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. 1 Introduction 

A parametric d~wn-conversion process is a well-known nonline~ pro~ss that·pro

duces optical fit;lds with nonclassical prop~rties [1]- [10]. It is essential for the 

quantum properties of field~ generated in the process that the high~ frequency pu~p 
' . 

photons' are split into highly .correlated pairs of lower~ frequency signal and idler 

photons. In the simpleSt case of a n~ndeplet~d degenerate parametricprocess, the 

pump mode is assumed a.S" ~lassical and non depleted, and the signal and idler modes 

beco~e one ~~~e of the s~bharmonicfield with h~fthe freque~cy of the pump 

rriode. In this case the time evolution ofthe subharmo~ic field can be found analyti~ . ,, . ' 

cally and is described ~y a Bogoliubov transformationthat m~ps the initial vacuum 

state into an';ideal squeezed st~te · [1]-' [6J. The para~etric down~conversion pro'cess 

t~rned out to be very ~ffecti~e in producing squeezed states in'practic~ [11]- [16] .. 

The states produced'by the two-photon down~converter have interesting phase 

! ' properties studied: recently. by Vact'aro 'and Pegg: [17], Schleich, Horowicz and Varro . . . . 

[Is]: and Gr¢~bech-Jens~n;Christiansen and Ramanujam [19] fo~ the process with . ...- . . 

classical pump and by Gantsog, Tanas and Zawodny [20] for the process with . 

quantum pump. The pha,;;e distrib.;tion of such states has two sharp peaks at the 

initial stages of the evolution that reflect the two-photon character of the process. · 

If the quan_ tum fluctuations of the pumpinode are taken into account the two peaks . . 

of the signal mode are broadened~ and in the long-time limit the phase distribution 
' " ' ' . . ' 

becomes uniform [20]. · 

The parametric approximation a.Ssuming the pump mode as being classical and 

nmidepleted, which lead~ to the closed fo~m an~ytical s~lutions for the ideal squeezed 

st~tes, is' not applicable if a considerable amount of power is transferred from the 

pump mode into· the· signal mode·. In such situations the ~ump mode must. be 

· : .. tr~ated dynamically:and its quantum' mechanical evolution must be taken into ac

count. Si~ce no close form s~lutionf;!:are known in this case, some approximations or . ~ ~ - . . ... 

numerical calc.ula.tioris ;ue need~d to find the fi,eld ~volution~. Owing to the energy 
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conservation the intensity of the signal mode cannot grow infinitely, and the solu-.~ . . ;, ~ ,' . -

tions become oscillatory. The field states· of the signal mode are no longer the ideal 

squeezed states, and their properties become different. 

In this paper we study the photon number and phase quantu~ fluctuations in 

the field produced in the down-conversion process with quantum pump~ The fully 

quantum approach using the method of numerical diagonalization of the interaction 

Hamiltonia~ [2l]is employed for gettingJ:the evolution of the system~ The evolu-. 

tion of the quantities such as the photon number fluctuations in both signal and 
' • ' • • • f : ,· ' ,_. 

pump modes, the joint phase probability distribution, the joint ~"\umber of photons 

probability distribution,·~he quadrature variances, th~ marginal number and phase 

distributions for the signal mode, the number and phase variances for both modes, .• . . . ,. -: . . ' ,,· ·: . 
the number and phase uncertainty products, and the.number and phase squeezing 

' ' • , • • • • : •"1 '· ··, ' • 

parameters is obtained and illustrat.ed graphically. The results.for the signal mode 
. ~ " . . .. · . - ' . . 

are compared to the corresponding. r~sults for the ideal squeezed states to show the 
• • • . • • ' ' • • : j ; ' • '~ • 

range of validity of the parametric approximation: .The Hermitian phase formalism . . . "' . . · .. : ' . . 

of Pegg and Barnett · [22]- [24] is used to describ~ the phase properties· of the field. ' . . . ' ·~ . . . -· . . . - ' 

2 · Quantum evolution' of' the field .state 
/ 

The two-photon down-conversion process is described by the following model Hamil-
_-,. ' • . . •' · .•• -_i'' ".". •. '. . . ,_. • • ,.; ' ' 

toni an 

H =Ho+HI = 1iwat~ +2rtwbtb 
I . 

+n9(bta2 + bat2), (1) 

where a (at) and b (bt) are ,the annihilation (creation) ope~ators of th.e signal mode 

.at frequency w and the p~mp mode at frequency,2_w., respectiyely. 'fhe, c_oupling 

. constant g; which is assumedreal, .describes. th~·_coupling between thetwo modes. . '. ' 

The Hamiltonian (1} is identical t9 that for the second-har~onic generati?n, and 

these are the initial conditions that distingui~h betwee~ the two processes~ ~n the ~ . . - . ' . . '~ ;: . "- . ~ 

'-' .., . .,.,._,,..u .. ~" ·•·• 
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case of harmonic generation"mode b is initially in the.vacuuin state a~dmode a is 

populated. For the down-conversion process discussed in this paper, mode b (pump 

mode) is initially populated, while mode a (signal mode) is in t.hevacuum ~tate .. 

The distinction between the two processes is far from being trivial, and the states 
. ' 

.generated in the two processes have·quite different properties. 

Since H0 ·and HI commute, there are two constantsof motion, H0 and HI.) H0 

determines the total energy stored in both modes, which is conse~ved by the inter

action HI: This allows us to factor outexp( -iH0 t/1i) from the e':'olution operator 

and, in fact, to drop it altogether. In effect, the resulting/state of the field can be· 
. . . ' 

written as 

,, 
IIJI(t)) = e~p( -'-iHit/1i)IIJI(O)), (2) 

where 1111(0)) is the initial state of the field. If the Fock states are used as basis . . 

states, the interaction Hamiltonian lh is not diagonal in such a basis. To find the 
. ' - . .. . ~ 

state evolution, we apply the numerical method ofdiagonalization of Hi [21]. 

Let us assume that initially ther~ are n photons in the pump mode(b) and n~ 

photons in the signal mode (~),i.e., the initial state of the field is IO, n) = IO)aln)b; 
' ' . . ' . " 

Since l/0 is a constant of motion, we have the relation 
. - ' \ 

(ata} + 2(btb) = const = 2n, (3) 

·which implies that the annihilation of k photons of the pump mode requir~s creation,· 
. ~ . . ' ' ' ' ~ 

·of 2k photons of the signal-mode. Thus, for given n, we can introduce the states 

_lt/J~~l} = l2k, n- k), ' k = 0, 1, ... , n ' (4) 

which form a complete basis of states of the field for given n. We have 

<
'l (2n') 1·'·(2n)} . 

. "Pn1-k' '1-'n-k = .linn'likk'' 
(5) 

which means that the constant of motion H0 splits the field spaceinto orthogonal 

subspaces, which for given ii have the number of components equal to n + 1. The 
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basis states lt/1~2~l} give~ by ( 4) ~re nu~bered by, th~ total energy (i~ units of 

fiw) which is 2n and by the number of photons in the pump mod'e wl_!,ich 'is n __;_ k. 
- . - . ' 

Such a choice of indices makes it easier to compare the results obtained for. the 

second-harmonic generation (25, 26) and the two-photon down~conver~ion process 

considered here. In fact, if we replace n ::._ k ~ k' and .2n -'-+ n', we get the states 

lt/l~~'l} used to describe the second-harm~nic generation. This means that in· 'the 

'primed' notation the matrix elements o0heihteraction Hamiltonian arethe same 

as for the second-harmonic generation, and they are given by [26) , . 

(
. (n') (n') 
tPk'+tlHrltPk' } • 

(n') (n') 
= (tPk' liirl¢k'+1} 

= figy'(k' + l)(n'- 2k')(n'- 2k'- 1 )· ' (6) 

This allows us to use. the same computer programm~ that we used in the case of 

second harmonic to diagonalize the interaction Hamiltonian. If the matrix 1! is 

the unitary matrix that diagonalizes _the interaction :Hamilt~nian matrix given br. 
equations' ( 6), i.e., 

. . . . ' 

u-1HJn'lu =fig x' diag (.\o, .\i, ... ,An)' 
' . . . ' ,. ., ' 

/, 

_(7) ' 

we get as a result of the diagonalization procedure the eig~nvalues Ai of the interac

tion Hamiltonian (i"u units. of fig) and the elements of the matrix U which are defined 
" . -

for given n' (for sh<!rtening the notation we h<:ve o~itted the additional index n'): 

To find the state evolution, we need the matrix element; ~f the evolution op'erator 

. ; C2n,k(t) ~ (t/l~~ll exp( -iHrt/fi)lt/1~2")}. (8) 

' -
Knl_)wing the eigenvalues Ai and the elements of the unitary matrix U, we can cal-

, culate the coefficients~c2n,k(t)according to the f~rmula 
n 

" (t) - "" -,igt>.•u u· C2n,k - ~ e n-k,i . n,i• 
(9) 

i=O 

· A comparison ofthe coefficients ( 9) with the coefficients that describe the second

harmonic generation (26) shows that the only difference between the twosets con~ist 

4 

in the different matrix elements of th~ matrix u· that define them.:Jn fact; one can 

introduce a generalized ·coefficients ; 

(n') (n') ' · (n') 
ck,,k(t) = (tf!k, jexp(-zlht/fi)ltf!k } 

[n'/2) 
(n') t "" -igt.\ un' u<n )• L-t e · ' . k',i k,i ' 

i=O 

(10) 

where [n' /2) is the integer part of n' /2. These coefficients can. be used to describe 
/" ' ' 

the field evolution' for any initial conditions, not necessarily the vacuum i~ one of 

the modes. 

Since; for real g, the interaction Hamiltonian matrix h~ real elements, the trans

formation matrix U is a real orthogonal matrix, so the star can be omitted in ( 9) 

and ( 10). Moreover, due to the symmetry of the Hamiltonian the eigenvalues\ are 
~ . . . . . . 

distributed~ytrimetricalfy with respect to zero, with one. eigenvalue equal to zero. 

if there is an odd number of them. \VIu~n the eigenvalues arc numbered from the 

lowest to the highest valite, there is an 'addition~! symmetry relation 

(n') (n') )k-k'u' (n') ' u<n') 
uk'i .uki = (-1 ·~ k',[n'/2)-i k,[n'/2)-i'' (11) 

' - - I 

which mak~s 'the c~efficients 4~;£(t) either real '(k- k' even) or i~aginary (k- k' 

odd). ;his prop~~ty of the coc~ci;nts is vcryimportant and .allows in some cases -

to get exact analytical results. ·/' 

The assumption that the· signal mod~ at frequency ~ is initially in the vacuum 

st~te reduces the number of .co~fficie~ts to tl1osc given by equation ( 9). One iu'I~e
diate consequence of this assumption:)s that, according to the conservation law' ( 3), 

only the sectors of the. Hilbert space with n' ::::::_ 2n contribute to the state evolution, 

i. e., photons .of the signal mode are created inpairs. This is. not the case if the , 

secorld~har~o~ic gerieratio~ is c~n~i,dcrcd · l26], when all,sectors with both odd and 

even n' contribute to the state evolutioQ.. 

In this paper we a:Ssu'mc that initia.lly the signal mode is in the vacuum state, 
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~, 

whereas the pump mode is in a coherent state, so'the i~itial state of the field is 

00 

lt/J(O)) = 'E bniO, n),- (12) 

n=O 

where 

bn; exp( -lfW /2)(3n /0J (13) 

is the Poi,ssonian weighting factor of the c~h'ere~t state I~) of the_ pump mode rep

resented as a superposition of n-'photon states. With these initia:l ~onditi~ns the 

resulting state ( 2) can be written as 
oo n 

lt/J(t)) = 'E bn 'E C2n,k(t)j2k,n- k), (14) 

n=O k=O 

where the coefficients c2n,k(t) are given by ( 9), and they· are calculated numerically. . . . . . . .· ' . _, .· ', 

3 Number • and phase· statistics 

Properties of the ideal squeezed stateS' generated in. th~ paramet~ic down-conversion 

process have been studied extensively [1]- [10]. ' It is known, for example, that. 
' •'' 

for the squeezed vacuum the mean number of photons of the signal ~odeisequal 
to (at a) = sinh2 r; which is. a monotonic functio!l of the squ~eze_,parameter' r (or 

' ' ~ 

the evolution time gt). This means that the mean number of phot~ns can become 

arbitrarily large in the long time limit (large r' limit). Of course, it is a result of 
~ ' r • • •, ' ; ' 1 • 

the parametric approximation in which~ the pump mode remains undepicted. If the 

pump mod~ is quantized .and its dynamics included into considerations, the total 1 ~ 
. ' - . . ' .. . 

energy stored in both modes is c~nserved, and the solutio~J.s become oscillatory. . .; ' . --'. . '- ~ . 

Using·the state ( 14) of the field, we obtain for the mean number of photons of the 
' . . . '-

~ signal mode the following expression 

(ata) = (¢(t)latal¢(t)) 
~oo n 

= 'Elbni2 L2kl~n,k(tW, (15) 

n=O k=O 
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Figure 1: Evolution 'of the mean number of photons'. The initial mean number of 

photons of the pump mode Nb is equal to:4 for all the figures. . 

' ~ 

and th~ mea:n number of photons' of the pump mode' can be found from the conser-

v~tion ;elatio~ ( 3) 

(at a)+ 2(btb) = 21{312 = 2Nb. (16) 

The solution~ obtained. nu'merically from equations ( 15) ~nd (' 16), for the· mean 

number of photon~ ;~the pump mode Nb == 4, are show; in Fig. 1. For comp~rison, 
I 

we ha~e-also plotted the' solu.'tion for the ideal squeezed state (squeezed vacuum), 

which is given by (ata} = sinh2 r with r related to the ;caled time gt by r = 2..,/Nbgt. 
' The~ oscillatory· behaviour of the~ quantum solutions~ is cle~rly visible, and~ only at 

the initial stage of the evoluti~n the igeal squeezed state solution can be treated as 

agood approximation to the quantum solution. O~e can roughly say that the first 

maximum of the Jignal intensity.sets a limit of applicability of the ideal squeezed 

states; i. e. there is a limit of the. squeeze parameter values that can be obtained in 

_7. 
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practice. Thus, one can expe~~ also that the states gen~~ated in the dow~~conversion 
process with quantum pump will have different properties from those' of the. ideal 

squeezed states. To make the differences more explicit, we' stud; in' this paper the 

number and phase sta~istics of th~ states produced in th~:do~n-co~version process 

with quantum pump and compare them to those of the ide~l:squeezed states~ 

From equation ( 14) we 'can directly d~rive the joint probability amplitude of 
' ' . . 

finding na photons in .. the signal ~ode.andyb photons in the;pump mode, which is 
. . " . 

given by 
oo • n 

(nanbl'l/l(t)} = L bn L C2n,k(t)6n.,2kCnb,n~k· (17) 

n=o·,. k=O 

.The joint probability P(na, nb) is thus giv~nby . 

P(na, nb) l(nanbl'l/l(t)W. 

= {· lbnb+n./2C2(n~+'n./2),n./2(t)l2 
0 ' .. 

for na even (18) 
for ria. odd 

One immedi'ate resu!t of equation ( 18) is that only 'even numbers na can appear 

in the signal ~ode. The joint photon number,distribution P(1la,nb) dependsupon 

the initial probabilities lb~l2 in the pump mode, a~d its evolution is d~termi~ed ~y 
the coeffidents c2~,k(t}. In Fig. 2 we plo( the joint distribution P(n~, nb) versus 

' ' ·' ' .. 

na and nb, for different t;volution times gt. It i~ seen how the initially Poissonian 

distribution with the m~an number of photons Nb = 4'of the pump mode spreads 

over both modes during the evolution. O~ly even numbers'na .can appearin the . ' . ' \,. -._ . ' 

signal mode what is clearly seen in th~ pictures. This property is the same as in the 

ideal squeezed states, so one 'can expect squeezing in the signalmode. However, for 

gt = 0.65 when the signal intensity approach~s its ma~im~m (see Fig., 1 ); one can see 

that almost· all odd numbers nb, except for the remnants of the initial distribution .. 
. . \ 

along na = 0, disappeared from the distribution.· At thi~ time of the evolution the 

two-photon character of the interaCtion is also reflected in the pump mode, so one 
• • .- • ' ' f 

could also expect squeezing in the pump mode. To check th~ squeezin.g pr~perties of 

8 

~ 
0 

.-:e 
~r 

,<$_.-: 
~0 ..:;,; 
P" 

N~ ; 
~r , 

,<$,.-: 

~0 
P" 

·gt=O· gt=0~2 

~ 
0 

.-:e 
~r 

,<$,.-: 
~0 ..:;;; 

'- P" 

gt 0.4. gt=0.65 

~ 
0 

.-:e 
~r 

,<$,.-: 

~0 

P" 

Figure 2: The joint photon uitmbcr distribution P(na;nb), for differe~t evolutior 
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Figure 5: Evoluti?n of the photon number variances. 

{n~} = ((btW) 
. oo n .. .., ~ 

= ··2: lbnl2 2)n ~ k)
21c2n,k(tW, 

n=O. k=O ' , 

(21) 

and the number ·of photon variances calculated in this way are plotted in Fig. 5. 

The photon number var~ance for the ideal squeezed vacuum is. given by [27] 

. {(Cln)~) ~ 2{n){{n} + 1) ~-~sinh2 (2r), (22) 

. . .. . > ' ~ 

. a~d is. also pl<itted, for' r~fere~ce, in ,Fig; 5. The photon number fluctuations in the 
• • t \ 

signal mode increase rapidly at the initial stage of the 'evolution, but after reaching 

the n'taxi~u~; they oscill(l.te a:r.ound a finite value ( dep~nding on. the 'mean number 

of photons ~f the {niinp mode). This is in contrast to the behaviour· of the photon 
' '. - . ' 

number variance for the squeezed vacuum which grows to,infinity. 

Ano~her characteri~tic of the field that }s r~lat~d to th~ photon number variance 

; . 
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Figure 6: Evolution of the 9(2) fun~tion .. 

· is the !P> function d~fined by 

(2)- (11(71- 1)} ~-. ((Clil)2
}- {it} 

9 - (. )2 - 1 + ' (. )2 ' ' ' . n . . n . 

. (23) 

which is 'plotted· in Fig. 6. For the squc~zed vacuum this function asymptotic~lly 
approaches the value of 3. In the case of down-conversion with quantum puu'ip the 
. ' ., .. i 

·9(2) function of the signal ~~~d~ o~cillatcs takin'g the values t.hat deep below this 

asymptotic value. The photon. statistics, lto.\V~vcr, arc super-Poisson ian for both 

modes. 
Since Jf

0 
is a constant of motion, If~ is also a constant .of niotion, amrw<' can 

. ' . 

ol?tain for the,fluctuations of J/0' the following relation 
. ' 

((Clllo?) = (IJJ}- (ffo}2 =<1Nb(liw)
2

, 
(24) 

.. wl;ich in t~rms of tlie nm~bcl·s of photons 'can be rcwrit.t<;ll as 

((Cli1a)2 } + 1((Clrib)2
} + ·1(Clii,.Clilb} = •ll·h. 

' ' _. '. . 
(25) 
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Formula ( 25) establishes the relati~~ bet~een th~ fluctti~tions 'of.the individual-. 

mode photon numbers and the int~rm<;>de photon-number~orrelation:. All this quan~. 

tities on the left hand side of ( -25) can be calculated numerically using. the state 
' , ' F" 

( 14), so that formula ( 25) can serve as a test of numerical precision. The value of 
. . \ ' ' ' 

4Nb sets the level of ~uctuations for initially coherent state of the pump mode. 

The quantity conjugated to the photon number is the field phase. Recently, Pegg 

and Barnett [22]~ [24] have introduced th~ H~rmitian phase formalism, which allows 
' . ' . J 

to construct the Hermitian phase· operator'"'for the field mode and, as a result, to 

- study systematically phase pro~erties of the field. We u~e h~re the Pegg-Darnett 
I • ~ . 

phase formalism to study the phase properties of. the field produced)ri ,U1e down-

conversion process with quantum pump. This fo~malism is based on introducing a 

finite (s +I)-dimensional space Ill spanned by the number states IO},Il}, . .'.,Is}, for a 

given mode-of the field. The Hermitian phase operatoroperates on this finite space, 

and after all necessary expectation valueshave been calculated in Ill, the value of 
- ' - I 

s is allowed. to tend to infinity. A c~mplete orthonormal basis of ( s + 1) states is ·. 

defined on Ill as 

, .. ' 1 6 

J s +.1 L ~xp( i~on:)ln}, 
· n=O . · 

'(26) IBm} 

where ,, 

· 21rm '· 
Om.= Oo+.--

1
, {m=.0,1; ... ,s). s+ . (27) 

The valu~ of 00 is arbitrary and defines a particular .b~sis set of ( s+ 1) mutually . 
. . ' "' '.' . ' - . . 

orthogonaL phase'- states .. The Hermitian phase operator is defin~d as 
' . . -

~; 

Jo · = L OmiOm}(Oml, (28) 
m=O.' 

where the subscript 0 indicates the dep~ndence on the choice of 00 • The phase states 

( 26) ~re eigenstat~s ~f the ph~e operator ( 28). with th~ eigen~alues Om restricted -

to lie within a pha.Se window between 00 .and 00 + 21r. The unitary phase operator 
1 • -- • 

exp(iJo) is defined as the exponential function .of the Hermitian_ operato~ Jo. This 

'14 

II 

r 
-1 
l 

i 
··~. 

·l 

I 
·1 
r' 
:'\ ' . 

-~ 

' 

operat~r ~ctif1g on th'e ~igenstate lqm) gives the ,eigenvalue exp(iOm); and it has the 

form [23, 24] 

exp(iJo) 
6-l 

L ln}(n + 11 + exp [i(s + l)Oo]ls}(OI. (29) 
n=O 

This is the last term in ( 29) that ensures the unitarity of this operator. The first 

sum reproduces the Susskind~Glogower [28, 29] pha.Se operator in the limit s -:-+ oo. 
The expectation value_ of the phase operator ( 28) in a state IT/J) is given by 

$ 

{tkiJoiT/J} = L Omi{OmiT/JW, (30) 
m=O 

~ . . . 

~here I(OmiT/J}I2 gives ~ pr~bability of beb1g found in the phase stat~ IBm}· The 

density of phase statesis' ( s+ 1) /211'' so in the contiimum limit aS ~ tends to infinity, 
•' ,I - ' •. •.' • ' ' • \ • 

we can' write equation ( 30) il;S 

8o+2" 

(1/JIJoiT/J)_. ;=- J OP(O)dO, (31) 

8o 
/ 

where the continuum pha.Se distribution P(O) is intro1uced b~ 

P(O) = }i_~ 5~1 1(0~1~)12 , (32) 

·where Om has be~n replaced by thecontinum?-s phase variable f· Once the phase 

distribution function P(O) is known, all the quantum m;chanical phase expectation-

values can be calculated ~ith this function in a cl~sical-like manner by integrating 

over 0. The choice of 00 defines a particular window ofphase values. 
. . ~ ; . ' 

In our case of field produced in the downc.conversion process with quantum pump, 

th~ state of the field ( 14) is in fact a two-mode state, 3;nd the phase formalism ~ust 

be generalized to the two-mode case. T~e generalization is straightforward and 

'obvious, and for the state ( 14) we get 

(O~ai(OmbiTfJ(t)}. · ~ (sa+ 1)-lf2 (sb + 1)-112 

&a n 

XL bri L exp{-i[2k0ma + (n ~ k)Omb]}~n,k(t).' (33) 
n=O; k=O . . 

'. 
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We use the indices a and b to distinguish-between the signal(a) and pump (b)modes. 

There is still a freed.om of choice in ( 33) of the values of B~·b, which· define the phase 
. . 

values window. We can choose these values at will, so we take them as 

Ba,b 
0 = 

1rSa,b 
cpa,b - 8 b + 1 ' 

a, 

and we introduce the new phase values 

o;a:b = . 0!/.}~.b .;_ cpa;b, 

(34) 

(35)_ 

where the neW phase labels .J.Ia,b run in unit step between the values -Sa,b/2 and .. 
I . • 

Sa,b/2. Th~s mea~s that we symmetrize the phase wi~dows for,the signal and pump 

. modes ·with respect to the phases cpa and cpb, respectively.· 

On inserting ( 34) and ( 35) into ( 33), taking themod~lus sq~ared ~f ( 33), ami 

taking the continuum limit by making the replacement'' 
' . ' 

Sa b/2 ·, ' 1r • 

f--. 27r . ··j dB.· · L.J --- -+ a,b, 
. . Sa,b + 1 , . 

J.la,b=-•a,b/2 . · -11" 

{36) 

we arrive at the continuou~ j6int probability distribution for the continuous variables . 

Ba and Ob, which has the form 

P(Oa, Ob) 
1 I 00 

--. n . = (
2

1r)2 L bne-:'?:""• £c2n,k(t) 
, - i . n=O . k=O 

x ;,.p{-i [ ;kO .+ ( n- k )O, + .~(2<p. -,- ~·) J} I' (37) 

The distribution ( 37) _is_ nor~alized so~· 
t' 

,. ,. 

IJP(Oa,Oi,)dBadBb ·= i:'·: ' '(38) 

-1'['-11"··-' 

To fix the phase windows for Ba and ob, we liave to a~sign· to cpa. and cpb. particular,· 
. I l . . ~ ' 

values. It is interestingto note that the distribution P(Oa,Ob) given by ( 3?) depends 

on the; phase difference 2cpa - cpb only. This reproduc~s th~ ~la.Ssical ~ha.S~ relation 

forth~ parametric amplifier, and cl~sically this quantity should be equal to -7r /2 to 

16 
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get the amplification of the signal mode (if the coupling constant g is positive). Such 

choice means that a peak should appear in the phase distribution at Ba = 0. As it 

will become clear later, the phase distribution for the two-photon down-conversion 

_process exhibits two-peak structure along the Oa direction, and· _the choice of the 

window with a peak for Oa = 0 would maximize the phase variance. To minimize 

.the phase variance we choose 2cpa- cpb = 7r/2, The phase distribution P(Oa,Bb) is 
' • • • \- • ·t ' • 

iliustrated in Fig. 7, for the mean number of photons Nb in the pump mode equal 
. - / . . •, 

to 4 and different evolution times gL ~his distribution can be compared with the. 

photon number distribution presented in Fig. 2. The two-photon character of the . . . . . . 
process,'\vhich is seen in the pl10t.on m1mber distribution by the presence'' of holes in 

·the distribution for odd na·, is reflected in the phase distribution by the presence of 

t~o peaks along the Oa dir~ction, It is int~resting to see thatfor gt = 0.65, i. ·~.for 
the value of the maximum intensity of the signal mode and the maximum value of . . . . . 

squeezing in the purrip mode (compare Figs. 1 and 3), the phase distribution along_ 

the Ob direction of pump mode assumes the two-peak structure characteristic for the 
•, ~ . . . . . . . 

squeezed states. This means that the state of the pump mode b~comes close to. the 
'> ' / • ' ' • 

squeezed state. The photon number distribution (Fig. 2) with holes that appeared 

for odd nb con~rms this statement. So, the squeezing ,has been transferred. f~om 
the signal mode: to the pump mode. A bifurcation of the phase distribution along 

the ob direction indicates the transition co£ the process from the ~own-conversion 
I • ,,_ . 

regime to the second-harrrio~ic generation regime. In the long timc.lin~it the phase 

distribution goes through. a sequence of such bifurcati~ns tO\vards the' multi-peak 

structure, which means randomization of the phases [20]. 

l[ IntegratingP(Oa,Oii) over one of the phases leads to the marginal phase distri-

butions P(Oa) arid P(Ob) for the phases Oa and Ob of the individual modes. We 

have 
1f 

P( Oa) = I P( Oa, ob )dOb 
-1f 
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Figure 7: The joint phase distribution P(Oa,Ob), for different evolution times gt. 
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' \ ' 

and 

_!_{1 +.2~e L:·bnb~, t t C~n,k(t)c;n',k'(~) 
211" .n>n' k=O k'=O - · 

'X exp [-i(k- k')(29Q+ 2~a- ~b)]On-n',k~k' r ' 
P( O,) ~ ,;,{I + 2Re f, b.b;: t ""'( t)c; •• ,( t) 

.X exp [-_i(n- n')Ob] }·. 

(39)' 

(40) 

The phase distributio~ P( Oa) for the signal mode isshownin Fig. 8 for gt = 0.3, . 

i. e. for the tim~ at. which the squeezing in the signal mode has its maximum value. 

For comparison we show the phase distribution for the ideal squeezed vacuum for 

. r = 2-JNbgt = 1.2. The phase distribution for the squeezed vacuum can be obtained 

from the known number state decompo~ition of the squeezed vac~U:m state [27] 
• 00 

. (41) 
IO}cr;fl) =La~ In}, 

n=O 

where 

, , {' ~l)n/l v'nf (1 )n/2 . an:;=:- coshr(nn)! 2tanhr 'exp(m77), ~even 
,0, n ,odd 

(42) 

' . 

with r being the· squeeze parameter, and 77 being the .pha:se that we assume equal to . . ' . . : . . . . 

zero later on. With the amplitudes ( .42) the phase distribution can be calculated 
'. ' " . 

accqrdingto the fc;>rmula 

I 00 12 1 . . . 
P(O) = 

2
11" L ane-:-mB ·-

n=O · 

= 2~{1 + 2 L ana.m cos[(~:- m)~J_}, 
, n>m . 

(43) 

where we have 'assumed an real. Since only the amplitudes with even n are different 

from zero, the phase dist,.-ibution is periodic in () with the period 1r, i. e. within the 
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Figure 8: .The phasedistribution P(Ba), for gt =0.3. 

phase window -11' :::; (} :::; 11' th~re ~re tw~ identical, symmetrically rdisposed phase, 

peaks. As it is seen from Fig. 8, the phase distribution for the squeezed vacuum 

is narrower from -the distribution in the case with qu~ntum pump. Comparing Figs 

4.and 8, we see that the squeezed vacuum has broader photon ~umber distribution 

and narrower phasedistribution than the signaLmode in thedown-conversion with 
. ' I ' ' , •· : 

quantum pump. _ _ 

The Pegg-Barnett phase form~lism allows to calculate the phase variances fqr 
. ' .. · ,. ' 

- the ind~vidual-modephases as well as the intermode phase ~orrelation function. The 

phase variance for the signal mode can !be ~alculated according to the formula 

((L\¢ea)\ = (¢U- (¢eJ2 
1r 

j.o~P(qa)~Ba 
_,. 

'I' ···'·. • \ 
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Figure 9: Evolution of the phase variances. 

5.0 

_ 1r2 _H L b b* exp[-i(n- ,;')(2cpa.:... cpb)] 
- .3 + .e- n n' ( . ')2 , - . n-n 

I 
I 

' ' ' n>n' . · · . . . 
n 

xi: C2n,k(t)c;n',k-{n-n')(t),. 
k=n-n' 

. and for the p~mp mode we ,haye· 

" 
-<( Ll¢ebr} = I (}~P{Ob)dOb 

_,. 

= 11': + 4Re L b~b~, (n ~ n')2 t C2n,k(t)c;n',k)(t_), ·. 
n>n' k=O -

(44) 

(45) 

where we have used ( 39) and ( -40), an~ w~· take 2cpa - fPb = 1r /2: The phase 

variances are plotted in Fig. 9, and for reference we plot the phase variance for th~ , 

squeezed vacuum. The squeezed vacuum phase variance approaches asymptotically 
'· • ·. • . - • . I ' 

the value 1r~2 /4, which corresponds to the phase distribution ~vith two symmetrically 

placed delta functions · 

r(o) = i [.s (o- i) + li (o +i)}. (46) 

-- ~1 
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The phase fluctuatio~s in the signal mode have oscillatory ch~racter, alth?ugh at the 

iri.itial ;tage of the. evolution they are indistinguisha:ble from that of the sq~eezed 

vacuum, and at the ~~~g ~i~e limit they approach 'the value 7r2/3 characteristic 

forthe uniformly distributed phase [23, 24]. The phase fluctuatio~s in thepump 

mode start fron'I the small value characteristic for the initial coherent state and 

gro~ rapidly, next, they osci~l~te 'approaching the value. 7r~ ;3 .. s?, the quantum 

fluctuations lead to the randomi<~ation of the phases for. b'oth. modes in the long-

time limit. .,.1 

Since the number and phase are two conjugate quantities,'they obey the uncer-
r . , . ~ , , . 

tainty .relation [24] 

'D.nD-4>o ~. ~ l<fn,iuD!'· (47) . 

~nowing the variances for the numbers of photons and phases for both mode~ we 

can calcul~te the uncertainty products 

• •• . i •. ' •• • .• •• . • 1/2 . 

Ana~bAf/>o •. ~ .= [ ((Ana,b)2)((A~u •.• )2
)] • (48) 

The number-phase. c~mmutator can also be easily evaluated for any) physical state· 

jp) from the relation [24] 

(pl[~u, n]lp) = -i[l - 21r P(O~)I: ' (49) 

In Fig .. 10 w~· ha:ve plotted both the uncertainty product and the one half of 

the modulus oLthe expectation value of the phase-number c~mmutator (evaluated 

according to ( 49) :with 00 ~ -~). It is seen that the un~ertainty produ~t remains 

finite in the long-time'limit for finite mean number of initial photons, which is in 

contrast to the squeezed vacuum for which it tends to infinity. For any finite r the 

ideal squeezed vacuum, however: can be considered as a physical state and we can 

apply ( 49) to calculate the mean value of the number~phase co~mutator. When 

r tends to infinity, th~ pha,;e distribution tends to the form oftwo delta functi~ris 
given by ( 46)l i. e. P(--'1r) tends to zero, imd asymptotically the e~p~ctation 
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Figure 10: Evoiution of the ~umber-phase u~certainties, for the signal mode. 

value of the commutator. tends to -i. This is clearly seen from Fig. 10, where the 

asymptotic value of 1/2 is reached for the ideal squeezed vacuum. So, this is the 

infinitely growing the photon mimber uncertainty that causes the infinite growth of 

the number-phase uncertainty product for th~ ideal s_qu~zed vacuum. 

The notion of ·number and phase squeezing can be introdu~ed for the two· con

jugate quantities, and the degree of number and phase squeezing can be defined by 

[30, 31] 

sn· = 

Sq, = 

((D.iz)2} -·~ l([n, ~o]}l 
~~([n,~u])l , 

. {(~~o)2) ~ t l([n,~u])l 
t l_{[n, ~o]}l ·' 

(50) 

(51) 

These two quantiti~ give the relative quantum 'fluctuations, with respect to the 

minimum uncertainty, and the value of -1 means p_erfect squeezing of the photon 
. . 

number (or the phase)~ In Fig. 11 we have plotted the two squeezing parameters for 

23 



~ I 
\ -
-I I 

17 tl ~ 'l / I I I -
~ 

i ~ .· I 
i ' ~ • 'I 
j I .. \ 

11 H~ I 
I 

- - I I 
I . - -

\ i \_ '· ..J_ / : . ' ----
"---:::. __ --'-----:.,-.:.- --:.4--,-:--------

,'\ . 

5 

gt 
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the signal mode, and in Fig. 12 for the_ pump mode. There is _initially the number 

squeezing in the signal mo~e and the phase squeezing in the pump mode. _ It is 

interesting to see the sharp peaks of relative phase fluctuations that a~pear in both 

modes. They'are related with the minima of intensit-ie~ in part,icular modes (see ~ig. 
1); and minima of the commutator expectation values (see Fig. ·10)._ There is no such 

peak for the ideal squeezed vacuum. Moreover, from the asymptotic. value 1r2 f 4 of ·. 

the phase variance and the asymptotic beha:'i_our ofthe number-phase commutator 

expectation v;lue, we get the asymptotic val~e-of7r2 /2 :::- 1-for the phase squeezing 

of the ideal squeezed vacuum. Thus· the phase pr<;>perties of the signal mode are 

essentially different from th~se ~f the ideal squeezed vacuum in the oscillatory part' 
-' - . .• . 

of the evolution, but they are similar in the_ initial part Of the evolution before the 

first maximum of the signal ~ntensityhas been reached .. __ 

... 
,; 
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4 · Conclusions 

We have studied the photori number and phase quantum fluctuations in the fiCld 
~ . . • -, ' • . • . . • ' - " >. • 

generated 'in the down-conversion'. process with quantum pump. That is, we have 
'... '- • • 4 •• ,· '·._. • 

used fully quantum description of both modes of the field avoiding the parametric 
• ' -· ' i • • . : ~ . : ' • .· • 

approximation. The method of numerical diagonalization of the interaCtion Hamil-
• ~ . • ' t ' . • • 

tonian has been employed for finding the quantum evolution of the sy~tel!l- -This 

method allowed us to' calculate and illustrate graphically the evolution of a num: 
. . ' - .-. "' ~.' ' ' - -. . . . . 

her of'quantities characterizing the number and phase quantum fluctuations of the 
t • • ·- •• 

field. To deal with the phase quantum fluctuations we have applied the Hermitian 
- . . . . ··,, .. . 

phase formalism of Pegg an4 Barnett, which allows to treat the quantu~1 phase of 

the field on equal footing with the photon num~er. We have studied and compared 

quantum fluctuations in both conjugate quantities for the signal and pump modes. 

The properties of the signal mode generated in the down-conversi~n process v,;ith 
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quantum pump have been compared to those of the ideal squeezed vacuum resulting 

in the parametric appro::cimation. 

Our results show that the quantum cha;acter of the pump mode, when taken into 

account, essentially changes properties of the field at later stages of the evolution, 

while at earlier stages of the ev~lution the signal mode properties are very close to 

those of the ideal squeezed vacuum. The -quantum fluctuations of the pump mode 

set, in fact, a limi~ on the values of the squeeze parameters that can' be obtai~edin 
a real physical situation. 

_.; 

It is also seen from our results that the two-photon character of the process is 

Clearly refleCted in the photon number distribution of the signal ~od~ through the 
/ . . 

absence of the odd numbers of photons ( ~r more precisely through the presence of the 

pairs of photons only), and in the phase distribution it is reflected_through the two-. ' 

peak structure of the sign~l-mode phase distribution. Moreover, itis seen that the 

pump mode can als~ become squeezed, and at the time. of maximum squeezing the. '.. . ... ' 

photon number di~tribution and the phase distribution of the pump mode exhibit th~ 

same characteristic features, although not in their pure form. This can be considered 

as an illustration of the conjugate character of the number and. phase variables. 

We have also 'stud,ied the number-phase uncertainty product as well M the ex

pectation valu~ ~f thei~ com~~tator. Contrary to the ideal squeezed vacuum, the 

uncertainty produCt remainsfinite (for finite initial ~ean numberof phot-ms N 6) 

in the long time limit.' Since the expectation value of the number-phase com!ll~-
- ' 

tator sets the lower bound for the unc~rtainty pr~duct, it is sometimes convenient 

to characterize the number and phase quantum. fluctuations as relative quantities 
', . ' ' 

calculated with respect to the minimum· unc~rtainty. This lea:ds to'.the notion of 

number and phase squeezing. The degre~ of such squeezing for both modes has also 

been calculated showing a presence of shar~ peaks of the phase squeezing. 

In our numerical calculations we have assumed the mean number of initial pho- -

tons in the pump mode (being in a coh~rent st~te) a5 N6 = 4. This\•alue is small 

enough to make the numerical calculations fast and reli~ble and, nonetheles~, this 
. ~ 
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value allows to observe some !;lassical features-of the field (appearing for Nb ~ 1) 

while the quantum properties of the field are still clearly visible. 
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TaHacb P~. faHt.tor U. 
KsaHTOBbte cPJJYKTyat.tiAIA ~IACJJa cPOTOHOB 111 cfla3bt 

npiA AayH·KOHBepCIAIA C KBaHTOBOH HaKa'lKOH 

t.13y'latoTCA KBaHTOBble cPJJYKTyat.tiAIA 'liACJla cPoTOHOB 1 

KOHBepCIAIA C KBaHTOBOH HaKa'lKOH. AnA HaXO>KAeHIAA 31 

IACnOJlb3yeTCA 'liACTO KBaHTOBbiH nOAXOA C npiAMeHeHIAeM 'l 

AIAaroHaHIA3at.tiAIA raMIAJlbTOHIAaHa B3aiAMOAeHCTBIAA CIACTeMt 

>KeHirlA AJJA. A11CnepCIAV1 'li1CJla cPoTOHOB, COBMeCTHOfO pacn1 

HOCTeH 'li1CeJl cPOTOHOB, AIACnepCI111 KBaApaTyp, COBMeCTHO 

sepoATHOCTeH cfla3, YCJlOBHbiX pacnpeAeJJeHI1H 'li1CJla cPoTC 

Cl1fHaJlbHOH MOAbl; ·a TaK>Ke COOTHOWeHI1A HeonpeAeJJeHHC 

cfla3a lA napaMeTpOB C>KaTI1A. 3BOJ110t.tliJA . 3TI1X BeJJIA'liAH n~ 

. rpacfll1'leCKM. Pe3ynbTaTbl AJJA c11rHaJJbHOH MOAbl cpaBHI1E 

CTBYIOIJ.II1MI1 pe3yJJbTaTaMI1 AJJA 11AeaJJbHOfO C>KaToro BaKy 

JaTb npeAeJJ npi1MeHIA":'!OCTIA napaMeTpiA'lecKoro np1161111>KeH~ 

Pa6oTa BbtnOJJHeHa s fla6opaTOpiAV1 TeopeTI1'leCKOH 

rJpenpHHT 06oeAHHEHHOI"O HHCTHyYTa .RAepHbiX HCCJJeAOE 

Tana~ R., Gantsog Ts; 

Number and Phase Quantum Fluctuations 

in the Down-Conversion with Quantum Pump 

The photon number and phase quantum fluctuations in 

by the down-conversion process with quantum pump is 

quantum approach using the method of numerical diagonal 

raction Hamiltonian is applied to find the evolution of"the 

tion of the photon number fluctuations, the joint number o 
lity distribution, the quadrature variances, the joint phase ll 
tion, the marginal number and phase distributions for th 

number and phase uncertainty p.roducts and squeezing pa1 

ted and illustrated graphically. The results for the signal n 

to the corresponding results for the ideal .squeezed vacuum 

of validity of the parametric approx!mation. 
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