liagonal clements of W(l)

are not needed in the explicit form; so we will not write down them here.

3 Properfies of the field phase in a damped cavity

The Pegg-Barnett formalism is based on introducing a finite (s + t)-dimensional
space ¥ spanned by thie number states [0), |1}, ..., |s). A complete orthonornial basis
of (s + 1) phase states is defined on this finite space as

10n) = —==Y exp(ind,,)|n), ( (9)
Vst

n=0

where

Om = 0o + , {m =0, IA,...,s). (10)

The value of 6§y is arbitrary and defines a particular basis set of (s 4 1) mutually
orthogonal phase statcs. The Hermitian phase operator is defined as
s ,
$9=Y 0,,00,)(0n]- (11)
m=0

The phase states (9) are eigenstates of the phase operator (11) with the cigenvalues 0,
restricted to lie within a phase window between 0s and 0p+2x. Note that the Hermitian
phase operator in a finite dimensional space has also been constructed in carlier works
of Garrison and Wong [22], and Popov and Yar unin [23]. A complete description of the

single-mode field involves an infinite set of number states and here this corresponds to

the limit as s — co. An essential feature of the Pegg-Barnett formalism is that the -

value of s is allowed to tend to infinity only after all necessary expectation values have
been calculated in ¥,

Now let us assume that the atoum is initially in the excited state

pa(0) = le)(e|, - (12)

iy

and the field is in the coherent state

7(0) =D bubgexpli(n — k)p]in) (k] (13)
nk .

with e
By (RN (14)

b, -exp( 2) (n!)
For p,(0) and p;(0) as are given above, the expression for W(0) in the dressed-state

representation becomes

W) = A0) = (0 © 110 | (15)

LS bbvexnlitn - k)so](lw)(wk |+ 1) )+ W (8 + ) i ).

nkO

Since we are interested in the properties of the light field, we have to perform a
trace with respect to the atom. Then, the probability of finding the field in the phase

state |0,,) is defined as

Tra[(Omlp(£)10m)] = (Omi elp(t)l0m; €) + (Om; glp(t)l0mi 9) . (16)
= T3 Zoexp[—i(n — k)6m] [(n; elp(t)|n;e) + (n;glp(t)ln;g)] .

By writing |n,e) and |n,g),in terms of |¥), one obtains

3 expl-iln ~ k)l (ms elo(®)lie) = 575 +1) Zewl— Hn = £)0]

n,k=0

L 8+1

x{exP["i(’\n — M) WNBE) + expli(Aa — At (b7 IW()I¥E)

+ expl—i(h + MW IWOIE) + expli(ha + Ak)t1<¢;|W(t)|¢zf>}, (17)

L

| 1 A : ‘
3 expl-i(n — )0 msla(Olns o) = 1) g:‘oexp[—z(n—k)oml

n,k=0

x {exp[_i(xn = MW@ + expli(An — M) 5 VO RL)

s+1



+exp[—i(A, + Ak)t]‘(zr’)ilV‘V(i)I!ﬁE) +expli(X, + A:L-)t](ll’;IW(i)Il/'if)} .

’ 1 -1 ) .
+—-———\/2_(s ) Z{exp[z(n +1)0,,] [exP(iAnt)(O;g|W(t)|¢.:)

n=0

+ eXP(—iAnt)(O;gIW(i)Iw;)] + c-c-} + ﬁ(O;HIW(t)IQ;y)- ' (18)-

For very large s, we can ignore the difference between s and (s — 1) and write : ‘

Tea(0nlp)l0n) = — { O W OI059) + 3 (L)

n=0

OF) + Wi lm]} o

1 s—1 ) - .
T ;{exp[z(fz o+ 1)00m] [exp(iAat) (0; gIW() i)
+exp(—1A,1)(0; g|W(t |1/),:)] +c. c}
-+ s+1 Z exp[—i(n — £)0,,] [(,\1)[-— An — A t](:/;*]W Ne)
(n#) .
Fepfi(hn — AW b ] (19)

In the case of the coherent state (13), it is convenient to choose the reference phasc‘

00 as fol]ows [19]

bo=p— "2, o)

that is, we symmetrize the phase window with respect to the initial mean phase ¢. The

denSIty of phase states is (s 4+ 1)/27; so in the contmuurn limit as s s tends to infinity,

after inserting (8), (15), and (20) into (19), and taking mto a.ﬁccount the fact that .

n=0

hm{w SV I00) + 3 [t 1¢>+<¢;|W(z51¢:':)]}=1, (21)

we arrive at the continuous phase probability distribution

P(0,t) = {1 +2anbkcos[ (n — k)0)

S o et st L
o -

n>k X

!

X cos[(\/n +1 = Vk+ 1)gt]exp[—xt(n+ k+ l)]}, (22) : ;
6 :

where 0,, has been replaced by thie continuons phase variable 0, and the phase window
is now from —x to =. f k = 0, the photon-leakage is absent and formula (22) reduces
to that in the situation of a lossless cavity [11].

The expectation value of the phase operator (11) and its variance are given by

(q)0> = Zomr] (}m!/’ Ionl)]» (23)
(AdeP) = 3 (0~ (o )) Tr [(Onlp(£)]0,0)] - (24)

After replacing the summations in (23) and (21) by relevant integrals in the limit

s — oo, and using the phase distribution function (22}, one finds

(G = o | ; ()
((A&’g)z) = — + 4 Z b,,bL (‘os[ (Vi +1-— Vi + Dgt)exp[—kt(n + k +1)].
n>k .

_(26)

Forinula (‘25) shows that, differently from the nonzero detuning and the atomic coher-
ence [11], a finite Q does not lead Lo l‘imc clla.l;g(‘s of the expectation value of the phase
opcra.toi'. The phase distribution evolves, but always remains synimetric with respect
to the mean value . However, thie cavity losses lead to inéreasing in the phase uncer-
tainty, as can be scen in figures ! and 2 where we have illustrated the time evolution
of P(0,t) and ((A&)g)2) for various values of r/g. Now besides the nom'on‘lmensu-
rability l)ét\\'een the Rabi frequencies, there appears a second factor — the leakage of
photons from the cavity which causes the field phase to be randontized. In the presence
of the cavity damping, for long cnough times, the field state will eventually become
vacuum with the uniform phase distribution P(0.t — o0) = 1/(2r) and the variance
((A‘i’g)'z) = 72/3 [20]. The larger the damping rate is, the quicker this regime is estab-
lished. Withoutl damnping no stationary solution can be reached and then for long times,
the phase probability distribution, though exhibits apparently chaotic behaviour, still

shows some complex structure (see Fig. 1d, solid line) while the phase variance after an
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interval of complete fading again shows oscillations irr a random mamner around #2/3
(see Fig. 2, solid linc). This renewal of oscillations also occurs if the cavity-damping

rate is small.
4 ' Phase distributions

Recently, investigating the Q fuuction and Wigner [unction for the JCM, Eiselt
and Risken [9, 10] have shown that they reveal the collapses and revivals of the Rabi
oscillations [7] in a very spectacular way. Starting with a light field in a coherent state

and the atom in its upper state, the initial shifted Caussian quasiprobability distri-

bution splits into peaks counterrotating in the complex a-plane. When the peaks are:

well separated, the atomic inversion shows no oscillations; when they collide, oscilla-

tions of the inversion occur. In [L1], it has been found that the same feature holds for

the time beliaviour of the phase probability distribution and in addition to that, the

revivals of the Rabi oscillations can be understood in terms of maxima and minima
of the phase variance. This is clearly visible in Figs. 1 and 2, where for convcni(;nce,
th/e time has‘been scaled by the factor equal to the revival period T = 21/ /g. Be-
hind the similarities between the phase distribution and the quasiprobabilities when
describing the collapse and revival cffect, there exists a more fundamental relation. To
show that, we calculate the ”classical” phase distribution deéfined by integrating the

Q function over the radial variable. This distribution was referred to as ”classical” by

Braunstein and Caves [24] since the Q function applies to simultancous measurement

of two noncommuting observables, a process that inevitably introduces an additional .

noise.

The Q function for the JCM is defined as

Qe t) = Tra [(alo(D)l)], . e

where |a) denotes a coherent field state .

>0 a e'o n
) = espl-la/2 3 Ly, (28)-

Using formula (6), the solution (8), the initial condition (15), and after performing the

integration of @(«,1) over |a}, one gets

dla
T

Po(0,1) = / " Qa, Dl

= él; (1 +2 Z b, by, cos[(n — k)0)exp [— kt(n+k +1)]

n>k

X {é[F'(n,k) + Fin+ 1L, k4 1) cos[(vVn+ 1 —VEk+1)g]
+é[F(n,k) —Fn+1,k+ Djcosf{(Vn+ 1+ VE+ l)gt]}) , (29)

where

[ (2t 4]
F(n,k) = _(_Z_f_)

vnlk!

and the phase (0 — ¢) has been replaced by 0, which is equivalent to the choice of the

(30)

reference phase (20). Since Q(a, 1) is positive definite, Po(0,1) is also positive definite,
and normalized, and it can be treated as a phase distribution. It is evident that these
are the extra factors F(n, k) that distinguish the "classical” phase distribution (29)
from the Hermitian phase distribution (22). Tlese factors result from the integrating
of Q(a,t) over |a|, and therefore, are independent of the concrete form of the field state

under consideration. In particular, they appear in expressions for the "classical” phase

. distribution of the anharmonic oscillator states [25], displaced number states [26], and

fields generated in multi-photon down converter {27]. One can easily check that the

elements F(n,k) are symmetrical F(n, k) = F(k,n), their diagonal elements.are unity

F(n,n) =1, and farther away we go from the diagonal, the smaller are F(mn, k) [27].
The concept of interference in the phase space introduced by Schleich and Wheeler [21]

when applied to describe phase properties of the field indicates still another possibility
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to get the phase distribution [28] by integrating the Wigner distribution over the radial

variable. In our case, the Wigner distril)ution can be defined as {29]
(31)

W(a,t) = 72 o(nlp(t)D(2a)n)],

where D(2a) is the displacement operator
(32)

D(2a) = exp (2aat — 207a)
On inserting (6), (8) into equation (31) and using again the initial condition (15), the

integrating of W (a,t) over |a| gives us

Pw(0,4) E/ W(a, t)|a|‘”“|
V]

! (1 +2 Z b,,bk cos[(n — L V0] expl-rt(n+ k+ 1)1

~ o
n>k
{I[G n, k) + G(m+1,k+ 1) cos[(Vn + | — vk + 1)gi]

1o
+- [G(n B - Gn+ 1L, E+D]cos[(Vr+1+VE+1 Jt]}) (33)
where
Sa——— VA
AN _1yptmol[n- m)f2 A L T RY
G(n, k) = ,;__0( 1)r ™2 (m) (p B m) F(m,|n — k| +m), (34)
(35)

with
p = min(n,k), ¢ = max(n, k),

and F(m, |n—k|+m) given by Eq. (30). The factors G(n, k) are symumetrical G(n, k)

G(k,n), and G(n,n) = 1.

?
In Fig. 3 we show the plots of the phase distributions calculated according to threc
5 cavity... It s

0 that means an ideal lossless cavity

formulae (22), (29), and (33), for &
clearly seen that they carry the same phase information though Pg(0,1) is broader than

Py (0,t) and-the Pegg-Barnett phase distribution. This broadening may be explained

10
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Figure 1 : :
Phase ‘probability distribution P(0,1) plotted a.gainst 0 for various values of

= 0 (solid line), n/g = 0.001 (dashed line), and

T = gt/ (27/n), and for Kfg =
/g = 0.01 (dotted line). The average photon number 7 = 10.
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Figure 2 ‘ ’ i
Plot of the variance of the phase operator as a function of T, for x/g = 0 (solid

line), /g = 0.001 (dashed line), and x/g = 0.01 (dotted line). The average photon

number 7z = 10.
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Plots of the phase distributions P(0,t) (solid line), Po(0,t) (dashed line), and

Pyw(0,t) (dotted line) for k =0 and A = 5
12

as follows. In Eq. (29), if one neglects the terms proportional to (1/2)[F(n, k) — F(n +
Lk + 1)], which are small as compar/cd with those proportional to (1/2){F(n, k) +
F(n+ 1,k +1)], one can treat Po(0,1) as resulting from averaging the Pegg-Barnett
phase distribution with the ”probabilitics” (1/2)[F(n, k) + F(n + 1,k +1)]. Since the

- nondiagonal elements F(n, k), (n # k) are smaller than)unity, (1/2)[F(n, k) + F(n +

1,k + 1)] are also smaller than unity and this diminishing of the nondiagonal elements

. that define the phase structure leads to a phase distribution broader than P(0,t). In

the case of displaced number states [26], a similar averaging procedure even causes
some lossesvof phase inforration. v

Since the coefficients G(n,k) take on the values that are smaller or larger than
unity, their effect on the pha.ée distribution is not as simple as in the case of Po(0,1).

From Fig. 3 we seé that the phase peaks of Py (0,1) are slightly narrower than those

" of P(0,t). This similarity is in agreement with the concept of area-of-overlap in phase

space, where a quantum state is represented by the Wigner function, a phase state
is represented. by a diverging beam and the phase probability is associated with the
weighted area of overlap between them [28]. The area-of-overlap principle gives a simple
visualization and a deeper insight into the phase properties of quantum state. However
P;V(é, t), in general, can take on negative values while there are no such problems with

the Pegg-Barnett phase distribution.

5 Conclusion

We have discussed the effects of cavity damping on properties of the field phase

in the JCM. By using the dressed atom approxiination, analytical formulae for the

phase distribution, the expectation value of the phase operator and its variance have

been obtained in rather simple forms. It Lias been shown that due to the leakage of
photons from the cavity, the field phase.undergoes a quicker randomization than in

the case of an ideal cavity. We have compared the Hermitian phase distribution with

13
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those obtained by integrating the Q function and Wigner function over the amplitude
and shown that they carry basically the same phase information. This similarity is in
agreement with the area-of-overlap-in-phase-space principle.
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'BnMnHMe Konetmova p.oGpomocm peaoHaTopa s

MCCHEIJ.\/K)TCH (baBOBble CBOMCTBB KorepeHrHoro ﬂOﬂH B3BMMGAEMCTBVK)-

wero. ¢ ABVXYPOBHEBbIM aromom B pesoHaTope C OveHb BbICOKOM KOHeYHon
,'u.oﬁporHochto noxaablaaercn 4TO- U3-33 yreuKu cboronoa u3. peaoHaropa
“'dhasa nonA. xaomaupyercn 6b|crpee 4eM B CNy4ae WAANbHOrO peaoHaTOpa
“CpaBHUBaeTCA- pacnpeneneHwe 3pMMTOBOM dasst ¢ pacnpeneneuunmu can-
»vaaHHbIMM c Q¢)yHKuueu ) ¢)yHKuueu BurHepa nouoﬁue MeXAy HUMK umeer .
[ ACHYIO MHTepanTauWO lrepea npUHLMN cynepnoauuuu ‘B ¢)aaoBom npo-
1 crpchrae i : ‘

: Paﬁora BbmonHeHa B J'Ia60paropm1 reopervmecxou ¢m3m<u OVIHM

. Tpenpuur OfbeIMHEHAOTO HECTHTYTA SIEPHBIX HCcaeobannui. dy6ua 1992

[
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~Phase propertles of a coherent fleld |nteractmg wuth a two Ievel atom ina

e ‘cawty w1th very .high but finite Q are studled It:is shown that due to the cavity
‘ dampmg the field phase is random|zed ‘more qurckly than in the ideal- lossless- -
cavity case. The Hermltlan phase dlstnbutlon and the phase distributions associa- -
o ted with the Q function and the ngner functlon are compared ‘The s:mllarmes '
: between them have’ clear mterpretatlon |n terms of the area- -of- overlap in phase
.‘space B S !
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