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Introduction 

In this and other publications which are to follow it's suppo­

sed to set forth a new method of research thermodynamical sur-· 

face (TS) equilibrium states of one-component fluid,, including• 

areas of liquid and gas phases, and also areas of phase transi­

t.ion of the first and second types. A possibility of unified 

approach to macroscopic description of substance which is charac­

terized in the indicated areas of TS by considerable difforencies 

in microscopic behaviour of the system of particles is secured by 

t.lmrmodynamically universal method of. consideration, which is in 

·many parts close to semiphenomenological theory of critical area 

(CA) [1--3]. 

As a non-traditional result of the approach being developed in 

this research one can consider well-based extention of non-classi·­

cal, scalh1g dependencies on the description fluid states, remo­

ting from CA and usually approximated by expansion thermodynami­

cal functions of one or two variables into analitica;L series: 

00 

f(x) = E ak xk 
k=O 

(a) f(x, y) (b) 

Some extending the domain of validity such series is provided, as 

it's known, by using the direct Pade approx'imants [ L/M ]f,in_ 

which polynomial exponents are subordinated to the :iiiequal~ty: 

L + M ~ K with integer having restrict value . . 
In case of singulari~Y-~.t~ .. type...ob.served in CA 
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f(x) :oe: Ao(xkp -'x)-w, w (non integer) >0 

Pade technique· approximants must be generalized as 

(c) 

it was demon-

strated by M. Fisher [4,5], by describing derivative of logarithm 

of the function f(x} [L/M]d/dx( lnO This work· propose an 

alternate method of reimarch of TS particulars basingon the 

results of catastrophe theory [6,7]. 

1. It· s known that equ:i,librium thermodynamics (I.;T) was formu; 

lated by Gibbs in local1y - differential 

suppo:; it.ion of fundamental TS cxist.ence : 

aspect. and ba:;ed on 

~; a E (N, V. S) (1) 

in each poird; of which the following differential form on (1} is 

fulfilled : 

dE = -PdV I i,dN t Tdli (2) 

The empirical principle o·f macroscopical equivalence employahlie 

for N-•systcms :i.n 1.he volumes of Vo > Ve ( .. Vc-correla1,ional 

volume of an equilibrium state gives opportunit.y to int.roduec· the 

condition of homogerwity of the first. degree for 1;he funct,ion ( 1): 

• L' C" dE V ➔ "' · av cJE N ~ S ,m + as (:l) 

According to (2,3) the following definition:; of field variabler; 

{b.i }cc (-P, i.•,T) arc ohti~ined with the use of •initial 

variables: 

-p .c ,,E;,JV • V = oE/oN • T = clE/dS 

and also relationship between densities: {a:n=(,: ,Q,O): 

"' r,;;v • fc'::: N/V <.T =:, S/V 

and field variables is fulfilled 

£ :: ··P + q11 + oT 

extensive 

( 4) 

(5) 

(Ji) 

In ET equation (6) gives definition of eomlete Legendre,transfor­

mation of independent. variables,for reversible changes bet.ween 

local potentials : _,:, (e, o) and P (µ, T). 

Formally, the indicated potentials could he considenid as 
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1'' 

) 

appropriate solutions of differential equations with partial 

derivatives of the first order 

P(e, <-•; ,: ; a..:/d(•, o,:;,/i'la) = o 

PC,<•; T; P; aP/o~,. i'JP/oT} = 0 

(7) 

(8) 

Each from these equations is equivalent to the relation ET (6), 

having form of generalized equation of Clerout [8]. We take a 
variant of field b.-representation (8) (a complete symmetrical 

J . . 

calculations can be ma.de for density aj-representation (7)) and 

formulate a task of constructing integral TS 

P=P(µ,T) (9) 

in every point of which similar to (1,2), the following differen­

tial form is fulfilled: 

dP = (!dµ + udT (10) 

The equation (10) gives the condition for the flat elements 

(points q E ~n=2and tangent to TS (9) at these points of planes 
0 

T tpn=2) 
qo 

p* - P = e (µ - µ)+er (T - T) 
0 0 0 0 0 

( 11) 

We shall demonstrate that this determined description of q
0 

point, used in numerous local abstract geometrical representations 

of ET (9·-12] is to be naturally connected with the existence of 

infinite potential barrier, restricting possible shifts 

(fluctuations) 6q of the point, depicting of .equilibrium state 

on TS (9), from q
0 

position. 

Beyond from physical reasons which can cause such a shift and, 

thus, from the meaning implied in '"time'" - parameter T the changes 

of generalized coordinates {qj} are called in this work 

··thermodynamical (T-) movement". Any element of T-movement is 

characterized in the close vicinity of q
0 

by set of differentiated 

functions, belonging to !µ,depending from the parameter '"T-time'" T: 

µ=µ(T); T=T(T); P=P(T); e=e(T); a=u(T) (12) 

The differential equation (6) with suppositionally known form of 

function c(e,a) and the condition Gibbs-Duhem (10) in general case 
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correspond to system of characteristical equations of T-movement 

representing (depicting) point q
0

: 

dP 
d'r 

"'P "'P = e "e - + <Sa;;-- (a) 
dµ 

"'cir"" 
&:µ 

:= de- (b) 
dT _a~ 
~ - ""Jo (c) 

de ajJ} ajJ} . 
dT = - Ce ap +aµ> Cd) d<T 

d'r= 
i}~ iJ'll 

( a ap f cJT ) (e) ( 13) 

Inserting (6) into (13) and taking into 

conditions, imposed (7) by formalism of ET 

"'P_ = 
"e 

ac _ 
µ+~ - 0 • ~--iJCT -

Oc - O - T + a--;;,- -

account additional 

(14) 

it's not. difficult to check.that the integral surface in determined 

description is degenerated into immovable point of transformation 

of variables depending on ch~nges of r-parameter: 

dµ -d'r - dT = 
dT 

dP 
dT = ~ d<T 

= d'r = 0 

2. For finding out _physical meaning 

(15) 

of the indicated 

transformation we shall point out that transition into ET from 

extensive variables {A.} (1-3) to the intensive variables {a.} (5-8) 
- J J 

is done with the reduction ·of one unit from number of independent· 

variables by selecting one of them (V) as a scale of N-syste~. The 

possJbiU ty of this is secured by empirical condition ( 3), 

according to which thermodynamical properties of the equilibrium 

fluid in a fixed macroscopic volume V
0

· with a sufficient accuracy 

are represented by the properties of fluid in a unit of 

measurement (seal e) volume VT.VT - value and--the way of imaginary 

placing VT ..:subsystems· into initial -macroscopical volume V
O 

. , in ET 

is not specified, following ,the , •only requirement of 

macroscopicity: VT~Vc. If this requirement is fulfilled the 

value of VT or, what is equivalent, the ·value of nondimensional 

relation V
0

/VT, numerically equal to the value-of V
0 

are considered 

in ET as irrelevant variables at a selected 

which is determined by. the conditJon of 

4 

.seal e V 
7

• In -T-limit 

preserving in case 

~ 

"'ti: 

(V
0

, VT)-> u.• of all three densities (5), fluctuations 6q, 

whjch are always present in real VT-subsystems of finite volumes 

di::.appear 

4 vr = 4 o 1 &q(V.J ,5q(.V ) -> 0 at V -> ,:.:, 
T - T (16) 

and the description of (x., t) 
i 

homogeneous (d/axiccO, d/ot=O) 

lindtcd !,-system (V,.->·", V
0
/V,->·•·l may be given according (1-6) · 

wit.h l.he help of ,~xtensiv,! variables as well as wjt.h the help of 

:inten!.":iivo variables. In this 

dert!'.iit.it~!.i ~aj} of J<:T, is 

case bP.ca11se 

·completely 

of (6), fields {bjt and_ 

equivalent (7,8) and 

preclomirwnt u:;age in stati5t.ir:al mechanics coordinated basis of 

dmwity vari.;i.hLes \qi}=·{,,,,.} is 1:aused .in po::.:.ib:ility of t.heir 

microscopieal interpret.at.ion. 

Using Um admission (x., t) - homogeneity to the finite 
J. values 

of V 1 is a certain idealization of l.he task of describh1g 

N-sy~;tem of nrcat number of moving and interacting particles. 

Wit.h the reduction of V,-values, eaeh from VT-subsystems, which 

can be imagined as a separate one within fixed volume V
0

, becomes 

more and more dependent on (xi' t) parameters of physical 

spaco- time. The mentioned dependence refleel.s really existing int.o 

Lim smal.l volumes V_r(,c1 ,t,)- nonhomor;one.itles (<l/Jx
1

..- 0, Jj,lt .,, 0) 

in diut.rihution of substam:c and enl'rf{y. The enumaral.ed facts 

arc associated wil.h t.hc int.roduct.ion of a limit. valur, V hit.a . e 

t.he theory of fluid (V, :V c). below which thnrmodynamical 

descripl..ion i:; nonapplicabl_e, Thus, the ~.tati!st.i.eal m"ch.-ul.ics does 

not examine 1.he behaviour of t.he ,illh!il.ance ·in volumr,,; 

V, <Vc,and definit1.ons of den!;it,ie!; in Um fjold t.lwory, be inn 

more general than (5) 

a .(x., t)-=Um 
.J •l /,V->V 

C 

AA ./,\V 
.l 

dA./d.V 
.1 

(17) 

are ba:,ed __ on (not quite :;at,i.sfact.ory from mat.lwma,t.ical point of 

Vi <)W) !,oncnpt of .. rna.crod i f fercn t. ia l ?1" d( "infinit.e!,ima l 

phy:_;J1:al ly"). 
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•, 

From this it immedjatoly follows t.ha,t. in ET as ·r-pa1·amel,e1-- in 

equation (13, 15) one can use nomlimens.ional value 

,- ::.. Vo/VT ( 1B) 

If the equilibrium of fluid is considered in a fixed finitH 

V
0

-volume and no form.:il transit.ion to T-limit (V
0

->co) is applied 

for the removal of border effects of interaction of V
O 

~subsyst.mns 

with the surrounding then th.e admission of (xi, t) ·homogcnelt..y at 

VT->•,:, will correspond to q
0 

point at value of , ::Q. For Um fin i t.n 

volumes Vr, in which also it'n necessary to takl} into account the 

exchange of V 
1 

- subsystemt; with the m1rronnd i ng by tho subst.au<:e 

and the energy a determined definition of <:oordinaten of poinL <J
0 

is equivalent to supposition about an absP.nt of fluctuations :·,q(r} 

within the whole interval : -r _; (0, 1 c·cV 
0

/V c] -

If now we supplement the consideration of (0, 1 c] area which is 

further ca'iled "'area of a-st.ates" with the· admission of 

possibility of continuous change of scale volume V 
' T 

(3]and, 

hence, the value of T-time T(l8}, -:..hen pbysir:ally the following 

interpretation of ET within the theory of dynamical system (DS) 

(13, 16] will not appear as inconsistent.At; a determined descrip-­

tion of "long time"' behaviour of a·-stat.es, starting from the 

moment of -, =O and up to the moment T :=r c, on 

q
0 

- p.olnt corresponds to asymptotically 

the smooth TS 

stable state 

equilibrium, p.osse:ssing infinite potential barrier, opposing 

· T-movement. 

of 

3. We point out, tha.t local thermodynamical po,tentials c(e,a} 

and P(µ,T) are not potentials in a mechanical.sense, sincqtheir 

gradients at the point. of equilibrium are not equal to zero, but 

determine "canonically conjugated" with coordinates ~q j} ·· impu.lse"va­

riables {<:J> j} by formula ( 14} 

JP ap 
<:pl :: e ::: dµ = --;Jql (a) 

for ~(e,a) and similarly, by ~ormula 

m ' ap ap 
,....2 = a = o'f = """&i: 

<ii 

6 

Cb) (19} 

I 

:) 
·\ 

for P(11,T) (9) function. In mechanics a function of mechanical 

action'possenses similar property. In ET this type of function 

must not depend explicitly on the parameter T-time r. Taking this 

into account t.he equat.ion ( 10) determines a complete derivative on 

dP - dW - aw dq . - dq . (20} T : dr - dT - ~ dq. dTJ- - ~ !J)jUTJ-
J J J 

and, simultaneously, gives a particular form of dynamical equation 

of Hamilton ·Jacobi : 

aw -a;-= -H(qj; ~j) = -H(µ,T;e,a} = 0 (21} 

Where a new notion is in~roduced of -, -:-homogeneous·, conserving 

{and at the same time equal"to zero) on the trajectory of T-motion 

T·hamiltonian ET H(qj; ~j}. 

It's obvious, that su~gested dynamical formalism is completely 

adequated thermodynamically, but it does not provide a solution of 

the task of finding explicit form of function (9), 

·r- hami ltonian H( q.; 'f1. )' ( 21) is• also a priori unknown, as 
J J 

since 

well 

as T-action W(qj). It's interest, that similar correlation in ET 

between thermodynamical analogues of Wand Has was demonst;ated 

by M. Peterson (11] , with the use of less general than 

discussed above method, can be found between local potentials 

ET. e(v,s) o W(q 1 , q
2

) and equation of state (ES) in the 

H(q1 ;'f'1 ,'f'2 ) = H{v;P~} = 0 

form: 

(22) 

Really, as a scale of N-system, taking into account (3), this 

approach uses N-number and T-impulses !J)j' are: 

!pl 
de - dW 

= -P =-;ry- - dql (a} !J>2=T=~ as 
aw 

= 042 (23} 

In comparison with (21} T-hamiltonian (22) has even more 

specific form, in which one from generalized coordinates q 2 =s is 

of cyclical type that is npt included into the expression for 

H(qj; !J)j) exPlicil.ly. 

It's known in the mechanics that conjugate to this coordinate 

impulse !J)2 ~T is conserved and the trajectories of T-motion in 

7 



representation of ET (22-23) should be identified with isotherms. 

For them the system of equations (13) is transformed into more 

simple form 

_!!£__P~1 T~ (a) dv oH 
(h) dT ap aT cfr = - -;Jp 

ds ,:IH 
(c} dP iiH 

(d) dT 
(24) cfr = "aT cfr ~ cfr-= o Ce> 

in which the place of 'P-function from (7, 8) is taken by function 

H (22}, not containing explicitly_ of finding dependence e ·cv, s) 

and one from coord.inaLes 5~ Hence, the equation (24,b-e) 

determines sy!ltem 2n of canonical equat.ion::; of ET. The possibility 

of its :int,cgrat.ion h, associated in dynamical theory with the 

determining of T-·hamilt.onian H(q .; 'P j) form and .in F.T it.:; .J 
equ.i.valen t to finding· calorical properties (e, s) on the 

isohermti using known form of thermc.l ES (22} and ini.t.ial data 

(eo,so). 

This tradit.ional thormophysiea] approach whjch ha,3 been 

discus:;ed .~bove within the limi.t.s of Cauchy ta!;k, for the system of 

dynamical t-iquaLions of Hamilton f.ype wit.h t.he forlTlil.l parame1;cr 

T,-t.ime r may have constructive sense for t.he investination of the 

properties fluid in that case if t.he selected parameter ls 

corresponded to the physically correcting model of T-motion of t.he 

representing point from initial posif;ion q
0 

on TS. Dynamical 

jnterpct,ation of equations ET (2,2 -24), developed in (11] docs not; 

corr<!spcind to this requrrement,_ according to our opinion. To 

demonstrate i.t we shall perform usual for t.hc dynamics t.ran5it ion 

from T·-homogcneous T--hamiltonian H(22) ·to the. dependent , on 

function : 

H(v;P,T) = ~P+P(v,T) = 0 (25) 

It is not difficult·to observe that by thi5 we excrsise· t.he 

replacement of one from .. old .. ·coordinates q
1

=v by .. new .. T-timc -r.::v 

at the expense of that the dimentions of configurational C/1 · l 

space and, corrc~;pondigly, ,·phase .'P2n- 2 space of KT are rdduced. 

Thnn for the isothnrmu, according t.o (21), we can get known -in ET 

,~iuat,iuu::i: 

( ,)r; } ( 
,Iv T 

dP 
dT }v 

ttn. 

av" 
,JP ) ) ~-P 4 ( ~ V T 

(26) 

wldch in, of course, not providing any new information about TS 

proper t. i m; e ( v, s) , as compared w i t.h 1<:T. 

In I.he t.hcory of Hamil ton - Ja.cobi a form ( 25) representing· 

r.pncial t.ype of .. new·· T hamill.oni,u1, coinsiding with one of · the 

"o Id" T · impu lsn::; : 

'l\ = 'l\ c,; 'Tl2> (27} 

which is not depend on cyclical r.oord.inate q 2 °s. We take notice 

of t.hP fact. that any from Hrcat numher semicmpirical 

( van·cler·Waqls type and empirjcal ( polynomial type) thermal 

m~ in form (7.2) can be int.orproted now a:; a ::;election of the 

model of T- hauli l f,011 ian ( 2·l). 

·rhc purpo:;c of present work consi::;tr; in the development .of a, 

tll!W mel.hud of rc::;eiLrch of fluid propert.:ie:; in various area::; of TS 

1win1x T tlynamical formalism of t.ho tat,k bning di:;cur;:;ed. Physical· 

bash; of the nu1.mesl.ed approa<:11 j :; nslat,:d t.o the above given 

i.111,c:rprctation of parameter T t.imc r (18), determining continual 

ehangf~ of the scale of mea:;uremcnt (vT) of the fixed V
0 

volume of 

N-::;yst.cm being researched. 
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