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I. INTRODUCTION 

A two-photon down converter is known to produce optical fields with nonclassical 

properties. 1- lO It is essential for the quantum properties of fields generated in the 

process that the high-frequency pump photons are split into highly correlated pairs 

of lower-frequency signal and idler photons. In the simplest case of a nondepleted 

degenerate parametric process, the pump mode is assumed as classical and nondepleted, 

and the signal and idler modes become one mode of the subharmonic field with half 

the frequency of the pump mode. In this case the time evolution of the subharmonic 

field can be found analytically and is described by a Bogoliubov transformation that 

maps the initial vacuum state into an ideal squeezed state. 1- 6 . The parametric 

down conversion process turned out to be very effective in producing squeezed states 

in practice. l l- 16 

The states produced by the two-photon down converter have interesting phase prop­

erties studied recently by Vaccaro and Pegg, 17 Schleich, Horowicz and Varro, 18 

and Gr~nbech-Jensen, Christiansen and Ramanujam 19 for the process with classical 

pump and by Gantsog, Tanas and Zawodny 20 for the process with quantum pump. 

The phase distribution of such states has two sharp peaks at the initial stages of the 

evolution that reflect the two-photon character of the process. If the quantum fluctu­

ations of the pump mode are taken into account the two peaks of the signal mode are 

broadened. 20 

A generalization of the two-photon down conversion to a multi-photon process has 

been initiated by Fisher, Nieto and Sandberg 21 who have found that the vacuum-to­

vacuum matrix elements of the evolution operators for such processes have divergent 

Taylor-series expansions in time, and they concluded that it must be something wrong 

with these evolution operators. Braunstein and McLachlan 22 have used the Pade 

summation technique that improved the convergence of series expansions, and they 

performed numerical calculations for the three- and four-photon processes showing 
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malism of Pegg and Barnett 26 - 28 t.o describe phase properties of the field. The joint 

phase probability distribution P(Oa, Ob) as well as the marginal phase distribution P(00 ) 

for the signal mode are obtained and illustrated graphically for the two-, three-, and 

four-photon processes. The multi-peak structure that corresponds to the multiplicity 

of the process is revealed in the phase distributions. A comparison is made between 

the Pegg-Barnett phase distribution and the "classical" phase distribution obtained 

by integrating the Q(a) function over the amplitude. It is shown that the latter is 

broader than the former, and a genera.I relation between the two is established. The 

phase distributions are compared to the corresponding Q function pictures to visualize 

their symmetry properties for the multi-photon down conversion processes. The quan­

tum character of the pump mode is accounted for, and the exact quantum mechanical 

evolution of the field state is obtained using the method of numerical diagonalization 

of the interaction Hamiltonian. For the pump mode being initially in a coherent state 

with a not very big mean number of photons this method works very well, and all 

the field characteristics can be obtained in a direct and reliable way. This is par­

ticularly important for the three- and more-photon processes for which there are no 

analytical solutions known, and there are some numerical problems in the parametric 

approximation. 

II. QUANTUM EVOLUTION OF THE FIELD STATE 

The m-photon down conversion process with quantum pump can be described 

by the following model Hamiltonian 

1iwata + rn1iwbtb 

+1ig(btam + batm), 

where a (at) and b (bt) are the annihilation (creation) operators of the signal mode at 

frequency w and the pump mode at frequency mw, respectively. The coupling constant 

g, which is real, describes the coupling between the two modes. The Hamiltonian 
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( 1) is identical for them-photon down conversion and the mth harmonic generation, 

and these are the initial conditions that distinguish between the two processes. In th<> 

case of harmonic generation, mode b is initially in the vacuum state and mode a is 

populated. For the down conversion process considered in this pa.per, mode b (pump 

mode) is initially populated, while mode a (signal mode) is in the vacuum state. The 

distinction between the two processes is far from being trivial, and the states generat<·d 

in the two processes have quite different properties. 

Since H 0 and H1 commute, there are constants of motion: H0 and lh. J/0 dct.cr­

mines the total energy stored in both modes, which is conserved by. the interaction 

H1 . This enables us to factor out exp(-iH0 t/n.) from the evolution operator, in fad 

to drop it altogether, and to write the resulting state of the field as 

l1P(t)) = exp(-iH1t/n)li/-'(0)). (2) 

where l1P(O)) is the initial state of the field. Since the interaction Ha.miltonian II 1 

is not diagonal in the number state basis, to find the state evolution, wc a.pply a 

numerical method to diagonalize H1. Such method was used earlier for second harmonic 

generation. 29, 3o 

In this paper, we consider the m-photon down conversion process, which may he 

considered as a generalization of the parametric down c.onversion process hy a.ffotmt.­

ing for the quantum properties of the pump rt1ode. · The Hamiltonian f/0 , which is a 

constant of motion, implies the conservation of the quantity 

(ata) + m(btb) = con.st, (:J) 

and this prevents any exploding solutions. We assume the initial state of the field as 

00 

l1P(O)) = I)nlO,n), (·1) 
n=O 

where 

1 I.Bl" in,p,. b = CXJ)(-l/31 / 2) r:·( 
n yn: 

(5) 
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f"~ 

is the Poissonian weight factor of t.]w co!J<'rent. state lrl) of the pnmp mod<> with 3 = 
l;3jci'"'•. TIJ<' state jO. 11) = IO)ln) is tlw product of t_lw Fock states with 11 photons in 

the pump mode and no photons in the sigmil modP. That is. \\"C assume the pump 

mode as !wing initially in a rnlwrc•nt stat.e j;J). all(] t.he signal mode as being initially 

in the rncuu111. With these initial conditions the resulting state ( 2) can be writt<·n (in 

the interaction picture) as 

•X• 11 

1~•(1)) = L Ii,. L C11m.•·(t)lmk. II - l·). (G) 
11:::::0 J.·=O 

where the stat.!' Jmk, 11 - l,) is I lw st.all• with n - k pliotons i11 t.h<' pump mod<' and 111k 

photous in the signal IIH>d<•. The nwlficienls ,·,,,,,_ •. (/) aw t.hc matrix clenwnts of tll<' 

evolution operator 

Cmn,dl) = (2k.11 - l·lexp(-i/11//h)j0.11). (7) 

and they a.re calculated 111111wrirnlly b_,. diagonalizing llw inl.<'racl ion llamilt.011ia11. This 

allows us to find the cvolut.io11 of t.h<' st.al.<' ( 6). 

III. PHASE PROPERTIES OF THE FIELD 

To study the pha.:;e prop<·rt.ies of I lw fi<'ld gP1wrat.cd in t lw 111-photon dmrn mu­

version process we employ t.11<' PPgg-Barnd.t. 2G- 2~ llcnnitiau phasp formalism to !ind 

the joint phase dist.rilmtion JJ(O,,.(li,) a.~ well as t.lw marginal phas<' distribution /'(0,,) 

for the phase of the signal mod<'. Tlw P<•gg-Banl<'l.t. fornmlism is lmsPd on i11trod11ci11g 

a finite (s + 1 )-dimmsional spac<' \jl span11<>d by t.h<' n11111l><'r st.ates IO),I I ) ..... j.,). Tlw 

Hermitian pha~c opera.tor opPrat.cs on this finil-<' space, and aft.t•r ;ill m•n·ssar_,· <'Xpt•c­

tation vahw::; have becn calnilakd in \jl. t.h<' va.hw of .s is allow<•d lo te11<l t.o inlinity. ,\ 

complete orthonormal basis of (.s + I) phase stat.es is drli1wd 011 \jl as 

jO,,,) = _I ~ . J., + I L <·xp(1110,,, )ju), 
U=-0 

(8) 
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where 

2r.m 
Om = Oo + ,s + 1 ' (m = 0, I. ... ,.s). (H) 

The value of Oo is arbitrary and defines a particular ha.sis set of (.s + 1) 111ut ually 

orthogonal phase states. The Hermitian phase operator is defined as 

Jo = L Om!Om}(O,,,j. (10) 
m=O 

The phase states ( 8) are eigenstates of the phase operator ( 10) with tlw c~igc•11va.hH's 

Om restricted to lie within a phase window betwee11 Oo and 00 + 2r.. 

The expectation value of the phase operator ( JO) i11 a state Id is given by 

(iJ,l¢ol1/•} = L Oml(Omj1j,)j\ {11) 
m=O 

where l(Oml1/>}12 gives the probability of being in the phase state j0111 ). The density of 

phase states is (s + 1)/2r., so in the continuum limit, as s tends to infinity, we can 

write Eq. ( 11) as 

Oo+21r 

(1t,IJol1/,) J OP(O)dO, (12) 

Oo 

where the continuum phase distribution P( 0) is introduced by 

P(O) l
. s + 1 
1111 -1(0 1·'·)12 

s-oo 271" m o/ ' 
( l:l) 

where Om has been replaced by the continuous phase variable 0. Once the phase 

distribution function P(O) is known, all the quantum mechanical phase expectation 

values can be calculated with this function in a classical-like manner by integrating 

over 0. The choice of 00 defines the particular window of phase values. 

In our case of field produced in them-photon down conversion process with quan­

tum pump, the state of the field ( 6) is in fact a two-mode state, and the phase formalism 
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must be generalized to the two-mode case. The generalization is straightforward and 

obvious, and for the state ( 6) we obtain 

(Om.l(O,,.J1p(t)) = (sa + l)- 112(sb + 1)-1
/

2 

Sa n 

x L bn L exp {-i [mkOm. + (n - k)Ombn Cmn,k(t). (14) 
n=O k=O 

We use the indices a and b to distinguish between the signal (a) and pump (b) modes. 

There is still a freedom of choice in ( 14) of the values of O~•b, which define the phase 

window. We can choose these values at will, so we take them as 

0a,b _ -~ 
o - '-Pa,b + l' Sa,b 

(15) 

and we introduce the new phase .values 

Oµa.b = Oma,b - '-Pa,b, (16) 

where the new phase labels /ta,b run between the values -sa,b/2 and sa,b/2 with unit 

step. This means that we symmetrized ·the phase windows for the signal and pump 

modes with respect to the phases 'Pa and 'Pb, respectively. 

On inserting ( 15) and ( 16) into ( 14), taking the modulus squared of ( 14) and 

taking the continuum limit by making the replacement 
,,. 

Sa,b/2 27r / L --- -+ dOa,b, 
Sab + 1 

ILa,b=-sa,b/2 ' -11" 

(17) 

we arrive at the continuous joint probability distribution for the continuous variables 

Ba and ob, which has the form 

1 1= n P(Oa,Ob) = (2r.) 2 ~bn~Cmn,k(t) 

X exp {-i[mk00 + (n - k)Ob + k(m'-Pa - 'Pb)]{ 

The distribution ( 18) is normalized so as 
,,. ,,. 

J J P(Oa,Ob)dOadOb = 1. 
-,r-1r 
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To fix the phase windows for 0 .. and Ob we have to assign to 'Pa and 'Pb particular values. 

It is interesting to note that formula ( 18) depends on the phase difference m.cp0 - cp,, 

only. This reproduces the classical phase relation for the parametric amplifi<'r, mid 

classically this quantity should be equal to -1r /2 to get the amplification of tlw sig11al 

mode (if the coupling constant g is positive). Such choice means that a peak should 

appear in the phase distribution at 0 .. = 0. As it will become clear later, the phase 

distribution for the m-photon down conversion exhibits m-peak structure along the 

0 .. direction, and the choice of the phase window that minimizes the phase varia.nc<' is 

mcp .. - 'Pb = 1r /2 for m even and mcp .. - 'Pb = -1r /2 for m odd. We choose the phase 

window following this rule. 

The phase distribution P(O .. , Ob) is shown in Fig. 1 for m =2, 3, and 4. The 

m-peak structure of the joint phase distribution is quite evident, a.11d it reflects the 

mathematical property of the function P( O .. , Ob) which shows periodicity in 0,. with 

period 21r /m. From the point of view of the pump mode we see only one peak at Ob = 0, 

which represents the phase of initially coherent state of the pump mode. For numerical 

reasons we use the mean number of photons Nb in the pump mode rather small, but 

for Nb > 1 the multi-peak structure of the distribution is well resolved. For larger Nb 

the phase peaks become sharper. The symmetry inherent iu this phase dist.rilrntion is 

the same as obtained earlier by Braunstein and Caves 25 for the generalized squeezed 

states from their study of the Q function and the "classical" phase distribution of the 

signal mode. To make the comparison of both approaches more evident, we ca.lculat.e 

the Q function as well as the "classical" phase distribution for our case of the dow11 

converter with quantum pump. 

For the two-mode field considered in this pa.per, we can cakula.te the two-mode CJ 

function as 

Q(a,(J) J(a,fJJij,(t))l2 

I
= n 12 
~ bn ~ Cmn,k(t)(aJmk)(/3Jn - k) 

8 

( 
" 

,() 

l 
.(t, 
.,-; 

I lmk 

I 
•x, 11 2 J o t.-imk8" = Lb,. L c11111.d t) exp( -JnJ /:.) J{m11f 

n=U k=O 

1

2 

1/3l n-k 
-i(n-k)Bb 

xexp(-JtJl2/2)J(n-h:)!e · (20) 

where we have assumed 

a= jnje;o., f'J = lfile;o". (21) 

Comparing Eqs. ( 20) and ( 18), one can easily check that the phase dependence of 

CJ( o, 1J) is exactly the sanw as in P( 0,.. Ob), when W<' ide11t.ify t lw phases of n and d as in 

Eq. ( 21) and introduce I.II<' r<'f1•n·11n· phasrs 'Pa and ..Pb as in Eq. ( 18). Prrformi11g tht' 

integrations over t.hc a111plit11dPs "Jn I and J,il i11 Eq. (20). \\'t• arrin• at the ··classical"' 

two-mode phase distrih11t.io11 /~.1,..,_,( 0,,. O,,). The krill ··dassical"· is used here in the 
•)~ 

sense used by Braunstein a11d ( 'a.n·s. -·.l who r<'f Pr to such a pha.st> measurement as 

effectively "classical", since tll<' CJ f1111ction applies t.o si11111ltanP011s measuremPnt of 

two 11oncom111uting observables, a process that. inevitably introduces a.ddit.ional noise. 

After integrating we have 

•X• 'X.• 

Pc1ass ( 0,., ob) ;.i .I .I (J(n.,8)JnJJ,8JdJnJdJ/iJ 
u l) 

I ,x, u u' 

(21r)2 L b,,b:,, LL C1111d•(/)c:,,11'.k'(f) 
11.11

1=0 k=O k'=O 

X exp{ -i(m(k - h:')Oa + (n - h: - 11
1 + k')Ob 

+(k - k')(mi.p., - 'Pb)]}F(ml·. mh-'}F(11 - k. 11
1 

- h·'). (:.?2) 

where the reference pha.~cs cp,. aml 'Pb have heen int.rodm·t'd <·xplicitly t.o be in agrccm1·11t 

with Eq. ( 18), and we ha.VI' obt.a.i1wd the extra factors 

1'(1¥+1)_ 
F(n,h:)= ✓i;-fD (2:l) 

It, is evident from Eq. ( 22) t.ha.t. t.h1·s1· arc t.hc 1•xt.ra factors /-'(111k,111//) a11d F(11 -

k, n' -//)that.distinguish t.lw "elassicar' phase dist.rih11t.io11 ( 22) fro111 t lw Pegg-Barndt 
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phase distribution ( 18). Our dcrirntiou of formula ( 22) is quit1• gnwral so m· <'XIH'CI 

it to be applicable to any state of the field with known 1m111ber state decomposition. 

It is difficult to illustrate the t\\"o-mode Q function given by formula ( 20), since it 

is a function of four real variables. If we are interestPd in the properties of the signal 

mode, however, we can define the Q function for this mode by 

Q(a) = ~ j Q(a,/3)d2 f3 

OC• U 

= L lb,.1 2 L lcm,.,dt)i2l(nl111lW 
n=O k=O 

,x. n n' 

+2Re{ L bnb~, LL C11w,dt)c;,,,., .•. ,(t) 
n>n' k=O k'=O 

(olmk)(olml:')"bn-n'.k-k' }, (2·1) 

where 

I ·l"'k (ojmk) = exp(-10!2 /2) o t-i,i,kO,.. 
J(ml,)! 

(25) 

This function (Eq. ( 24)) is illustrated graphically in Fig. 2 form =2, 3, and ,1. The 

other parameters are taken the same as those for the phase distributions shown in Fig. 

1. The m-fold rotational symmetry of the Q(o) that corresponds to the m-peak 

structure of the phase distribution is clearly visible, aml it is similar to the results 

obtained in the parametric approximation. 22, 25 The contour plots of Q( o) shown in 
•)< 

Fig. 3 make the similarity of our results to those ?f 13ra.unstein and Caves ~'J even 

more convincing, although we take different values of the evolution time. To illustrate 

the symmetry of the distributions we have chosen the times at the early stages of the 

evolution when the joint phase distribution has a clear m-peak structure. It has been 

shown that for later times, in the case of both the two-photon down conversion with 

quantum pump 20 and the second harmonic generation :H, :32 , the phase distribution 

goes through a sequence of bifurcations towards a multi-peak structure with more and 

more uniform phase distribution. 
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Integrating the joint phase distribution P(Oa, Ob-), or Pc1ass( Oa, Ob), over Ob we get 

the marginal phase distribution P(Oa), or Pc1ass(Oa), of the signal mode phase Oa. We 

concentrate on the marginal phase distribution for the signal mode to show explicitly 

the difference between the Pcgg-13arnett phase distribution P( Oa) and the "classical" 

phase distribution Pc1ass(Oa)- For Pclass(Oa) we have 

,r 

Pc1ass(Oa) = j Pc1 ••• (0a,Ob)dOb 
-,r 

0v 

~ J Q(o)loldlol 
0 

2
\_ 1 + 2Re. L bnb~, LL Cmn,kc;;.n',k' 

{ 

n n' 

n>n' k=O k'=O 

X exp [-i(k - k')(mOa + 1W,Pa -?b)] Dn-n',k-k'F(mk, mk')}, (26) 

where we have introduced the reference phases 'Pa and '{)b to have the same phase 

window as we used for the Pegg-Barnett phase distribution, bn are given by Eq. ( 5). 

It is easy to check that the Pegg-Barnett phase distribution P(Ba), which is defined as 

,r 

P(Ba) = J P(Oa,Ob)dOb (2i) 

-,r 

with P(Oa,Ob) given by Eq. ( 18), can be equivalently obtained from formula ( 26) 

by putting F(mk, mk') = 1. Thus, like in the joint phase probability, the difference 

between the Pegg-Barnett and "classical" results consist in the presence of additional 

factors F(mk,mk') defined by Eq. ( 23) in Pc1ass(Oa)- The polar coordinate plots of 

the two functions are shown in Fig. 4, for m =2, 3, and 4. The difference between two 

is quite evident. The "classical" phase distribution is broader than the Pegg-Barnett 

distribution, although the rotational symmetry, i. e. the peak structure, is the same. 

The broadening of the "classical" phase distribution with respect to the quantum Pegg­

Barnett distribution makes the use of the word "classical" more understandable. This 

broadening is a result of diminishing of the non-diagonal elements that define the phase 
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FIG. 1. Plots of the joint phase distribution P(Oa,Ob) for the states generated in the 

m-photon down conversion: (a) m = 2,Nb = 4,gt = 0.3; (h) m = :3, Nb = 2,gt = 

0.025; (c) m = 4, Nb= 2,gt = 0.00.5. 
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FIG. 2. Threc-dime11sio11al plot.s of t.11<' Q f1111d.io11 (J(o) for Ill<' signal modi'. Tll<' 

para.meters arc same as in Fig. I. 
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FIG. 4. Plots of the marginal phase distribution for the signal mode: the Pegg-Barnett 

distribution P(Ba) (solid line), and the "classical" phase distribution Pc1a,,(Ba) (dashed 

line). The parameters are same as in Fig. 1. 
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structure by the factor F(mk, mk'). The elements F(n, I-') defined by Eq. ( 2:q an· 

symmetrical, F(n,k) = F(k,n), their diagonal elements a.rP unity, F(n.n) =I.and 

they can be easily calculated with the following recurrence formula 

F(n, k) 2 -1 

{ 

( n+k + 1) ✓irn:::1 (l - fa) 
F(n+l,k)= ✓n+l x [✓ir"fl::1(1-:l;)] 

where 

[
n + k + l] 

s =n+k+l-
m 2 ' 

for n + k e\"CII 

for n + k odd 
(28) 

(2!)) 

and [ ... ] in Eq. ( 29) means the integer pa.rt of the bra.ckf'tcd number. TIH' lwh,n·ior 

of the coefficients F(n, k) is illustrated in Fig. 5. Tlw farther a.way we go from the 

diagonal F(n,n) = 1, the smaller are F(n,k), although the rate of df'cay dccrPa.sPs 

as the numbers n, k increase. Knowing the coefficients. F(n, k) we can directly g<"I 

the "classical" phase distribution from the Pegg-Barnett distribution by weighting tlw 

nondiagonal phase elements with their "probabilities" F(n, k). This procedure can 

be considered as an averaging of the Pegg-Barnett phase distribution. Looking at 

Figs. 4 and 5, we may conclude that the averaged phase distributions plotted in polar 
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✓6" 
✓..,,,. 

✓-.? 
✓o 

~ 
..._.q,, 

~ 

.... 
~ 

..::,., ~ 
~ 

..._,b 

FIG. 5. Distribution of the coefficients F( n, k ). 

I(, 

coordinates are quite similar to tlH' rnntour plots of the Q function. The Pegg-Barnett 

phase distribution giws the pictures with much better formed lobes. i. e .. with much 

sharper phase• pea.ks. 

IV. CONCLUSION 

\Ve have discussed phase prop<"rtics of tll<' fic~lds produc·ed by the m-photon 

down conwrtcr with quantum pump. \Ve ha\·c derived the joint phase distribution 

P( Oa, Ob) as well as the marginal phase distribution P( Oa) for the signal mode using 

the Pegg-Barnett phase for111a.lism. TIH'se two phase distributions art• compared t.o tlw 

"classica.1" phase• distributions /~·!,,.,.,( 0,,. Ob) and /~-,"-'"( O") obtai1wd hy int.c•grating the 

CJ functions. It. is shown t.ha.t. t IHTP is a universal relat.ionship lwt.\\·c•e11 t lw '"classical"" 

phase distributions and t.11<' P<·gg-Banwt.1. phase distributions. The fomwr ar<' obtained 

from the latter by an averaging procedmc. This proccdun· is ddi11('(l in tiw papPr. 

. To find the st.a.le evolution we han• used the met.hod of nunwrical diagonalizat.io11 

of the interaction Ilamiltonia.n. which allows us to find the matrix elemcnt.s of the 

evolution operator and, conspqul'nt.ly, the st.ate evolution. All the formulas can be 

expressed in terms of the coeflicicnt.s cmn,k( t) being the matrix elenwnts of the cvolut.ion 

opera.tor. Our cakula.tions are performed for initially rnher<'nt stat.e of the pump mode, 

so we can compare our results to the results obtained, in t.h<" parametric a.pproxima.tion 

(classical a.nd nondcplc·t<•d JllllllJJ), by Brnunst.ein am! (',1n·s. 2.'i Fbr m1n1<-rirnl r<'a.sons 

the mean numbers of phot.011s oft.he pump mod<• we· ta.kl' in our calculations ar<' rat.her 

small. However, for N1, > I, \\"<' oht.a.in t.he result.s VPry similar t.o t.hos<' of Braunskin 

a11d Caves. 25 In co11t.rast. t.o t.h<' pa.rarnd.ric a.pproxi111a.tion, the fully qua11t11m a.pproach 

allows t.o avoid some divergcncirn that appear in t.lw paranwt.ric approximat.ion. 2:l. 2·1 

The phase distribut.ions for the lield produn·d in t.he 111-phot.on down t·om·c·rsion 

process exhibit them-fold syrnm<'l.ry, which is best. \'isualizPd when the rnarginal phase 

distribution P(Oa) is plotted in polar rnordina.t.es. \Ve ha\·<· shown that t.hc ""classirnl'" 
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phase distribution obtained by integrating the Q function is hroaclcr than t.llC' Pegg­

Barnett phase distribution, although in the case of the• 111-photon down com·crsion its 

symmetry, or the peak structure. is the same. 

Them-fold symmetry of the phase distributions nppcars in its most striking form 

at the initial stages of the evolution. The quantum fluctuations of the· p11111p 111ocll' 

lead to spreading out the phase distribution <11 Inter stnges. It li<1s l)('en shown for t )IC' 

90 11 19 two-photon down co11\'ersion - and the second harmonic gc11eratio11 •. · · - that t.lw 

phase distribution changes its character when the first 11rnxi11111111 of the generated ,node 

has been reached. This is a'>sociated with the transition fro111 tlw <lmrn rnm•crsion t.o 

second harmonic generation (or vice versa) regime. So then• is a limit.. impose·d hy t.hc 

quantum pump, on the applicability of the parametric approximation. 
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TaHac:6 p., -rami;or u. 
<Pa3~>B-ble CBOHC,TBa nortett, reHepHpyeMblX 

. B MHOI'O(pOTO}IHOM ,i:J;ayH-KOHBepTepe . ' , : 

E"l 7-91-306 
\ 

. C TO'-IKH 3peHHH cpa30Boro cpopManH3Ma Ilerra-BapHeTTa H3Y-
. qeHbl cpa30Bble CBottdTBa, nonett', reHepnpyeMb!X ,H3° BaKYYMa ·, 

• ' • - ' / ' ( -· • • • ~ ·- ' ✓> ' ' 

B npou,ecce m-cpoTOHHOH . p;ayH-KOHBepcHH .c KBaHTOBOH HaKaq-
KOH •. IlonyqeHbI Bb1pa)KeHHH KaK p;nH coBMecTHoro pacnpe,tieneHHH 
P (0;, 0b), TaK H. p;nH. pac.npep;eneH~H P (0a), p;nH • C:HrHam,HoH . 
MOAbI, .H npo11nmocTp11poBaHbi B cnyqae m = .2; 3 H 4. YcTaHoB-

- . " ' J \ ' ' ' ,' ' ' 

neHa B3aHMOCBH3b Me)Kp;y cpa30BblM pacnpep;eneHHeM Ilerra-Bap-
HeTTa H_ ''Knacctttiec~Ht41

', cpa30BblM, pacnpep;e.rreHHeM > ncinyiteH-,
0 

~- Hb!M HHTe~pHPOBclHI-IeM Q cpyHKU,HH no; pap;HanbHOif 'hepeMeHHOH ./ ", 
. IloKa3aHo, '-ITO ."K~accH~ecKoe", pacnpep;eneHHe clJagb!' nonyqaeT:-i : 
,ci 

1
B p,e3yJibTaTe 'nporieAYPbL ycpep;HeHHH P,ac~pep;eneHHH Ilerra 

BapHeTTa, <KOTopaH 'nprrno,d,HT K'ywHpeHH!O cpa30BOI'O pacnpe,cie-
/ ' . . , ',,' ' ' ' ') ,' .. ·· ,·· ' 

neHHH . C, 

\ Pa6ciT~ BbI~;nHeHa .B J1a6opaTop~H Teope.,Ttt~ecKott <Pli3Hl<H' 
0115Ul • ·· , ·· · ', . ··· , . . . . ' •.•· 
.. · .. IlpenpHHT O6-i.e.o;HHeHHOl"ChiHCTHTyTa H,o;epHbIX ~CC1Ie,lJ,0B8HHH. ny6Ha 1991° 
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,Ta~as· R~, Gantsog\ Ts:< . r • . .• . E11,-9L.:306-;, 
·. Phase 'Properties of, Fields Generatedr 

I' , ' \ / ' 

in Multi-Photon Down Converter . ' I ' , . . . " , . . . . -.. , ./ ._ ,, : . . . : . :. 
Phase prop~rties of. th~ fi~lds generateddf~om 'the va-, 

cuu~ \in the· m-photcm down conversion ~process witti quan- ~ 
• . : . I .. • • . 

turn. pump are studied from the 'point of v;iew ~f the Hermi-
tian phase formalism. The joint phase distribution . 
~(0a, '0b) as .~ell as· the marginal phase distribution : 
P(0a:),.for the_ signal mo.de are derived and illustrated 
graphically .-for ni == 2, 3, and· 4. The relationship = betwee 
these phase distributions and the "classical" dist:ribu-

1 ( - ' ',. '·· . , , , · _ , ,_: / , . - ' 
tioris obtained by 1 integrating the Q function is establi-

• sh~d. It is showri that· the, flclass_ical" phase distri_butio. 
i~ a res_ul_t of an ''a':erc1ging proce,dure _which /leads to .. 

.broadening of the phase distribution.. \ .··. : ' , 

\·, rh·e investigation _has b~en performed :at 'the. L~borator 
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