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1 Introduction 

One of the fundamental models in quantum optics is the Jaynes-C~mmings model 

(JCM) of a single two-level atom coupled to a single-mode cavity radiation field [1]. 

In spite of its apparent mathematical simplicity, the model provides us with a lot 

of interesting and unexpected results (for a review see [2]-[.5]). In particular, hi the 

JCM, the familiar Rabi oscillations are affected by the distribution of photon numbers, 

which causes a dephasiug or "collapse" as the range of possible Rabi frequencies in­

terfere [6]. The discrete nature of the photon nuinber distributions leads to a further 

purely quantum mechanical effect when the dephased Rabi oscillations rephasc or "re­

vive" [7]. This phenomenon has heen observed in experiments with Rydberg atoms in 

superconducting microwave cavities [8]. 

Recently, it has been shown that the collapses and revivals of Rabi oscillations 

in the JCM may be treated in terms of interferences of quasiprobabilities in a phase 

space [9, 10] or phase density probability distribution in a polar diagram [11] (see 

also [12]). The evolution of the field in the .JCM towards a coherent superposition 

of macroscopically distinct quantum states, that is, a Schrodingcr-cat-like-state, has 

been discussed at length in [13, 14]. The observation of such macroscopic-superposition 

states remains an outstanding problem in fundamental physics. 

In [10], an example of the time evolution of the phase probability distribution in 

the presence of the cavity damping has been presented graphically. However, little 

attention has been paid to analyzing effects of photon leaka~gc on phase properties of 

the field, and since the rna.ster equation is solved exactly, the e~pression for the phase·· 

probability distribution i~ complicated. 

Our aim in this Letter is twofold. Firstly, we use the dressed atom approximation 

technique [15, 16] to derive explicit expressions for. the phase variables which prpve 

to have rather simple forms. This (dressed atom) approximation is made under the 

assumptions of very high-Q and zero temperature cavity. Both these conditions can 



now be realized in most of the Rydberg maser experiments [8, 15, 17]. Based on the 

obtained formulae, it is shown that in the presence of the cavity darnpi11g, tlw field 

goes faster over into a state with uniform phase distribution. Secondly, we comp,irc 

phase distributions obtained by integrating the Wigner and Q functions over the radial 

variable with that using the Pegg-Barnett Hermitian phase formalism [18] [20] and 

show that they have a quite similar behaviour. This is in agreement with the area-or­

overlap-in-phase-space concept [21]. 

2 Solution for density matrix elements in the high­
Q limit 

Tl~e master equation describing the dynamical model of one two-level atom coupled 

to a single damped cavity mode at zero temperature reads (ti = 1 ), in tl1e interaction 

picture, 

: = -i[JI,p] - K (a+ap- 2apa+ + pa+a), (1) 

where the interaction hamiltonian JI in the rotating wave app1:oximation is given by 

JI= g (R+a + R-a+). (2) 

Herc R± are the transition operators for the atom; a+ and a are tlie creation and anni­

hilation operators of the field mode; g is the coupling constant and the exact resonance 

Watom = w field = w is assumed. The last term i11 Eq. ( 1) arises due to finite Q ( = w /21-.'.) 

o~ the cavity. Thus, 2K represents the rate of loss of photons from the cavity. 

To solve (1) we work in the dressed-state representation, i.e., the representation 

consisting of the complete set of eigenstates or JI, which are known to be given by 
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Herc \n,e) and \11,9) refer to states with n photons in the cavity field mode and the 

atom in the excited and ground states, respectively. For the hnnihilation operator a 
I 

we have 

(X) 

a L fo(\n - l;e)(11;e\ + \n - 1;9)(11;9\) 
n=O 

\O; g)(i/•tl - \O; g)(i/•;\ + ~ f [( vn+l + fo)(\i/1t-1)(1.'•tl + \if·,:-1)(11\:I) 
le, ) 

V~ ~ n=l · 

-(vn+l - fol(l\'·:-1)(~·,:I + li!•,:-1)(1,\;\)]. (-ll 

Similarly, the photon 11urnhn operator can h<' written as 

1 00 

a+a = 
2 

L[(211 + I) (\i!•t)(ij,t\ + \i!•;;)(!f•;;I) - (li1't)(i/•;;\ + \i;•;;)(i.'•tl)]. 
n=O 

(.'"1) 

Ily defining 

W(t) = <'xp(il/f)p(f)exp(-iJ!l), (G) 

and substituting (·I) a;1d (.'.i) into (I), we obtain a11 equation for W( I) \\'hich contains 

time-dependent and t.ime-ill(lepcndcnt terms. lt. ·can be shC>wn that the contribution or 

the oscillating terms is or the order 1? / g2 and can he 11<'glected \\'it hin the dressed-atom 

(secular) approximation [15, 16]. Then the equation for W(t) is found to he 

W(t) = i-[!o;g)(v\tlW(t)lit·t)(o;gl+ 1o;g)(,t,olW(t)l11\;-)(o;gl) 

+i-/2; { ( v'n+T + ./n)2 [iit•!_1)(,t•;IW(t)i¢!)(il·!-, I+ h1•;;_1)(t/•;;IW(t)lt/';;)(t/·;;_, 1) 

+( v'n+T - ./n)2 [1v:,;_1)(t/,;; IW(t)l,J,;;)(11'!-1 I+ lt/';;_1)(t/,! IWU)l,t,!)(11•;;_11]} 

-i-/2 I)2n + l) [(1,J,;)(,t,;I + l,t,;;)(i/•;;l)W(t) + 11.c.]. 
n;O ~ 

From Eq. (7), it easily follows that [ l G] 

(if,'.,\W(t)\i/{) = exp[-nl(n + /, + l )](1/•;1 \W(0)\1,;,iJ, 

(1,\;\W(l)\~•k) = cxp[-nl(11 + h· + 1 )](\l•:\W(O)\i/f), 

(O;g\W(t)\i/•;) = exp[-,;1(11 + 1/2)](0:.<JlrV(0)\1/•;,). 
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Equation (8) along with its Hermitian conjugates dekrtnine all the off-diagonal 

elements of W(t). In calculations of the phase variables, the diago11al elements of W(l) 

are not needed in the explicit form; so we will not write down them here. 

3 Properties of the field phase in a da1nped cavity 

The Pegg-Barnett formalism is based on introducing a finite (s + J )-dirncnsional 

space Ill spanned by the number states IO), II), ... , Is). A complcte orthonormal basis 

of ( s + l) phase states is defined on this finite space as 

where 

IOm) = _l ~ v'sTI ~ cxp(i110m)l11), 

21rm 
Om= Oo + s + l' (m = 0, 1, ... ,s). 

(!J) 

(10) 

The value of Oo is arbitrary and defines a particitlar basis set of (.,, + l) mutually 

orthogonal phase states. The Hermitian phase operator is defined "as 

s 

¢>0 = L OmJO,,.)(OmJ- ( 11) 
m=O 

The phase states (9) are eigenstates of the phase operator (11) with the eigenvalues Om 

restricted to l\e within a phase window between 00 and 00 +21r. Note that the Hermitian 

phase operator in a finite dimensional space has also been constructed in earlier works 

of Garrison and \Nong [22], and Popov and Yarnnin (2:3]. A complete description of the 

single-mode field involves an infinite set of number states and here this corresponds to 

the limit as s -----> oo. An essential feature of the Pegg-Barnett formalism is that the 

value of s is allowed to tend to infinity only after all necessary expectation values have 

been calculated in Ill. 

Now let us assume that the atom is initially iu tlie excited state 

Pa(O) = Je)(eJ, ( 12) 
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and the field is in the coherent state 

PJ(O) = L bnbkexp[i(n - k)rp]ln){kl (13) 
n,k 

with - (-n)l/2 
bn = exp (-i) 7:! (14) 

.For Pa(O) and P1(0) as are given above, the expression for W(O) in the dressed-state 

representation becomes 

W(O) = p(O) = Pa(O) © P1(0) (15) 
1 00 

= 2 L bnbkexp[i(n - k)rp](11!)(1tl + ltJ,;;")(tJ,_i;I + 11!)(1;;-I + ltJ,;;-)(1tl). 
n,k=O . 

Since we are interested in the properties of the light. field, we have to perform a 

trace with respect to the atom. Then, the probability of finding the field in the phase 

state !Om) is defined as 

Tra[(Om Jp(t)IO,,;)] = (Om; elp(t)JOm; e} + (Om;glp(t)JOm;g} . (16) 
1 • 

= s+l L cxp[-i(n-k)Om][(n;elp(t)Jn;e)+(n;gJp(t)ln;g)]. 
n,k=O 

By writing ln,e) and Jn,g)1in terms of 11;}, one obtains 

1 • 1 • - L exp[-i(n - k)Om](n; elp(t)ln; e) = ( ) """' exp[-i(n - k)Om] 
s+l 2s+l ~ 

n,k=O n,k=O 

x{ exp[-i(,\n - ,\k)t](tJ,!IW(t)ltJ,t) + exp[i(,\n - ,\k)t](tJ,;;-JW(t)141_i;} 

+ exp(-i(,\n + ,\dt](tJ,!IW(t)ltJ,;;-) + exp[i(,\n + ,\k)t](tJ,;;- JW(t)Jtj,t)}, (17) 

1 • 1 •-1 

s + I L exp[-i(n - k)Om](n;gJp(t)Jn;g) = 2(s + l) L exp(-i(n - k)Om] 
n,k=O n,k=O 

X { exp[-i(,\n - ,\k)t](tJ,!IW(t)ltJ,t) + exp[i(,\n - ,\k)t](tJ,;;-IW(t)ltJ,;;-) 
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. +exp[-i(,\n + ,\k)t](ip;;IW(t)il/,;) + exp(i(,\n + ,\k)t]{i,l•;;-IW(t)li/•t}} 

+ v2 l f {exp[i(n + l)Bm] [exp(i,\nt){O;glW(t)J,t,;;) 
2{s+l)n=O . 

+ exp(-i,\nt){O; gJW(t)Jip;;-)] + c.c-} + 
8 
! l (O; gJW(t )JO; g). 

For very larges, we can ignore the difference betweens and (s - 1) and write 

( 18) 

Tra(BmlP(l)IBm) - , ~ I { (O; glW( t)IO; g) + t, [<¢t!W( t)l,J,t) + (,;,; IW(t )IV•;) l} 
l s-1 _ , 

+ v2 '°'{exp[i(n + l)Om] [exp(i,\nt)(O;gJW(I*'•+) 
2(s+l)~ , 11 

+exp(-i,\,.t)(O;glW(t)Jip;;-)] + c.c.} 

1 • 
+ 

8 
+ l L exp[-i(n - k)Om] [exp(-i(,\11 - ,\k)t](ip;;JW(t)lft) 

n,k=O 
(n;,ik) 

+exp(i{,\n - -\k)t](ip;;-JW(t)Jip;;)]. (19) 

In the case of the coherent state (13), it is convenient to choose the reference phase 

00 as follows (19) 

7rS 

Oo = '-P - s +I' 

,; 

(20) 

that is, we symmetrize the phase window with respect to the initial mean pha5e c.p. The 

density of phase states is (s + I)/2r.; so in t~e continuum limit ass tends to infinity, 

after inserting (8), (15), and (20) into (19), and taking into account the fact tha.t 

.ii.-::, { (O; glW(t )10; g) + t, [ (,J,;:-JW(tJl,i,;:-) + (,t,; IW(t )1¢;)]} - 1, (21) 

we arrive at the continuous phase probability distribution 

} { 

00 

P(O, t) = - I+ 2 L b,,bk cos((n - k)O] 
2r. k n> 

x cos[( v'n+l - ✓k + I )gt] exp[-1.:t{n + k + 1 )] } , (22) 
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where 0,,, has been replaced by th<' contiuuous phase variable 0, and the phase windo,v 

is now from -r. to r.. If 1. = 0, the photon- k·akagt> is absent and formula (22) reduces 

to that in the situation of a lossless cavity [11]. 

The <'Xpectation va.lue of the phase operator ( 11) and its variance are gin•n by 

( <I>o} L OmTru ({O,,.lp(t)JO,,,)], (23) 

m=O 

{(~<I>o )2) 
s 2 L (om - (<l>o)) Tr,, ((O,,.Jp(t)IO,,,)). (2,1) 

m=O 

After replacing the summations in (2:l) and (2•1) by relevant integrals in the limit 

s--> =, and using the phase distribution function (22), one finds 

(ef>o) 

((~<I>o )2) 

r.p, (25) 

r.2 (-])"-" 
- + 4 '°' b,A . cos[( ✓,7+l - -/I-+l)gt] exp[-1,:f(n + /.· +l )]. 
3 ~ (11 - 1.-)2 ' 

n>k 

(2G) 

Formula (2.5) shows that, different.ly from tll<' 11onzero detuning and the atomic coher­

ence (ll], a finite Q does not lead to time chang<'s of thl' expectation value of the phase 

operator. The phase distribution evolves, but always remains :symnwtric with respect 

to the mean value r.p. However, the cavity losses !Pad to increasing in the phase uncer­

tainty, as can be seen in figures 1 and 2 where ,n• ha\'c illustrated the time crnlution 

of P(O,t) and {(~<1>0 )2 ) for various values of 1,/9. Now besides the nonrommcnsu­

rability between the Rabi frequencies, there apJH',ns a second factor - t lw leakag<' of 

photons from the cavit.y which causes the field phase to be randomized. In the prl•senc<' 

of the cavity damping, for long enough times, the field statc- will cw11t11ally hectm1e 

vacuum with t.he uniform phasc- distribution l'(O,t--> =) = l/(2r.) and tlw \'aria.nee 

{(il<f>o )2) = r.2 /3 [20]. The larger the damping rate is, the quicker this regime is estab­

lished. \Vithout damping 110 stationary solution can lw reached and then for long time:s·, 

the phase probability distrihutio11, though <•xl1ihits apparently chaotic behaviour, still 

shows some complex structure (s<'<' Fig. Id, solid li1ll') while t.lw phase variance after an 

7 



interval of complete fading again shows oscillations irr a random manner around r.2 /:J 

(see Fig. 2, solid line). This renewal of oscillations also occurs if the cavity-d.imping 

rate is small. 

4 Phase distributions 

Recently, investigating the Q function and Wig1lC'r function for the .JCl\l. Eiselt 

and Risken [9, 10] have shown that they re\·c,d the collapses and rC'vivals of the Rabi 

oscillations [7] in a very spectacular way. Starting with a light field in a coherent. state 

and the atom in its upper state, the initial shifted Gaussian quasiprobability distri­

bution splits into peaks counterrotating in the complex a-plane. \Vhcn the peaks arc 

well separated, the atomic inversion shows no oscillations; when they collide, oscilla­

tions of the inversion occur. In [ll], it has been found that the same feature holds for 

the time behaviour of the phase probability distribution aud in addition to that., the 

revivals of the Rabi oscillations can be understood in terms of maxima all(! minima 

of the phase variance. This is clearly visible in Figs. 1 and 2, where for convenience, 

the time has been scaled by the factor equal to the revival period Tn = 21r,/,f/g. Be­

hind the similarities between the phase distribution and the quasiprobabilities when 

describing the collapse and revival effect, there exists a more fundamental relation. To 

sh~w that, we calculate the "classical" phase distribution ddined by integrating the 

Q function over the radial variable. This distribution was referred to as "classical" by 

Braunstein and Caves [24] since the Q function applies to simultaneous measurement 

of two noqcommuting observables, a process that inevitably introduces an additional. 

n01se. 

The Q function for the .JCJ\I is defined as 

Q(a, t) = Tra [(alp(t)ja)], (27) 

8 

:1 
l 

1 

where ja) denotes a coherent field state 

= (laleiO)" 
la)= exp(-lo:12/2) L H In). 

n=O 

(28)· 

Using formula (6), the sohition (8), the initial condition (15), and after performing the 

integration of Q(a,t) over joj, one gets 

1= dial 
PQ(0,t) = Q(a,t)ial-

o 7r 

1 ( 
00 

= - 1 + 2 L bnbk cos[(n - k)O] exp [-1<t(n +k + l)] 
21r 

n>k 

x { ~[F'(n, k) + F(n + 1, k + 1)] cos[( Jn"+l - v'f+T)gt] 

+~[F(n, I.:)~ F(n + 1, k + l)] cos[( Jn"+l + Jk+-l)gt]}), (29) 

where 

f ("+k + 1) 
2 ' F(n,l-) = v'nffi (30) 

and the phase (0 - cp) has been replaced by 0, which is equivalent to the choice of the 

reference phase (20). Since Q(a, t) is positive definite, PQ(0, t) is also positive definite, 

and normalized, and it can be treated as a phase distribution. It is. evident that these 

are the extra factors F(n, k) that distinguish the "classical" phase distribution (29) 

from the Hermitian phase distribution (22). These factors result from the integrating 

of Q( a, t) over !al, and therefore, are independent of the concrete form of the field state 

under consideration. In particular, they appear in expressions for the" classical" phase 

distribution of the anharmonic oscillator states [25], displaced number states [26], and 

fields generated in multi-photon down converter [27]. One can easily check that the 

elements F(n, k) are symmetrical F(n, k) = F(k, n), their diagonal elements are unity 

F(n, n) = 1, and farther away we go from the diagonal, the smaller arc F(n, k) [27]. 

The concept of interference in the phase space introduced by Schleich and Wheeler [21] 

when applied to describe phase properties of the field indicates still another possibility 

9 



to get the phase distribution [28) by integrating the Wigner distribution O\'er the radial 

variable. In our case, the Wigner distribution can be defined as [29] 

00 

W(a,t) = 2 L)-lfTra[(nlp(t)JJ(2a)jn)], (:JI) 
n=O 

where D(2a) is the d_isplacemcnt operator 

D(2a) = exp (2na+ - 2o-*a). (:32) 

On inserting (6), (S) into equation (31) and using again the initial condition ( 15 ), th<' 

integrating of W( a, t) over !al giYcs us 

Piv(O, t) = r= W(a, t)ia(1101 
lo 1r 

1 ( 
00 

= - 1 +2I:b11 bkcos[(n- k)0]exp[-1<t(n+k+ 1)1 
21r . 

n>k 

x { ½[G(n, k) + G(n + 1, k + l)] cos[(_~ - Jk+T)gt] 

+½[G(n, k) - G(n + 1, /,+I)] cos[( J;'+T +~)gt]}), (:3:3) 

where 

p 

G( n, k) = I: ( -l)p+m2(1n-kl+2m)/2 
m=O 

(
11
)( q )F(m,ln~kl+m)_, 

m \]J - in 
. (:1-l) 

with 

p = min(n, k), q = max(n, k), (:15) 

and F(m, ln:-kj+m) given by Eq. (30). The factors G(n, l:) arc symmetrical G(n, k) = 

G(k,n), and G(n,n) = 1. 

In Fig. 3 we show the plots of the phase distributions calcula.tcd according t.o three 

formulae (22), (29), and (3'.3), for "' = 0 that means an ideal lossless cavity .. It is 

dearly seen that they carry the same phase information though PQ ( 0, t) is broader than 

· Pw(O,t) and the Pegg-Barnett phase distribution. This broadening may be explained 

IO 
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as follows. In Eq. (29), if one neglects the terms proportional to (1/2)[F(n, k) - F(n + 
1, h: + 1 )], which are small as compared with those proportional to (l/2)[F(n, i~) + 

F(n + l, k + l)], one can treat Pq(O, t) as resulting from averaging the Pegg-Barnett· 

phase distributio11 with the "probabilities" ( 1/2)[F( n, k) + F(n + 1, k + l )]. Since the 

nondiagonal elements F(n, k), (n =/- k) are smaller than unity, (1/2)[F(n, k) + F(n + 

1, l: + 1 )] are also smaller than unity and this diminishing of the nondiagona.J elements 

that define the phase structure leads to a phase distribution broader than P(O,t). In 

the case of displaced number states [26], a similar averaging procedure even causes 

some losses of phase information. 

Since the coefficients G(n, k) take on the values that are smaller or larger than 

unity, their effect on the phase distribution is not as simple as in the case of Pq(0, t). 

From Fig. 3 we see that the phase peaks of Pw(O, t) are slightly narrower than those 

of P(O, t). This similarity is in agreement with the concept of area-of-overlap in phase 

space, where a quantum state is represented by· the \\Tigner function, a phase state 

is represented. by a diverging beam and the phase probability is associated with the 

weighted area of overlap between them (28], The area-of-overlap principle gives a simple 

visualization and a deeper insight into the phase properties of quantum state. However 

Pw(0, t), in general, can take on negative values while there arc no such problems with 

the Pegg-Barnett phase distribution. 

5 Conclusion 

We have discussed the effects of cavity damping on properties of the field phase 

in the JCM. By using the dressed atom approximation, analytical ·formulae for the 

phase distribution, the expectation value of the phase operator and its variance have 

been obtained in rather simple forms. It has been shown that due to the leakage of 

photons from the cavity, the field phase undergoes a quicker randomization than in 

the case of an ideal cavity. We have compared the Hermitian phase distribution with 

13 



those obtained by integrating the Q function and Wigner function over the amplitude 

and shown that they carry basically the same phase information. This si1i1ilarity is in 

agreement with the area-of-overlap-in-phase-space priuciplc. 
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Xo 4yHr 3yHr, WyMoBCKHH A.C. E17~92-201 
KsaHTOBb1e cj:JnyK1yai.,1HH cpa3bl B Mo,nesm A>t<ei::lHca ~ KaMMHHrca: 
BflHAHHe KOHe'IHOH .no6pornocrn pe30HaTOpa 

. . 

lllccne,o.ylOTCA <pa30Bble CBOHCTBa KOrepeHTHOro nonA, B3aHM0AeHCTBYIO· 
1J..tero c .nsvxyposHeBblM aTOMOM s pe3oi-ta1ope c O'leHb BblCOKOH KOHe'IH~H 
.no6p~HHOCTblO. noKa3blBaeTCA, 'ITO H3•3a yrn'IKl1 cj:Jo~OHOB H3 peJOHaTopa 
cj:Ja3a nonA xaorn3HpyeTCA 6b1c1pee, 'leM B cny'lae H,neanbHoro. pe30Ha1opa·. 
CpaBHHBaeTCA pacnpe.neneHHe 3PMHTOBOH cpa3bl C pacnpe,neheHHAMH,. CBA· 
3aHHblMH c O-cpyHKUHei::i i-1 cpyHKLt.HeH BHrnepa. no.no6He Me>1<,ny HHMH HMeeT 
ACHYIO HHTepnp_eTaUHIO '1epe3 . Ol)HHUHO cyriepn03HLIHH 'B cpa30BOM npo- 1 

CTpaHCTBe. 

Pa6cna BblnOflHeHa B na6opaTOpHH 1eopeTH'leCKOH' cpH3HKH QL,1fll/1. 

Openpn11T Om.e11~rne1111or? n11cn1ryrn s:;iep11Ltx ncc-1e:1ona11nf1. !ly61rn 1992 

' ' 
Ho Trung Dung, Shumovsky A.S. 
Quantum Phase Fluctuations in the Jaynes....: Cummings Model: 

E17-92-201 

Effects. of Cavity Damping : _ 

_ Phase prop~rties of a coherent field. interacting with a two-level atom in a 
cavity .with very high but finite Q are studied. It _is shown .that due to the cavity 
damping_ the field phase is randomized more quickly than in the ideal-lossless­

,. cavity case. The Hermitian phase distribution and the phase distributions associa­
ted with .the O function and the Wigner function are co

0

mpared. The similari_ties 
between them have clear interpretation in terms of the area-of-overlap in phase 
space. 

The investigation has been perform~d at _the Laboratory of Theoretical 
Physics, JINA. 
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