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1 Introduction 

Properties of displaced number states have recently been studied by de Oliveira et 

al [l],and their interaction with two-level atoms by Kim, de Oliveira and Knight [2]. 

It has been shown that such states have interesting and unusual physical properties. 

Since the displaced number state is obtained from a number state by adding a nonzero 

value to the field amplitude, the state becomes phase dependent because of the phase 

of the displacement. The quasiprobability functions such as the Q function and the 

Wigner function for displaced number states have simple analytical forms which allow 

for clear interpretations of the oscillations in the photon number statistics [1] in terms 

of interference in phase space [3]. The fact that the states are phase dependent makes 

it interesting to study their phase properties which, to our knowledge, has not been 

studied so far. 

This 1s the aim of this Letter to study the phase properties of the displaced number 

states. We use the Pegg-Barnett [4]- [6] Hermitian phase formalism to 'find the phase 

distribution function P( 0) for the displaced number states. It is shown tliat this distri-. 

bution has a multi-peak structure. The Pegg-Barnett phase distribution is compared 

to the phase distributions obtained from the Wigner and Q functions by integrating 

them over the "radius". It is shown that the structures of the latter two distributions 

differ essentially when the number of photons is greater than one. It is also shown that 

the phase distribution obtained from the Wigner function reproduces quite well the 

Pegg-Barnett phase distribution, although it is not identical to it. This is in agreement 

with the area-of-overlap in phase space concept [7]. The distribution obtained from 

the Q function is smoother and some structure is lost. 



-2 Phase distributions 
- ' , ~ " . , 

T)ie displaced numb.er states are defined by acting with the displacement operator 
> f • ,- ' , • ' ' - • ' 

D(a) _o.n _the number state IN), that is . , : -,-' '. ' , 

It/>)= lo, N) = D(o)IN), (1) 

where 

D(a) = exp(aat - a*a) (2) 

The number state decomposition of the displaced number state ( 1) can be wriUen as 

· It/>) = L ln}(nlt/>) = L ln}(nlD((r)IN) 
n· n 

L bnei<Pnln}, (3) 
n 

where for n ~ N 

(
N')1/2 . 

bn = ni" lar-N e-lal2/2 LN-N (lo:12), (4) 

and 

'-Pn = (n - N)r.p (5) 

with r.p being the phase of a = lol exp(ir.p), and L'f.v-N (lo:12) arc associated Laguerre 

polynomials. For n < N, we have 

( 
I). 1/2 

bn = ;·, (-l)N-nlolN-ne-l"l2/2L;;'-n(lol2), (6)_ 

and the phase '-Pn remains the same as ( 5). The above amplitudes are obtained from 
",r." 

the weliknown matrix elements of the displacement operator [8]. 

Kn.owing the number state decomposition ( 3) of the displaced number states, we· 
can employ the Pegg-Barnett [4]- [6] Hermitian-phase formalism to find-the plH1sc dis

tribution function for such states. The Pegg~Barnett formalism is hased OJI introducing 

? finite (s + 1)-dimensional space Ill spanned by the number states IO}, 11), ... , 1$). The 
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Hermitian phase operator operates on this finite space, and after all necessary expec

tation values have been calculated in Ill, the value of s is allowed to tend to infinity. A 

complete orthonormal basis of ( s + 1) phase states is defined on Ill as 

where 

IOm) = _l ~ vsTI ~exp(inOm)ln}, 

Om 
21rm 

Oo + s + l' (m=O,l, ... ,s). 

(7) 

(8) 

'fhc value of 00 is arbitrary and defines a particular basis set of ( s + 1) mutually 

orthogonal phase states. The Hermitian phase operator is defined as 

¢0 = L0ml0m}(Oml• (9) 
m=O 

The phase states ( 7) are eigenstates of the phase operator ( 9) with the eigenvalues 

Om restricted to lie within a phase window between 00 and 00 + 21r. 

The expectation value of the phase operator ( 9) in a state It/>) is given by 

(t/>l¢elt/>} = L Oml(Omlif,}12, • (10) 
m=O 

where l(Om lt/>)12 gives the probability of being in the phase state IOm)- The density of 

phase states is (s + 1)/2~, so in the continuum limit, as s tends to infinity, we ca1i 

write Eq. ( 10) as 

00 +2ir 

Nl4>elt/>) J 0P(O)d0, 

Bo 

where the continuum phase distribution P(O) is introduced by 

P(O) = lim s+ll(Bmlt/>)12, 
s-oo 21r 

(11) 

(12) 

where Om has been replaced by the continuous phase variable 0. When the phase 

distribution function P( 0) is known, all the quantum mechanical phase expectation 
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values can be calculated with this function in a cla5sical-like manner by integrating 

over 0. The choice of Bo ·defines the particular window of phase values. 

In the case of the displaced number states we have 

We choose 00 as to 

1 • 
(Om IV'} = ~- -"'b . y's+l L., nexp[-z(n0m - 1,?n)] 

n=O 
e-iN<p s . 

✓s + l L bnexp[-in(Om _ ip)]. 
n=O 

7[" s 
Oo = ip - s + l' 

( ];1) 

(14) 

that is, we symmetrize the phase window with respect to the phase ip. On inserting 

( 14) into ( 13), taking the modulus squared of ( 13) and taking the conti111111m li111it,wr· 

arrive at the continuous phase probability distrilJ11tion P( 0) which has the for111 

P(O) = ;lT {1 + 2 to bnbkcos[(n - k)O]}, 
n>k 

- . 

(l!'i) 

where bn are given by Eqs. ( 4) and ( 6), and the phase window is now front -7r 

to lT. This form of the phase distribution is common for the partial phase states 

[5, 6). However, due to the particular choice of bn this phase distribution shows some 

interesting features that characterize the displaced number states. 

Another phase distribution can be obtained by integrating I.he Q function Q(n) 

over the radial variable lad- This phase distribution was referred t.o as "classical" hy 

Braunstein and Caves [9] since the Q function applies to sirnulta11eo11s measurement of 

two noncommuting observables, a process _that inevitably introduces additional 11oisc. 

It has been shown by Tanas et al [10] that the phase distribution obtained ii1 this way 

can be obtained from the Pegg-Barnett distribution by multiplying the nondi11.gonal 

elements in E_q. ( 15) by additional factors. Tanas and C:a11tsog [11] have :-d1own that. 

these additional factors F(n, k) can be calculated using a simple 1Tet11-rcncP fornmla. 

and that the nondiagonal clements are less than unity. This 111ca.11s an avcrap;ing 1.}w 

Pegg-Barnett phase distribution lea.ding to the distribution which is hroad<'I' than th<' 
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,l 

Pegg-Banwtt distrihut.io11. W<• han· [10, J l] 

,x, 

PQ(O) j qun1111i11131 
u 

2~ {I+ 2 "to b,A cos[(n :- /.)fJ]F(11. /.:)}. 

n>I.· 

(Hi) 

where I.he coefficients F(n, l,) ar<' gi,·<'n by [10, 11] 

, I' ("tk + I) 
1-(n.k)= ✓nTif . 11!k! 

(I 7) 

Since (J(n) is positive ddinit.c. also /'Q(O) is positin· ddinitP, and nornialized. and it 

ca.11 IH' treakd as a phasC' dist.rihutio11. 

· The concqlt of inlf'rf<'rcncl' in phas1• spacc int.rod11c1·d hy Schleich and \Vhecler [3] 

when applied t.o dcscribc phasl' properties of t.h<' fidd imlical<·s still another possibility 

to get t.he phase dist.ribution [7] hy integrating t.11(' Wigner dist.rihut.ion m-er th<' radial 

variable. Tl1is k·a.ds to the following phase dist rihut ion 

co 

Pw(O) j H'(#)l#kllf:11 
l) 

2~ {I+ 2 .to b,A rns[(n - k)O]G(11. k)} . 
n>k 

( 18) 

where the coefficients G(n, k) are giv<'n hy 

1' 

G(n, k) L (_I y-m2{1n-i•1+2m )/2 

m=O 

xi1( 1
')( q )F(111.J11-/,l+m), 

111 ,,- 'II/. 
( 19) 

where 

JI= min(n, k). q = max(n, k). (20) 

and /•'(m. Jn - kl·+ 111) arl' giv1•11 hy Eq. ( 17). Th<' rncffici<'11ls ( .'(n. 1.-) arc sy1nnwt.ric 

(,'(11, k) = G(k, 11 ), and U(11, 11) = I. HPlat.io11 ( I~) is quit.<' g<'ncral and can IH' applied 
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for any states with known amplitudes bn. Herc, we llSf' it to the displaced 1111mbcr 

states. Since the coefficients G( n, k) take on the values that aw smaller or larger 

than unity, their effect on the phase distribution is 11ot as sirnplc> as in the n1s<' of 

Pq(0). In Fig. 1, we show the plots of the phase distrib11tio11s, calculated according 

to the three formulas (( 15),( 16), and ( 18)), in polar coordi11atcs for tlw displan•d 

number states with lol = 3, and N =0, 1, 2. It is seen that the Pcgg-narnet.t phase 

distribution and Pw(O) arc very similar and have the N + I lobes, while Pq(O) is much 

broader and has only two lobes for N 2'.'. 2. To understand this behaviour of the phase 

distributions we relate them to the forms of the Q function aml the Wigner function 

for the correspondi11g displaced number states. The two functions have in the case of 

the displaced number states ( 1) quite simple analytical forms [l] 

QdN(f3) = !_c-l/J-012 1/3 - ol
2

1V 
7r N! 

(21) 

and 

2 2 N 11 wdN(/3) = -exp(-21/3-nl )(-1) LN(4l;:1-o· ), 
7r 

(22) 

where LN( x) is the Lagueire polynomial of order N. In Fig. 2, we plot the q functions, 

and in ·Fig. 3 the Wigner functions for tlw displaced number states with lc.rl = 3, and 

N =0, 1, 2. The Q function for N 2'.'. I has the minimum for l/1 - nl = 0 equal to 

zero, so there are only two maxima in the phase distribution Pq(O) that correspond to 

the two symmetrically disposed maxima of the area obtained when the Q function is 

intersected by the vertical plane along the radial coordinate. This is the idea of area

of-ovcrlap in phase space [7] employed to the Q function. Since the Wigner function 

shows oscillations, the same idea applied to the vVigner function gives the number of 

peaks in the phase distribution Pw( 0) equal to N + 1. So there is essential difference in 

the phase information carried by Pq(O) and Pw(O). Because of the averaging procedure 

with the "probabilities" F( n, k) some phase information is lost in Pq( 0). The Pegg

Barnett phase distribution is very close to the distribution Pw( 0), although it is not 

identical to it, and at least in the case of the displaced number states; they carry 
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FIG. 1. Polar plots of the phase distributions P(0)·(solid line), Pw(0) (short~dashed _ 

line), and Pq(0) (long-dashed line), for the displaced number states with lc.rl = 3, and 

(a) N = 0, (b) N = 1, (c) N = 2. 
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basically the same phase _i11formatio11. The phase 1waks of /111 -(0) arc slightly 11arrm\·cr 

than those of P( 0). This similarity is in agreement with th<' arca-of-oyerJap i11 phase 

space arguments, where that is the \\Tigner function that represents quantum st.ates in 

the phase space. However, the \\Tigner function can tak<· on 11egatiYc values and the 

positive definiteness of Piv(0) is not automatically guarantc<~d, while there an· 110! sud1 

problems with the Pegg-Barnett phase distribution. 

3 Conclusion 

We have discussed the phase properties of the displaced 11u111ber st.ates showing 

that the Pegg-Barnett phase distribution for such states exhibits the multi-peak st.rnc

ture with N + 1 peaks. We have compared the Pegg-Barnett clistributio11 to the phase 

distributions PQ(0) and P111 (0) obtained by integrating the Q function and the Wigner 

function over the radial coordinate. \Ve have shown that while the Pegg-Barnett and 

Piv(0) distributions carry basically the same phase inforrna.t.ion,the distribution PQ(0) 

has lost an essential part of phase· information. Since the displaced 1111mber st.ates 

are the states for which the Q function and the ·\Vig11cr function differ essentially for 

N 2: 2, they can serve as a good test of various phase approadws. 
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