


1 Introductionn o
A para.metrlc down convers1on process isa well known nonllnea.r prooess that pro-‘
~“duces optlcal ﬁelds w1th nonclassical propertnes [l] [10]-" Ttis essential for the
‘ quantum propertles of ﬁelds generated 1 in the process that the hlgh frequency pump :

: photons are splrt mto hlghly correlated pairs of lower-frequency 31gnal and idler

' photons In the s1mplest case of a nondepleted degenerate parametrlc process the S

: pump mode is assumed as cla.ss1cal and nondepleted and the srgnal and 1dler modes ‘
“become one mode of the subharmonlc ﬁeld with~ half the frequency of the pump
‘ mode In th1s case the t1me evolutlon of the subharmonlc ﬁeld can be found analytl—

, l.:cally and is descrlbed by a Bogohubov transformatlon that' maps the 1n1t1al vacuum

'state 1nto an 1deal squeezed state 1)~ [6] “The parametrlc down convers1on process o

turned out to be very effectlve in produc1ng squeezed states in pract1ce [11] [16]
The states produced by the. two—photon down converter have mterestmg phas e‘_h“ .

:: ! "’ propertles studled recently by Vaccaro and Pegg [17] Schlelch HOI'OWICZ and Varr 0 -

[18], and Gr¢nbech Jensen Chnstlansen and Ramanu_]am [19] for the process with

“ -f‘classrcal pump and by Gantsog, Tanas and Zawodny [20] for the process w1th?'» oL

" qua.ntum pump The phase d1str1butlon of such states has two sharp peaks at the'v

. :mltlal stages of the evolutron that reﬂect the two-photon character of the process ;

: _iIf the quantum ﬂuctuatlons of the pump mode are taken 1nto account the two peaks $
:,’.Of the srgnal mode are broadened and i in the long-tlme 11m1t the phase dlstrlbutlon ‘
: becomes uniform [20] : o : 3 :
" The pa.rametrlc approx1mat10n assumlng the pump mode as bemg classrcal and
e nondepleted whlch leads to the closed form analytlcal solutions for the 1deal squeezed‘~

' sta.tes, is not applxcable if 2 a con51derable a.mount of power. is transferred from the

'“:pump mode mto the s1gnal mode In such situations the pump mode must be -

et treated dynamlcally and its quantum mecha.mcal evolutlon must be taken mto ac-

count Slnce no close form solutlons a.re known in thls case, some approxrmatlons or

numerlcal calculatlons are needed to ﬁnd the field evolutlon meg to the energy;
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’ vconservatlon the mtensrty of the srgnal mode cannot grow mﬁnrtely, and the solu- o

 tions become oscillatory. The ﬁeld states of the s1gnal mode are no longer the 1deal

‘ squeezed states;_ and thelr propertles become drfferent

_In this paper we study the photon number and phase quantum ﬂuctuatlons in -
the ﬁeld produoed in the. down-conversron process ! w1th quantum pump. . The fully :
quantum approach usmg the method of numerlca.l dlagonahzatlon of the 1ntcract10n '

Hamlltoman [21].1s employed for gettmg,; the evolutron of the system The evolu— ‘

tion .of the. quantltles such as the photon number ﬂuctuatrons in both sxgnal and

B pump modes, the jornt phase probablhty drstrlbutlon, the joint number of photons

probablhty d1str1but10n, the quadrature varlances the margmal number and phase

: drstrrbutlons for: the s1gnal mode, the number, and phase varlances for both modes,

. the number and phase uncertalnty products and the. numbcr and phase squeezrng

parametcrs is obtamed a.nd 1llustrated graplucally The results for the srgnal mode

" .are compared to the correspondrng results for the 1deal squeezed states to show the.

: range of vahdrty of the parametrlc approxrmatlon The Hermltlan phase formahsm

ofyPeggand Barnett [22] [24] is used to descrlbe the phase propertres of the ﬁeld SR
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'2 Quantum evolutlon of the ﬁeld state s |

&

The two-photon down conversron process is descrrbed by the followmg model Hamll- '

: tonlan.
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where a (al) and b (b') are the anmhllatlon (creatlon) opera.tors of the‘signa‘l mode :

.at frequency w and the pump mode: at. frequency. 2w respectlvely The coupling
-constant g, ‘which is assumed real, descrrbes the couphng between the two modes:

The Hamlltoman (: 1) is identical to that for. the second harmomc generatron, and

‘these are the initial conditions thatdlstmgursh between the two processes In the :

' +fzg(bla2+bal) " EE (1)

| case of harmomc generatlon mode b is mrtlally in the vacuum state a.nd mode a/ls”
populated For the down-conversron process drscussed in this paper, mode b (pump
mode) is 1n1t1ally populated whlle mode a (s1gnal mode) is in the vacuum ‘state.
The d1st1nct10n between the two processes is far from bemg tr1v1al and the states
generated in the two processes have: ‘quite different propertres S ] /
Since Hy-and H; commute, there are two constants of motron, Ho and H I. Ho

determmes the total energy stored in both modes whlch is conserved by the inter- . '

~action H I Thrs allows us to factor out exp(—zHot/h) from the evolutron operator T

Ll a.nd ‘in fact to drop 1t altogether In effect the resultmg/state of the ﬁeld can be

wrrttena.s IR T e

h IlIl(t)) ; exp(—zH,t/h)l\Il(O)) | L @
where |lIl(0)) is the 1n1t1al state of the ﬁeld If the Fock states are used as: basrs* |
states, the 1ntcract10n Hamlltoma.n H 1 is not dlagonal in such a. basrs To ﬁnd the
sta.te evolutron we apply the numerrcal method of dlagonahzatron of H 1 [21]

,’ Let us assume that 1n1t1ally there are n photons m the pump mode (b) and no
hotons in the s1gnal mode (a), i e the 1n1t1a.1 state of the ﬁeld is IO n.) IO) |n)

Srnce Ho isa consta.nt of motron, we have the relatron

e 2

ik

’1i'(af4l+2(b'b) =V'const=’2",vv‘, Tabbe G

whlch 1mphes that the a.nnlhrlatlon of k photons of the pump mode requlres crea.tron :

sof 2k photons of the srgnal mode Thus, for: grven n, we can mtroduce the states

|2k n—k)' ‘ ‘k=,0,‘1,f..';n‘,’_; s (4)

|¢""’>,

: whlch form a complete basrs of states of the ﬁeld for g1ven n. We have ¢

(IS'_lII)g' 5.2:'[): = 6nn’6kk’ . ) A ; r‘ . ‘ (5)

‘which 1 means that ‘the constant of motion Hy sphts the ﬁeld space. into orthogonal

. subspaces, which for given n have the number of components equal ton + 1. The



basrs states |¢n_k) glven by ( 4) are numbered by the total energy (m un1ts of
hw) whlch is 2n and by the number of photons in the pump mode wh1ch is n. =k.
Such a ch01ce of 1nd1ces makes it easier to compare the results obtalned for the-
~second harmomc generatlon [25 26] and the two—photon down conversron process
considered here. In- fact, if we replace n—k— Kk and 2n = n', we get the states
|¢(" ) used to- descrlbe the second- harmonrc generatlon This means that in the
‘primed’ notation the matrlx elements oUhe 1nteractlon Hamrltonlan are. the same

for the second- harmonlc generatlon, and they are g1ven by [26] - |

| (¢£721|H1|¢,‘7‘ — ’|f11|¢£7+1)

ThlS allows us to use the same computer programme that we used 1n the case of :
second harmonlc to dlagonahze the 1nteractlon Hamlltoman If the matrlx U 1s 4

the un1tary matr1x that dlagonahzes the 1nteract1on Hamlltonlan matr1x g1ven by

N

equatlons ( 6), ie.

R

i e get asa result of the dlagonahzatlon procedure the elgenvalues A; of the 1nterac- 1

; t10n Hamlltonlan (1n umts of hg) and the elements of the matr1x U. wh1ch are deﬁned o

for glven n’ (for shortenlng the notatlon we have om1tted the add1tlonal mdex n )

To find the state evolutlon, we need the matr1x elements of the evolutlon operator
| ‘cz;,;k(‘t) = (¢£2:‘2| exp(—zHrt/ﬁ)|¢(2")) LT ) 8)

B Knowrng the elgenvalues X and the elements of the unltary matr1x U, we can cal-

culate the coefﬁcrents Can k(t) accordmg to the forml.la e

n

’ —“CZn,k(t)'-:Z —’ytA'Un—k IU. N ‘ E “‘ (g)

=0

: A comparlson of the coefﬁcrents ( 9) with the coefﬁcrents that descrlbe the second-;

" harmonic generatlon [26] shows that the only dn‘l?erence betw: een the tv~o sets consrst :

NG e

- 't eU—lH(n)U hgxdxag()\o,)\l, )‘ ,‘ (7)

et

1n the dlfferent matrm elemcnts of the matrlx U that deﬁne them In fact one can‘:’f :

R mtroduce a generalxzed coefﬁc1ents ‘ ’ B L f - : e
, ! , k'k(t) = (¢ nexp(_,H,t/n)w .
T A LT R ) R
I ‘ . s = Z e—lgtA Ukl U(n )t,. I (10)
ST |'=0 L : :

i where [n'/2] is the mteger part of n’/2 These coefﬁcrents can be used to descrlbe
. ; the ﬁeld evolutron for any 1n1t1al condltlons, not necessarlly the vacuum in one of ; ‘

the modes.

‘Since, for real _q, the mteractxon Hamlltoman matrlx has real elements the trans—
formatlon matrlx U is a real’ orthogonal matrm, so the star can be om1tted in.(9) E
and ( 10) Moreover due to the symmctry of the Ilamlltonlan the elgcnvalues A are"
dlstrlbuted symmetrlcally with 1espcct to zero, ‘with one elgenvalue equal to zero

1f there is an odd.number of them. \Vllen the elgenvalues are numbered from the

lowest to the hlghest value therc 1s an addltlonal symmetry relatron

e

k- k' (n ‘ o ST L :
( 1) Ukl [nl/z]_' IS[n)'/Z]—ﬂ S BT o (11) T

" . .

Wthh makes the coefﬁc1ents ck, L(t) elther real (L — L' even) or 1mag1nary (L — L’ :

U‘" ?,U,S:‘

odd) Tlns property of the cocflicwnts is very 1mportant and allows in some cases

to get exact analytlcal results ’f \ 2 '_ :
The assumptlon that the 51gnal mode at frequency wis 1n1t1ally in the vacuum

state reduces the ‘number of coeflic1ents to thosc glvcn by equatlon ( ()) ‘One i 1mme—

d1ate consequence of this assumptlon is that accordmg to the conservatlon law ( 3), '

1 only the sectors of the Hllbert spacc w1th n'= 2n contrlbute to the state evolutlon, ‘

I
o

i.e.;. photons of thc s1gnal modc arc creatcd in palrs ThlS is not the case if the :

second harmomc generatlon is consrdcrcd [26] WllCIl all scctors w1th l)oth odd and

even n' contrlbute to the state evolutlon

In this paper ‘we assume thatv initially thensignal mode is in the vacuum state,




whereas the pump mode isina coherent state, s0 the 1n1t1al state of the ﬁeld is :

w(o» Eblo n) T

»,n__O

where EEIRERISE s RS S
by —exp(—|ﬂ|2/2)ﬁ"/¢‘ S

is the P01sson1an welghtlng factor of the coherent state |ﬂ) of the pump mode rep-‘

resented as a superp051t10n of n-—photon states W1th these 1n1t1al cond1t10ns the

resultmg state ( 2) can be wrltten as i

w(t»—zb zcz,,k(t)mk b, e 1(14) B

n_D o k=0 -

where the coefﬁaentsczmk(t) are g1ven by ( 9) and they are calculated numer1callv : L

3 Number and phase statlstlcs

Propertles of the 1deal squeezed states generated 1n the parametr1c down conversron

process have been studled extens1vely [l] [10] It is known, for example thatt\' |
for the squeezed vacuum the mean number of photons of the 51gnal mode is equal i
) to (ala) = smh2 T, whlch is a monotomc functlon of the squeeze parameter r (or"':k .
the evolution t1me gt) ‘This means that the mean number of photons can become .

arbitrarily la.rge in. the long. t1me 11m1t (large r hmlt) Of course, rt isa result of

: the parametr1c approx1matlon 1n whlch the pump mode remains undepleted If the

pump mode is quantlzed and 1ts dynamlcs 1ncluded 1nto cons1derat10ns the total o o
‘ energy stored in both modes is conserved and the solutlons become osc1llatory .

~Using’ the state ( 14) of the field, we obtam for the mean number of photons of the\ ,

: 51gna.] ‘mode the followmg express1on

’@“ﬁf

lI'

(¢(t)la a|¢(t))
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'Fig‘ure 1: Evolution of the mean number of photons." The'initial mean number of

: photons of the pump mode Ny is equal to.4 for all the ﬁgures .

S and the mean number of photons of the pump mode can be found from the conser- 2

. vatlon relatlon ( 3)

(a )+2(blb)_2‘ﬂ|2_2Nb S (16)

'The solutlons obtalned numerlcally from equatlons ¢ 15) and ( 16), for the mean '

number of photons in the pump mode Nb = 4 are shown in Flg 1. For comparlson :

we have also plotted the solutlon for the ideal squeezed state (squeezed vacuum), ,

Wthh is given by (a"a) =sinh’r with related to the' scaled t1me gt byr= 21/Nbgt

: ‘The osc1llatory ‘behaviour of the quantum solutlons is clearly v1s1ble and only at:

’ the initial stage of the evolutlon the ideal squeezed state solutlon can be treated as

a'good approx1mat10n to the quantum solutlon One can roughly say that the first

: max1mum of the s1gnal 1ntens1ty sets a limit of apphcablhty of the 1deal squeezed '

states, i. e. thereis a lumt of the squeeze parameter values that can be obtained in ‘



pra‘c{;ikce. Thus, Qﬁe c;n expect alsothat tlie s\fatéys “gene.r‘a’t‘éd*ixkl ‘th;e down-conversnon E
process with qua_r'ltuyryn‘ pﬁﬁip‘ will hé.ﬁé dlfferent properti’es’ from tl%ﬁsé"of the ideal v
squeezed s_tatejs.‘ To mlake the diﬂ'ereﬁbes' fnore explvicit,‘\ye”ksf‘uds; in’ this paprer‘ the -
number a.nd phase”sktkz'x‘tist’ics‘ of t}i;a statés prod—uced in thé"ddl\aizgfcpnvé;éion process - -
with quahtum pu!mpkand compare them to"thpsé of thejirde\al'»fsque\ezed ;States"’ .

From egqatioh (114) we“can“kdi‘r‘e_c;tly; ‘déri’v"ek thé'joi‘nt’probability ampliﬁude of

finding n, ,photons iil"th"e‘signal mode:and L pe phbtons;in'the;pt’xmpb rrflyqde,,whigh'iéf

given‘ by L

n=0 " k=0 L

- The joint ip‘robvabilit"y P(ha,nb) is thus 'givén‘l;y' o o : :

P(re,m) = lmampOF SR
: : , lb’n;+na’/2cf(r;i,-;-;1¢/2),n¢/2(t)|2 for n, eve.xi: R

. forngodd -
Qhe i Sl of Cﬁﬁation (18) is that No“nly,}evéllll_rl‘l‘unibei's in;‘éan;apyp""féf o
in the signal mode. The joint photon’ ngr‘n'ly)er;dirstyl\'{ibu‘ti‘on Plieyns) dépends upon o

the initial‘pbmbabilities lbn|2 iﬁ thi‘e‘ Pﬁmp /r.nodve, and ltS evolutidﬁ,is determmed by | ;
the‘coefﬁé'ienfsi cani(t). In A’Fig,', 2 wé piotf theA eri:ntkdi;Stribuiion p(na’nb)versus |
na’"and ‘nb"‘ forl'di’{féréﬁt} e&vblutii('jh tif‘xies‘ gt‘.”Ivi‘:‘i%”séen hO",” the iﬁiiially Poissoﬁi@li

. dis~tri5ﬁti§ﬁ with the nﬂeé‘n number of photons Ny =_;,4f'0>f: the ‘purivlp ‘mode's'p‘rea(/ls‘ :

over l‘)oth'_modes,'duvring’ the evolution.. Orily/ even vnumli)érs‘\'r’i,, ;qapia_,ppcar;:in“thé

N

signal mode what is clearly,seen_in the picturejs. This pfope;ty is“ tﬁe sa;il_g‘ as in the =
“ideal squeezed states, so one ‘can expect squeezing in t:heyjs'ignalA‘rnc;)dé. ‘However, vf\o_r G

gt = 0.65 whch'the signal intensity appfoacﬁés its mé.kim{xni (see Flg 1),'"61'1%: éan see

that almost all odd numbers ng, excepf for the remnants of the initial distribution SR _; S

along n, = 0, disappeared from the distribution.’ At‘ this time of the evolution the R i

two-photon character of the interaction is also reflected in the pump mode, so one . | - . Figure 2t The joint photon nimber distribution P(na;ny), for different e\;olutior
could also _expec‘tb sQueezing in the burﬁp mdde..To check the squeezing prdperties of times gt S JEE IR VTSR e T
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and the number of photon var1ances calculated in th1s way are plotted in Flg 5 ’

The photon number varlance for the 1deal squeezed vacuum is glven by [27]

r,_ L . i
%

e «An) > - 2<n><<n> D=3 jenh(er), S (22)'

) and 1s also plotted for reference in Flg 5 The photon number ﬂuctuatrons in the"
Slgnal mode mcrease rapxdly at the mltlal stage of the evolutlon, but after reachmg" S

the maxrmum they oscrllate around a. ﬁmte value (dependmg on the mean number o

-of photons of the pump. mode) ThlS is in contrast to the behaviour” of the photon

: number varlance for the squeezed vacuum wh1ch grows to, mﬁmty

: Another characterlstlc of the ﬁeld that is related to the photon number varlance .
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‘whlch is plotted in Tig. 6 Tor; the squeezed vacuum tlns functlon asymptotlcally
approaches the value of 3. In thc casc ol down convorsron wrth quantum pump the :
;if @ functron of the slgnal mode oscrllates tal\mg the values lllat deep bclo“ this
' asymptotrc value. - “The photon, stalrstrcs, lrowe\cr arc supcr l’o:ssoman l'or both _
s modes ‘v ] : k ‘ e k ‘ ng ‘
‘ Smce Iyisa constant ol motron H is malso a'constantﬁol lriotlon, andwc cani‘f

‘ obtam for the, fluctuatrons ()l Ho tlw l'ollowmg 1clat|on

((AIIO))—(H?)—(HO) —Ile(hw) ey

FEE DI

((An ) ) +4((Anb)2) + 1(An,,An,,) = :1N,, ‘ :5 »V(‘25)V



) Formula ( 25) estabhshes the. relatlon between the fluctuatlons of the 1nd1v1dual-g
mode photon numbers and the mtermode photon number correlatlon All thls quan-:.
tities on the left hand s1de of ( 25) can be. calculated numerlcally us1ng the state*f /

( 14), S0 that formula (25) can serve as a test of numerlcal prec1s1on The value of

4N, sets the level of fluctuatlons for 1n1t1ally coherent state of the pump mode

The quantity con]ugated to the photon number is the ﬁeld phase Recently Pegg L
and Barnett [22] [24] have 1ntroduced the Hermltran phase formalrsm Wthll allows ~
to construct the Hermrtlan phase operator for the f'eld mode and as a result to
' study systematlcally phase propertles of the ﬁeld We .use he1e the Pegg—Bamett -
phase formahsm to study the phase propertles of. the ﬁeld produced m the down-.t

conversion process wrth quantum pump Th1s formahsm 1s based on mtroducmg a -

finite (s +. 1) dlmenSIOnal space v spanned by the number states [0) |1) Is), for a

grven mode of the ﬁeld The Herm1t1an phase operator operates on th1s ﬁmte space, - ' :
and after all necessary expectatlon values have been calculated i in \Il the value of‘~ :

sis allowed to tend to 1nﬁn1ty A complete orthonormal bas1s of (s + 1) states 1s" L

deﬁned on \I' as

v,;,,’_ o

0m;“5,‘:0 o+ :"n; : (m=0,1,,s) FE S

The value of 00 1is arbltrary and deﬁnes a partlcular bas1s set of (s + 1) mutually-

orthogonal phase states The Hermltlan phase operator is deﬁned as-

. rrr‘O

where the subscrlpt 0 1nd1cates the dependence on the ch01ce of 00 The phase states .
( 26) are elgenstates of the phase operator ( 28) w1th the elgenvalues 0,,, restr1cted l
to lie within a phase wmdow betWeen 00 and 00 + 21r The umtary phase operator .

eXP(l¢g) is deﬁned as the exponentlal functlon of the Herm1t1an operator do. ThlS o

y -

- . :

. we can wr1te equatlon ( 30)

Zexp(mom)tn> e

e

-na

- >0 00} (0 |, @9

. operator actmg on the elgenstate |0m) glves the ergenvalue exp(zﬂm), and it has the :

form [23 24]

.V:exp(iiq%) = ilﬁ)(nﬂ-1|+exp[i(s+i)oo]|s)l0]./ ()

n_O O

"Thls is the last term in- ( 29) that ensures the umtarlty of thls operator The ﬁrstk

- sum reproduces the Susskind- Glogower [28 29] phase operator in the limit s — oco.

The expectatlon value of the phase operator ( 28) in a state h[)) is glven by

(¢|¢91¢> Zoml(o |¢>|2 -;}; LA (30)];

~ g"where |(0 Iz/z)P glves a probablllty of belng found in the phase state |0m) The‘

- "denslty of phase states is (s+ 1)/27r s0 in the contmuum 11m1t as s tends to mﬁnrty,‘

s B ao+21r"""~ N T SR
| (¢,|&o|¢>,;=‘,. / op(o)do S ey
R . ’ AP B ) NEA IR O

e where the contmuum phase d1str1but10n P(0) is mtroduced by

L g

L, w e e

L where 0 has been replaced by the contlnuous phase var1able 0 Once the phase
'dlstrlbutlon functlon P(0) is known, all the quantum mechanical phase expecta.tlon” 5
o values can be calculated wrth this functlon m a classrcal hke manner by lntegratlng

’over 9. The ch01ce of 00 deﬁnes a partlcular w1ndow of phase values. }

- In our case of field produced in the down-convers1on process wrth qua.ntum pump, ,

the state of the field ( 14) is m fact a two mode state and the phase formahsm must

l be generallzed to the two-mode case. The generahzatlon is stra.lghtforward and k

5 obv1ous and’ for the state ( 14) we get

- (é@j(M:ﬁ(g» : (}sa + 1)-‘“(35 + 1) -1

xS Zexp{—tmkom.er( k)om,,l}%(t) )

n=0’ k=0’

15




We use the 1nd1ces a and b to d1st1ngulsh between the slgnal (a) and pump (b) modes i:
There is stlll a freedom of choice in ( 33) of the values of 0 wh1ch deﬁne the pha.scﬁ:

values wmdow We can choose these values at wrll s0 we take them" as
: a,b L S 7rsa,b . -~ ‘
00‘ = Pab

. and we introduce the new phase values .

N “ : ouln':b'vz-io_rg.‘.,'b,'—;Pd;bl"l~' LA (35)
- where the new pha.se labels pab run m umt step between the values —s,, b/” and"

3a /2. Th1s mea.ns tha.t we symmetrrze the pha.se wmdows for the srgnal and pump \

. modes w1th respect to the phases Pa a.nd Lpb, respectlvely

On inserting ( 34) and ( 35) into ( 33), ta.kmg the modulus squared of ( 3'3), an(l

5.

' taklng the contlnuum hm1t by mak1ng the repla.cement

* 4, b/2

Zt

‘Ha, b—"‘sa b/z

we arrive at the COntinuous Jomt'probablhty d1str1butron‘for the continuous variables

>

0 and 0, which has the form : 2 e R

P(Ga, 0,,)

(2 )?

rkko’ s
P s

“X exp{-—-z [2k0 + (n - L)o,, + k(24,9,,>— L,ob)] }

The d1str1butron ( 37) is normahzed SO, as B

/ / P(,,a,,,b)d(, dé,, _ , (38) |

,,__ﬂ._ﬂ. L oE

To fix the phase wmdows for 0, and 01,, we ha.ve to ass1gn to ¢, a.nd P partlcular -

values It is mterestmg to note tha.t the d1str1butlon P(0a, 05) g1ven by ( 37) depends
~on the phase drfference 20, — @b only ThlS reproduces the classrcal pha.se rclatlon

for the pa.ra.metrrc amphﬁer and classrcally thxs quantlty should be equal to —7r/‘) to

16
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sab-l-l_’/doab’ L (36) :

Z b —-m% Z Can k(t) s ‘J; v’ ‘.(', “

e

B get the amphﬁcatlon of the 81gnal mocle (if the couphng constant g is pos1t1ve) Such T

‘ ch01ce means that a peak shoul(l appear in the phase d1str1but10n at f, = 0 Asit

will become clear later, the phase distribution for the two- photon down- conversion k

"process exlublts two- peak structure along the 0 dlrectlon and the choice of the
. wmdow w1th a peah for 0, = 0 would max1mlze the’ phase variance. To minimize
~the phase va.rrance we choose 299,, — wj_ 7r/2 The phase d1str1butlon P(o,,,o,,) is
. 1llustrated in Fig. 7 for the mean number of photons Nb m the pump mode equal i
‘l to4 and dlllerent evolutlon tlmes gt Tlus (hstrlbutlon can be compared W1th the E
vphoton number dlstrlbutlon presented 1n Flg The two photon character of the.
'process wlnch is seen in the photon number dlstrlbutlon by the presence “of holes in
’the (hstrlbutlon for od(l n,,, lS rellected in the ph(\se dlstrlbutlon by the presence of
© '_two peaks along the 0 dlrectlon Ttis mterestmg to sce that for- gt =0. 65 ie for’ '
the value of the max1mum 1ntens1ty of the s1gnal mode and the maximum value of .
3 squeezmg in the pump ‘mode (compale Flgs 1 and 3), the phase d1str1but10n along
the 05 d1rectlon of pump mode assumes the two peah structure characterlstlc for the o
s squeezed states Tlns means that the state of the pump mode becomes close to: the’

squeezed state The photon numl)er (hstrlbutlon (Flg ") w1th holes that appeared '

for odd np conﬁrms thls statement So, the squee71ng ha.s been transferred from

'the s1gnal mode to- the pump mode A blfurcatlon of the phase (hstnbutlon along

“the Ob dlrectlon mdlcates the’ trausltlon of the process from the down convers1on -
- ‘reglme to’ the second- harmomc generatlon regune In the long tlme hrmt the phase
F d1str1but10n goes through a sequence of such: l)lfurcatlons towards the multi- peak .

structule, wh1ch means ran(lomwatlon of the phascs [”0] S

Integratmg P(on,o,,) over onc of the phascs lea(ls to the marglnal phase (hstrl— :

“‘butlons P(0 ) and P(Ob) for the phases 0 and 05 of the m(hV1dual modes We‘uk

7 ha.vc

P(0) = / P(0u,05)d0s

BLEEE SRR P



. n)n’ i k=0 K'=0 v

T k gt-_:() o \« e | gt=02 S | . 1:; -217 1+2Re§:b b",ZZCznk(t)czn'kl(t)
ERE xexp[—z(k k')(20 +299a—gob)]6_,;rk_k: , v : (39)
1 o

PO = 5o 1+2Rezb b,,,zcz,,k(t)czn,k(t)

n) n' k—O : i p

i * . N

\l\‘\“‘:\u\
\\\ “\1\!‘“\\1
‘ \\
S \‘u\‘\‘““\‘\‘\“ ‘“\3.\‘3 o
“‘\““\\\“‘n\\“‘\\:‘_‘_,‘ e

:The phase drstrrbutron P(H ) for the srgnal mode is shown 1n I‘rg 8 for gt = 0.3,

‘ ‘ : ; o i : ' . i. e. for the tlme at, whrch the squeezmg in the srgnal mode has its maxrmum value.
S e " SEE TR " L Bt ¥ RIRY e : - e R For comparrson we show the phase drstrrbutron for the 1dea.l squeezed vacuum for',
r= 2\/1—\/_;,'gt =1. 2 The phase dlstrrbutron for the squeezed vacuum can be obtamed ‘

7 o R e E S T from the known number state decomposrtron ‘of the squeezed vacuum state [27]

m@f2mw,_iafrs,th

n=0:

= &7%;;(,‘,//;). G tanhr) exp(znﬂ), n eVen . ; \‘ ',(42)
. 01 ; Ce R R ST ,' ib“', nodd ’ T : ‘

v e

'wrth r berng the squeeze parameter, and 7 bemg the phase that we assume equal to

- zero later an. WIth the amphtudes ( 42) the phase drstrlbutron can be calculated |
L accordmg to the formula *f" Sy ; ’ ‘ ;
T PR ey o

1

v = : 1 —|n e :
s P(B) = 5 Ea,., A

n=0

1

L sl B 1+2Zanamcos[(n—m)01 , ,{f.f:,f‘(43)

k n)m

I ) ) : where we have assumed an real Since only the amphtudes w1th even n are drﬂ'erent
R S RiERE : | from zero, t he phase drstnbutlon is perrodrc in 0 wrth the perrod 7, 1. €. within the
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o Ll Vo T S F]gureg Evolutlon of tlle phase variances.
S Figure 8;:.T‘he phase‘distribution P(0,,),‘for gt= 0.3. : ’

. : (Tl — Tl )2’\ :

d PRk . exp[—i n‘—n )(2% - %)l :
» S o L= + R Z b by, p[ { ;
, /phase wmdow -7r <9 < 7r there are two 1dent1cal symmetrlcally dlsposed phase\ 2 >l

, . T k—n—n

peaks As it 1s seen from Flg 8, the phase dlstrlbutlon for the squeezed vacuum
s narrower from the d1str1butlon in the case w1th quantum pump Comparmg Flgs

. 4.and 8 we see that the squeezed vacuum has broader photon number dlstrlbutlon {and fOT the pump mode we have ‘f : L R S

S IR [
iy \,4

" _3- +4Re S b’ by s

2
n>n )

. SRS 107 ek o = he pha
*. - phase var1ance for. the srgnal mode can be calculated accordmg to the formula A B R where We ha\e used ( 39) ‘and ( 40), aud we tﬂl\C r)(Pa ‘Pb 7"/2 T]c P ase’

,(Aaﬁa.

and. narrower phase dlstrlbutlon than the srgnal mode in-the down converslon w1th )

ll

e _ i(A@J)‘
fquantum pump e e AT [y .

n'

}:anﬂqtnu) | um‘

The Pegg Barnett phase formallsm aIIOWS to calculate the phase varlances for :

ll

',the 1nd1v1dual mode phases as well as the 1ntermode phase correlatlon function. The :

varlances are plotted in Flg 9, and for reference we. plot the phase variance for the :

wrr—wtv S

squeezed vacuum. The. squeczed vacuum phase varlance approaches asymptotlcally
k.4

e /92p(0 )d0 ‘ y :.l j \ REEE RN R “ the value 7r2/4 wluch corresponds to the phase dlstnbutlon w1th tw0 symmetrlcally

l(o—f)%6(5+kll, f’f/pqibi‘@o,

-7

\ - o » "placed delta functlons '
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The phase ﬂuctuatlons in the s1gnal mode have osc1llatory character, although at the

E mltral stage of the evolutlon they are 1nd1st1ngulshable from that of the squeezed' :

~ vacuum, and at the long trme lrmlt they approach ‘the value 2/3 charactcrxstrc

for the uniformly dlstrxbuted phase [2‘3 24] The phase ﬂuctuatrons in the pump
mode start from the small value characteristic for the 1n1t1al coherent state and -
grow rapidly, next, they osc1llate approachmg the value' 2/3 So the quantum -

ﬂuctuatxons lead to the randomlzatxon of the phases for both modes in the long-, o

7t1me11m1t ,‘ ; A
Srnce the number and phase are two con]ugate quant1t1es they obey the uncer-

. tamty relatlon [24]

| AnA¢9 I([n ¢,,] l

Knowmg the var1ances for the numbers of photons and phases for both modes we

can calculate the uncerta1nty products

Ana.,Am ' [((An,,,,) )((A¢o,,,) )]” e (48)“

The number phase commutator can also be eas11v evaluated for any. physxcal state' :

' Ip) from the relatlon [24] o

<pn¢e,nnp> 7—='[i,‘—, mP@, 9

In Fig. 10 we’ have plotted ;both ‘the uncer'taintyi product and the'zone'half of

the modulus of the expectation value of the phase-number commutator (evaluated

aCcordiné'to“( '49)'With 00”-—:'—%) It is seen that the uncertalnty product remains

fimte in the long trme lumt for ﬁnrte mean number of initial photons whrch isin .

contrast to the squeezed vacuum for whxch it tends to 1nﬁn1ty For any finite r the S

ideal squeezed vacuum, however, can be consxdered as a phy51cal state and we can

apply ( 49) to calculate the mean value of the number-phase commutator When =

r tends to mfimty, the phase dlstrlbutron tends to the form of two delta functlons B

given by ( 46)l i

22
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k— " ,Fi’gu’retlﬂ:: Evolution of the number-phase uncertainties,' for the signalrmode. :

: value of the commutator tends-to —1. Tlus is clcarly seen from Flg 10 where the

' 1nfimtely

L _]ugate quantltles and the degree of numbe

: [30 31]

P(—7r) tends to zero, and asymptotlcally the expectatlon

- m e me . Ju

: 1/2[([na,(1)@a])l . —

L
00 1.0 20

N5

1 asymptotlc value of 1 /2 is reached for the ideal squeezed vacuum So, this is the -

growmg the photon number uncertamty that causes the infinite growth of

~the number-phase uncertamty product for the ideal squeezed vacuum.

3

The notron of number and phase squeezmg can be 1ntroduced for the two con-

r and phase squeezmg can be defined by

\([n m)l b |
((A‘?ﬂ)z ‘_‘El([n’ ¢9])“. Sl i \(5‘1\,.)1‘1
l|<[fz W -

he relatrve quantum ﬂuctua.tlons, with respect to the ‘

60

These two.. quantrtles glve t

mlmmum uncertamty, and the value ‘of -1 means perfect squeezing of the photon

| number (or the phase) In Frg 11 we have plotted the two squeezmg pa.ra.meters for ’
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=y Frgure 11: Evolutron of the number and phase squeez1ng parameters for the srgnal ‘

-

'mode T PR

i the signal mode, and in Fig. 12 for the pump mode, There i‘sfini‘tiallyy the numtéf '

T squeezmg in: the signal mode and the phase squeezmg 1n the pump mode It is -
‘1nterest1ng to see the sharp peaks of relat1ve phase ﬂuctuatrons that appear in both
modes.. They are related. w1th the m1n1ma of 1ntens1t1es in partlcular modes (see Flg !
1) and mrnlma , of the commutator expectatlon values (see Frg 10) There is no such ’
rpeak for the 1deal squeezed vacuum. Moreover, from the asymptotlc value 7r2/4 of ,f :
“-the phase variance “and the asymptotlc behavrour of the number phase commutator\ g

; expectatlon value, we get the asymptotrc value of 7r2 / 2-1 for the phase squeezrngi-

' of the ideal squeezed vacuum.. Thus the phase propertles of the slgnal mode are

- essent1ally drfferent from those of the 1deal squeezed vacuum in the osclllatory part g

of the evolutlon, but they are s1m11ar in the 1n1t1al part of the evolutlon before the 5

first maximum of the slgnal 1ntensrty has been reached

*,

24

PR .

- F,F‘igure»IZ:’ S'arjne as(i_njF‘ig’. 11, but forrtlre pumpmode L -

4 Conclusmns

We have stud1ed the photon number and phase quantum ﬂuctuatlons m the ﬁeld

generated in the down converslon -process wrth quantum pump That 1s we have

used fully quantum descrlptlon of both modes of the ﬁeld avordmg the parametrlc

approxrmatron The method of numerlcal dragonallzatlon of the 1nteractlon Hamll-
; tonlan has been employed for ﬁndmg the quantum evolutlon of the system ~This

k mcthod allowed us to calculatc and 1llustrate graphlcally the e\olutlon of a num-

ber of quantities characterlzmg the number and phase quantum ﬂuctuatlons of the

field. - To deal with the phase quantum ﬂuctuatlons we have apphed the Hermltran

phasc formalrsm of Pegg and Barnett wh1ch allows to treat the quantum phase of

the field on. equal footmg wrth the photon number VVe have studred and compared

quantum ﬁuctuatlons in both con_]ugate quantltles for the slgnal and pump ' modes.

The propert1es of the slgnal mode generated in the down converslon process with

25



quantum pump ha.ve been compared to those of the 1deal squeezed vacuum resultmg

in the parametrlc approx1mat10n TR ,' f : S

Our results show that the quantum character of the pump mode when tal\en mto ‘

account essentlally changes propertles of the field at later stages of the evolutlon .

whlle at earlier stages of the evolutlon the slgnal mode propertles are very close to

hose of the ideal squeezed vacuum “The quantum ﬂuctuatlons of the pump mode o

set in fact a limit on the values of the squeeze parameters that can- be obtamed in 4

. PP
a real phys1cal s1tuatlon vy

It is also seen from our results that the two-photon character of the process is
clearly reflected i in the photon number d1str1but10n of the s1gnal mode through the -
absence of the odd numbers of photons (or more prec1sely through the presence: of tlle o
pairs of photons only), and i in the phase d1str1but10n 1t is reﬂecte(l through the two-,

“peak structure of the s1gnal mode phase dxstrlbutlon Moreover it is seen that the e

pump mode can a.lso become squeezed and at the t1me of max1mum squeezmg the =

photon | number d1str1but10n and the phase d1str1but10n of the pump mode exhlblt the

same characterlstlc features although not in thelr pure form TlllS can be cons1dered~ o

as an lllustratlon of the conjugate character of the number and. phase varlables

We have also studled the number-phase uncertalnty product as well as the ex—‘

pectatlon value of thelr commutator Contrary to the 1deal squeezed vacuum the e

uncertalnty product remalns ﬁnlte (for ﬁmte 1n1t1al mean number of photons Nb) S

in the long trme hmlt Smce the expectatlon value of the number-phase commu-

tator sets‘the lower bound for the uncertamty product lt is sometimes convement =

to characterlze the number and phase quantum ﬂuctuatrons as relatlve quantrtres -

L

calculated w1th respect to the minimum uncertamty - This leads to ‘the notlon of

number and phase squeezmg The degree of such squeezmg for both modes has also :

been \.a.lculated showmg a presence of sharp peaks of the phase squeezmg IR

In our numerlcal calculatlons we have assumed the mean number of 1n1t1al pho- :

tons in the pump mode (bemg in : a coherent state) as N, = 4. Thrs value is small

enough to make the numer1cal calculatlons fast and rehable and nonetheless, this * .~

Ch
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