


I. INTRODUCTION

A two-photon down converter is known to produce optical fields with nonclassical
p‘ropcrties. - 10 1t is essential for the quantum properties of fields generated in the
process that the high-frequency pump photons are split into highly correlated pairs
of lower-frequency signal and idlei' photons. In the simiplest case of a nondepleted
degenerate parametric process, the pump mode is assumed as classical and nondepleted,
and the signal and i(llel‘ modes become one mode of the subharmonic field with half
the frequency of the pump mode. In this case the time evolution of the s'ubharmoui-c
field can be found analytically and is described by a Bogoliubov transformation that
maps the initial vacuum state into an ideal squeezed state. 1- 6 The parametric
down conversion process turned out to be very effec.tive in producing squeezed states
in practice. 11- 16

The states produced by the two-photon down coﬁvertel' have interesting phase prop-
erties studied recently by Vaccaro and Pegg, 17 Schleich, Horowicz and Varro, 18
and Grgnbech-Jensen, Christiansen and Ramanujam 19 for the process with classical
pump and by Gantsog, Tanas and Zawodny 20 for the process with quantum pump.
The phase distribution of such states has two sharp peaks at the initial stages of the
evolution that reflect the two-photon character of the process. If the quantum fluctu-
ations of the pump mode are taken into account the two peaks of the signal mode are
broadened. 20

A generalization of the two-photon down conversion to a multi-photon process has
been initiated by Fisher, Nieto and Sandberg 21 who have found that the vacuum-to-
vacuum matrix elements of the evolution operators for such processes have divergent
Taylor-series expansions in time, and they concluded that it must be something wrong
with these evolution operators. Braunstein and McLachlan 22 have used the Padé

summation technique that improved the convergence of series expansions, and they

performed numerical calculations for the three- and four-photon processes showing




malism of Pegg and Barnett 26- 28 4 describe phase properties of the field. The joint
phase probability distribution P’(0,,0,) as well as the marginal phase distribution P(0,)
for the signal mode are obtained and illustrated graphically for the two-, three-, and
four-photon processes. The multi-peak structure that corresponds to the multiplicity
of the process is revealed in the phase distributions. A comparison is made between
the Pegg-Barnett phase distribution and the “classical” phase distribution obtained
by integrating the ()(«) function over the amplitu(ie. It is shown that the latter is
broader than the former, aud a general relation between the two is established. The
phase distributions are compared to the corresponding @ function pictures to visualize
their symmetry properties for the multi-photon down conversion processes. The ¢uan-
tuin character of the pump mode is accounted for, and the exact quantum mechanical
evolution of the field state is obtained using the method of numerical diagonalization
of the interaction Hamiltonian. For the pump mode being initially in a coherent state
with a not very big mean number of photons this method works very Well, and all
the field characteristics can be obtained in a direct and reliable way. This is par-
ticularly important for the three- and more-photon processes for which there are no
analytical solutions known, and there are some numerical problems in the paramétric

approximation.

II. QUANTUM EVOLUTION OF THE FIELD STATE

The m—photon down conversion process with quantum pump can be described

by the following model Hamiltonian

H=Hy+ H; = Hhwala+ mhwbtd
+hg(bta™ + bat™), (1)
where a (a!) and b (b') are the annihilation (creation) operators of the signal mode at

frequency w and the pump mode at frequency mw, respectively. The coupling constant

g, which is real, describes the coupling between the two modes. The Hamiltonian



(1) is identical for the m—photon down conversion and the mth harmonic generation,
and these are the initial conditions that distinguish between the two processes. In the
case of harmonic generation, mode b is initially in the vacuumn state and mode « is
populated. For the down conversion process considered in this paper, mode & (pump
mode) is initially populated, while mode « (signal mode) is in the vacuum state. The
distinction between the two processes is far from being trivial, and the states gencrated
in the two processes have quite different properties.

Since Hy and H; commute, there are constants of motion: Hy and Hy. I deter-
mines the total energy stored in both modes, which is conserved by-the interaction
H;. This enables us to factor out exp(—iHgt/h) from the evolution operator, in fact

to drop it altogether, and to write the resulting state of the field as

R(1)) = exp(—iHyt/B)(0)- | (2)

where |1(0)) is the initial state of the field. Since the interaction Hamiltonian 11
is not diagonal in the number state basis, to find the state evolution, we apply a
numerical method to diagonalize Hy. Such method was nsed earlier for second harmonic
generation. 29,30

In this paper, we consider the m—photon down conversion process, which may be
considered as a generalization of the parametric down conversion process by account-

ing for the quantum properties of the pump mode. " The Hamiltonian Hg, which is a

constant of motion, implies the conservation of the quantity
(ata) + m(btb) = conit, (3)
and this prevents any exploding solutions. We assume the initial state of the ficld as

[$(0)) = b,10,m), (1)

n=0
where
b, = exp(—lﬂ}z/?,)lialiei"w‘ (5)
V!
4

1]

is the Poissonian weight lactor of the coherent state [4) of the pump mode with 3 =
13]e¢i"t. The state [0.n) = [0)[n) is the product of the Fock states with n photons in
thie pump mode and no photons in the signal mode. That is. we assune the pump
mode as being initially in a colicrent state |3). and the signal niode as being initially
in the vacuuin. With these initial conditions the resulting state ( 2) can be written (in
the interaction picture) as

T

o)) = Z bu Y conilt)lmk.n = k). (6)

n=4 k=0
where the state |mk,n = k) is the state with n— & photons in the pump mode and mk
photouns in the signal mode. The coellicients ¢, £(t) are the matrix elements ol the

evolution operator
Con (1) = (2k.n — klexp(—=ill;1] )]0, n). {7)

and they are calculated numerically by diagonalizing the interaction Hamiltonian. This

allows us to find the evolution of the state ( G).

IIT. PHASE PROPERTIES OF THE FIELD

To study the phase propertics of the field generated in the m—photon down con-
. N 26— 28 - . . .

version process we employ the Pegg-Barnett = lermitian phase formalism to find
the joint phase distribution ’(8,,0,) as well as the marginal phase distribution °(8,)
for the phase of the signal mode. The Pegg-Barnett lormalism is based on introducing
a fiuite (s + 1)—=dimensional space W spanned by the number states {0).]1)....Js). The
Hermitian phase operator operates on this finite space, and alter all necessary expec-
tation values have been calculated in W, the value of s is allowed to tend to infinity. A

complete orthonormal basis ol (s + 1) phase states is defined ou W as

9,) = explind,, )|n). (8)

l L2
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where

2rm

O0pn = O+ —
m 0+S+17

(m=0,1....,%). i (9

The value of gy is arbitrary and defines a particular basis set of (s + 1) mutually

orthogonal phase states. The Hermitian phase operator is defined as

> 00,00 l- (10)
m=0

The phase states ( 8) are eigenstates of the phasc operator ( 10) with the cigenvalues
0, restricted to lie within a phase window between ¢ and 0y 4 27.

The expectation value of the phasc operator ( 10) in a state |47) is given by

(WBldol) = D Onl(Oul), (11)
m=0

where |(0[9)|? gives the probability of being in the phase state }0,,). The density of
phase states is (s + 1)/2x, so in the continuum limit, as s tends to infinity, we can
write Eq. ( 11) as

Go+2m
/ 0P(0)do, (12)

)

(Wldoly) =

where the continuum phase distribution P(0) is introduced by

. s+1 .
P(0) = 51‘_}2 o |(0m|¢>|2* (13)

where 0,, has been replaced by the continuous phase variable 8. Ounce the phase
distribution function P(#) is known, all the quantum mechanical phase expectation
values can be calculated with this function in a classical-like manner by integrating
over §. The choice of 0y defines the particular window of phase values.

In our case of field produced in the m—photon down conversion process with quan-

tum pump, the state of the field ( 6) is in fact a two-mode state, and the phase formalism

must be generalized to the two-mode case. The generalization is straightforward and

obvious, and for the state ( 6) we obtain

Omal O [(@)) = (sa+ 1)V (sp+1)71/?
X3 by Y exp{~i[mkb,, + (7 = B0, ]} Cmna(2).  (14)

n=0 k=0
We use the indices a and b to distinguish between the signal (a) and pump (b) modes.
There is still a freedom of choice in ( 14) of the values of 03°, which define the phase
window. We can choose these values at will, so we take them as

TSa,b

0% = o,y — , 15
(] Pab Sep+ 1 ( )

and we introduce the new phase values
oua,b = 07":1,6 = Pa,bs (16)

where the new phase labels 55 run between the values ;sa_b/Z and s,5/2 with unit
step. This means that we symmetrized the phase windows for the signal and pump
modes with respect to the phases ¢, and ¢y, respectively.

On inserting ( 15) and ( 16) into ( 14), taking the modulus squared of ( 14) and

taking the continuum limit by making the replacement

Sa,b/2 2 -7
™
E — /d&a,b, (17)
Sab + 1 :
Hap=—3qa5/2 ' r

we arrive at the continuous joint probability distribution for the continuous variables

0, and 6,, which has the form

P(8a,05) -

Zb Zcm(t

n=0 k=0

2)2

2

x exp {—i[mkf, + (n — k)0, + k(mp, — ©3)]} (18)

The distribution ( 18) is normalized so as

] ] P(0,,0,)d0,d0, = 1. (19)

-7 =7



To fix the phase windows for 8, and ), we have to assign to ¢, and ¢, particular values.
It is interesting to note that formula ( 18) depends on the phase difference my, — ¢y
only. This reproduces the classical phase relation for the parametric amplifier, and
classically this quantity should be equal to —x/2 to get the amplification of the signal
mode (if the coupling constant g is positive). Such choice means that a peak should
a.ppea..r in the phase distribution at 6, = 0. As it will become clcar later, the phase
distribution for the m—photon down conversion exhibits m—peak structure along the
0, direction, and the choice of the phase window that minimizes the phase variance is
my, — @y = /2 for m even and mep, — @, = —7/2 for m odd. We choose the phase
window following this rule.

The phase distribution P(6,,60,) is shown in Iig. 1 for m =2, 3, and 4. The
m—peak structure of the joint phase distribution is quite evident, and it reflects the
mathematical property: of the function P(0,,8;) which shows periodicity in 0, with
period 27 /m. From the point of view of the pump mode we see only one peak at 0, = 0,
which represents the phase of initially coherent state of the pump mode. For numerical
reasons we use the mean number of photons N, in the pump mode rather small, but
for N, > 1 the multi-peak structure of the distribution is well resolved. For larger N,
the phase peaks become sharper. The symmetry inherent in this phase distribution is
the same as obtained earlier by Braunstein and Caves 25 for the generalized squeezed
states from their study of the @ function and the “classical” phase distribution of the
signal mode. To make the comparison of both approaches more evident, we calculate
the @ function as well as the “classical” phase distribution for our case of the down
converter with quantum pump.

For the two-mode field considered in this paper, we can calculate the two-mode ()

function as

(e, Blo(t)]?
Z b, ZCmnk t){a|mk)(Bln — k)

n=0 k=0

Q(a, B)

2

4

O

v

X n . I |mk ik
1)" C"m_k(t)(3.\([)(-—l(ylz/:Z)_____~_6 imk8,
; LZ_U V(mk)!
B itk
x exp(—=|31%/2 e~itn=ka | 20
exp( ll/) ,-—-(n__k)! (20)
where we have assuined
a=loje®, =3 (21)

Comparing Eqgs. ( 20) and ( 18), one can easily Cll(;Ck that the phase dependence of
Q(a, 3) is exactly the same as in P(0,.0,), when we identify the phases of o and 4 as in
Eq. ( 21) and introduce the reference phases o, and ¢y as in Eq. ( 18). Performing the
integrations over the amplitudes |af and 3] in Jq. (20). we arrive at the “classical”
two-mode phase distribution l{‘,,,s,(ﬂl,.(),,). The term “classical” is used here in the

25
=2 who refer to such a phase measurement as

sense used by Braunstein and Caves,
eflectively “classical”, since the @ function applies to simultancons measnrement of
two noncomnuting observables, a process that inevitably introduces additional noise.

After integrating we have

Paosl0s00) = / / Qe ) ol Bldlold]|

ok ZZ‘* S ()

n.an'=0 k=0 k'=0

X (’xp{—z[m(k ~ 8V + (n— k= n"+ k)0,

+(k = ) (mp — @)} (mbk. k) FP(n — ko — V). (22)

where the reference phases @, and ¢, have been introduced explicitly to be in agrecment
with Eq. ( 18), and we have obtained the extra factors
s (ntk
ref+1
vnlk!

22) that these are the extra factors Flmk,mk') and F(n —

F(n,k) = (23)

It is evident from Eq. (

k,n' k") that distinguish the “classical” phase distribution ( 22) from the Pegg-Barnett



phase distribution ( 18). Our derivation of formula ( 22) is quite general so we expect

it to be applicable to any state of the field with known numnber state decomposition.
It is difficult to illustrate the two-mode @ function givcn. by formula ( 20), since it

is a function of four real variables. If we are interested in the propertics of the signal

mode, however, we can define the Q function for this mode by

Qa) = = [Qapes

’ Lo] n
= Z lan? Z ]cmn.k(t)PI("'“"")IZ
k=0 .

n=0
% n. n
#2Re{ 3 0t 3 3 sl
n>n’ k=0 A'=0

(almk)(a|171L:’)'6n_;,:_k_k: } . (24)

where
| o I mk

V(mk)!

This function (Eq. ( 24)) is illustrated graphically in Fig. 2 for m =2, 3, and 4. The

(almk) = exp(~|al’/2) e, (25)

other parameters are taken the same as those for the phase distributions shown in Fig.
1. The m—fold rotational symmetry of the Q{a) that corresponds to the m—peak
structure of the phase distribution is clearly visible, and it is similar to the results
obtained in the parametric approximation. 22,25 The contour plots of Q(«) shown in
Fig. 3 make the similarity of our results to those of Braunstein and Caves 25 oven
more convincing, although we take different values of the evolution time. To illustrate
the symmetry of the distributions we have chosen the times at the early stages of the
evolution when the joint phase distribution has a clear m—peak structure. It has been
shown that for later times, in the case of both the two-photon down conversion with
quantum pump 20 4nd the second harmonic generation 3L, 32, the phase distribution

goes through a sequence of bifurcations towards a multi-peak structure with more and

more uniform phase distribution.

10

Integrating the joint phase distribution P(6,,0;), or Pe.y(6,,0:), over 05 we get
the marginal phase distribution P(6,), or Pass(0s), of the signal mode phase 0,. We
concentrate on the marginal phase distribution for the signal mode to show explicitly

the difference between the Pegg-Barnett phase distribution P(6,) and the “classical”

phase distribution Pugss(0,). For Puass(0s) we have

n

Pclass(oa) = /Pclnsa(oavob)dob

-7

= / Qelaldlal

- %{1 F2Re Y 05 S i

a>n! - k=0 k'=0

x exp [—i(k — k') (mb, + mp, — o)) 6,1_,.r'k_,;:F(nzk, mk’)}, (26)

where we have introduced the reference phases. ¢, and @, to have the same phase
window as we used for the Pegg-Barnett phase distribution, b, are given by Eq. ( 5).
It is easy to check that the Pegg-Barnett phase distribution P(0,), which is defined as

P(0,) = / P(04,05)d0, (27)

with P(#,,0;) given by Eq. ( 18), can be equivalently obtained from formula ( 26)
by putting F(mk,mk’) = 1. Thus, like in the joint phase probability, the difference
between the Pegg-Barnett and “classical” results consist in the presence of additional
factors F(mk,mk’) defined by Eq. ( 23) in Peass(0a). The polar coordinate plots of
the two functions are shown in Fig. 4, for m =2, 3, and 4. THe difference between two
is quite evident. The “classical” phase disﬁribhtion is broader than the Pegg-Barnett
distribution, although the rotational symmetry, i. e: the peak structure, is the same.
The broadening of the “classical” phase distribution with respect to the quantum Pegg-
Barnett distribution makes the use of the word “classical” more understandable. This

broadening is a result of diminishing of the non-diagonal elements that define the phase

11
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FIG. 1. Plots of the joint phase distribution P(0,,0;) for the states generated in the FIG. 2. Threc-dimensional plots of the @ function Q(a) for the signal mode. The

m-—photon down conversion: (a) m = 2,N, = 4,9t = 0.3; (b) m = 3, N, = 2,9l = parameters are sanic as in Pig. 1.

0.025; (c) m = 4, N, = 2, gt = 0.005.
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FIG. 3. Contour plots of the @ function @(ea) for the signal mode. The parameters

are same as in Fig. 1.
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FIG. 4. Plots of the marginal phase distribution for the signal mode: the Pegg-Barnett
distribution P(6,) (solid line), and the “classical” phase distribution P,,,,(6.) (dashed

line). The parameters are same as in Fig. 1.
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structure by the factor F(mk,mk'). The elements I(n, k) defined by Eq. ( 23) are
symmetrical, F(n,k) = F(k,n), their diagonal elements arc unity, F'(n.n) = 1. and

they can be easily calculated with the following recurrence formula

Fook) [ (541 VRTED (1= %) forn+k even

Fln+1,k) = - (28)
vn+1 [ﬁn:;"l (1- 21_5)]—1 for n + k odd
where
k
sm=n+k+1—[n——t—9—ﬂ}, (29)

and [...] in Eq. ( 29) means the integer part of the bracketed number. The hehavior
of the coefficients I(n, k) is illustrated in Fig. 5. The farther away we go from the
diagonal F(n,n) = 1, the smaller are ['(n,k), although the ratc of decay decreases
as the numbers n, k increase. Knowing the coefficients. F(1, k) we can directly get
the “classical” phase distribution from the Pegg-Barnett distribution by weighting the
nondiagonal phase elements with their “probabilities” F(n, k). This procedure can
be considered as an averaging of the Pegg-Barnett ph&e distribution. Looking at

Figs. 4 and 5, we may conclude that the averaged phase distributions plotted in polar

FIG. 5. Distribution of the coefficients F(n, k).
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coordinales are quile similar Lo the contour plots of the @ function. The Pegg-Barnett
phase distribution gives the pictures with much better formed lobes, i. e.. with much

sharper phase peaks.

IV. CONCLUSION

We have discussed phase properties of the fields produced by the m—photon
down converter with quantum |;1||11]). We lave derived the joint phase distribution
P(0,,0,) as well as the marginal phase distribution P(0,) for the signal mode usixig
the Pegg-Barnett phase formalism. These two phase distributions are compared to the
“classical” phase distributions P..(0,.05) and Pq,,.(0,) obtained by integrating the
() functions. It is shown that there is a universal relationship between the “classical”
phase distributions and the Pegg-Barnett phase distributions. The former are obtained
from the latter by an averaging procedure. This procedure is defined in the paper.

. To lind the state evolution we have used the method of numerical diagonalization
of the interaction llamiltonian, which allows us to find the matrix elements of the
evolution operator and, consequently, the state evolution.  All the formulas can be
expressed in terms of the coeflicients ¢, £(2) being the matrix elements of the evolution
operator. Qur calculations are performed for initially coherent state of the pump mode,
so we can compare our results to the results obtained, in the parametric a,pproxima.t.ion.
(classical and nondepleted pump), by Braunstein and Caves. 25 Jor numerical reasons
the mean numbers of photons of the pump mode we Al.a‘k(' in our calculations arc rather
small. However, for Ny > 1, we obtain the results very similar to those of Braunstein
and Caves. 25l contrast to the parametric approximation, the fully quantuny approach
allows to avoid some divergencies that appear in the parametric approximation. 23. 24

The phase distributions for the field produced in the m~photon down conversion
process exhibit the m—{old symmetry, which is best visualized when the marginal phase

distribution P(0,) is plotted in polar coordinates. We have shown that the “classical”



phase distribution obtained by integrating the @ functiou is broader than the Pegg-
Barnett phase distribution, although in the case of the m—photon down conversion its
symmetry, or the peak structure, is the same.

The m—fold symmetry of the phase distributions appears in its most striking form
at the initial stages of the evolution. The quantum fluctuations of the pump mode
lead to spreading out the phase distribution at later stages. It has been shown lor the
two-photon down conversion 20 and the second harmonic generation 3032 (hat the
phase distribution changes its character when the first maximum of the generated mode
has been reached. This is associated with the transition from the down conversion to

second harmonic generation {or vice versa) regime. So there is a liniit, imposed by the

quantum pump, on the applicability of the parametric approximation.
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' Phase propertles of the f1e1ds generatedufrom the va-

tian phase formallsm.,The JOlnt phase dlstrlbutlon e
P(Oa, Gb) as well as ‘the marg1na1 phase " dlstrlbutlon —
P(oy, ) for the s1gna1 mode are’ der1ved and- 111ustrated
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graphlcally for m = 2, 3, and 4. The relatlonshlp between:fd

‘these" phase d1str1but10ns and the cla551ca1" d15tr1bu-5
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Lol .The" 1nvest1gat10n has. been performed at the Laboratoryfi .
‘ t of Theoret1caerh¥51cs, :




