


1 Introduction

Opti.(ta.lly,in(luced birefringence of an isotropic medium subjected to a strong
optical field is a well known fact [1,2]. Such phenomena like the optical Kerr effect and
self-induced cllipse rotation can be explained without recourse to field quantization. On
the other hand, if a strong optical field propagating through a nonlinear Kerr medium is
treated as a quantum field some new phenomena, like photon antibunching [3]- [3] and
squeezing [6], can appear. Since Kerr media are also considered as suitable candidates
for performiug quantum non-demolition measurements [7, 8], there is growing interest
in revealing those aspects of nonlinear propagation that are directly related to the
quantum properties of the field.

’ The polarization state of light propagating through a nonlinear Kerr medium can be
effectively described in terms of the Stokes parameters. The Stokes parameters, which
are real numbers in the classical deseription of the field, become Hermitian operators in
the quantum description. On having defined the Stokes operators, which are quantum
mechanical observables, one is naturally led to address the problem of quantum fluc-
tuations in these quantities as well as quantum field effects on the polarization state of
the field propagating in a Kerr medium. Quantum fluctuations in the Stokes param-
eters of strong light propagating in an isotropic nonlinear medium have recently been
discussed by Tana$ and Kielich [9], who treated the medium as ideally transparent,
i.e., without losses. Quantum evolution of the field propagating in a Kerr medium has
been also considered by Agarwal and Puri [10]. Quite recently, Chaturvedi and Srini-
vasan [11] using the thermofield dynamics notation have found the exact solution of
the master equation for coupled nonlinear oscillators. This solution can be adopted to
describe propagation of elliptically polarized light in a Kerr medium with dissipation.
An approximate approach based on the Heisenberg-Langevin equations of motion for
the operators of the two coupled nonlinear oscillators was given eaclier by Hordk and
Pefina [12].

In this paper we apply the solution of Chaturvedi and Srinivasan (11] to study
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quantum fluctuations of the Stokes parameters and the polarization state ol strong
light propagating in a nonlinear Kerr medium with dissipation. Even inclnding (lincar)
losses, the exact analytical formulas describing the expectation values and variances of

the Stokes operators are derived. The results obtained in this paper are generalizations

of earlier results by Tana$ and Kielich {9] into the case of a medium with dissipation.

2- The master equation and its solution

Quantum properties of elliptically polarized light propagating in an isotropic non-
linear Kerr medium can be described by the following effective interaction Hamiltonian

[4, 9, 10]
1
Hy = Ehn {afa?‘_ +a'?a® + 4da:_a1_a_a+} , (1)

where ay are the annihilation operators of the circularly right (+) and left {—) polarized
modes both of frequency w, the nonlinear coupling constant « is real and is given by
(4, 9]

R =

V [ 27hw .
7 (W) 2Xzyzy(w) (2)

with V denoting the quantization volume, n(w)— the linear relractive index ol the

medium, X,yzy(w)— the third-order nonlinear susceptibility tensor of the mediumn. The

parameter d in equation (1) is defined by [4] -

2d=1+5ﬂy_(_w_) (3)

Xzyzy\W

and describes the asymmetry of the nonlinear properties of the mediuni. Ritze [5]

has calculated this asymmetry parameter for atoms with a degenerate one-photon

transition obtaining the results

(29 —1D)(2J +3)/[2(2J* + 2J +1)] for J « J transitions
(2J2 + 3)/[2(6J? — 1)]

d= (‘1)

for J & J — 1 transilions

. The coupling between the two modes depends crucially on this asymmetry parameter. '

Il there is no damping in the systen, the interaction Hamiltonian ( 1) can be directly
applied to derive the Ileisenberg equations of motion for the field operators which. after .
replacing the time 1 by —n(w)z/e to deal with the ficld propagation instead of the (ield

in a cavity, have the simple exponential solutions of the forn

ax(7) = exp {iT [(’l:'t(())(li(()) + 2(’(1;(0)(1;(0)] } a4(0), (5)

where
_ n(w)k: .
T = - (6)

To describe the field state evolution the evolution operator 17(7) can be used. which is

given by

-~

U(r) = exp { = [afa'fr + o + -l(](ll(lt_u_(q,] }

= oxp {I-T; [p(ny = D)+ A_(h_ — 1)+ -lt/fz+f)_]} (M)

(8

where we bave introduced the number operators iy = alyay for the two circularly po-
larized modes. If the initial state of the field is a coherent state of elliptically polarized

light onc obtains [10]

7)) = U(r)lag,ao)
= Z I)f:)bff_) ('X|){i(7)+,:+ + gl

wp
T
+135 [ (g — )+ D_(fis — 1) + vl([fl+ﬁ_]}|ﬁ+.ﬂ_). (3)
where
; g |
bﬁi) = (‘xp(—!ni.|2/2)|—‘i\/l:', azx = |og]exp(ivg ) )
ng: -

ay are the amplitudes of the initial coherent states of the two modes. Jag]* ave the
mean nunbers of photons, and 24 are the phases of ag. Propertics of such states have
been discussed by Agarwal and Puri [10]. k

When dissipation is introduced into the system. the state of the lield can no louger

be deseribed by a pure state, like cquation ( 8). and the density operator deseription is



necessary. A standard way of introducing the dissipation into the system is to couple
it to a reservoir of oscillators and after well known steps, to write down a master
equation describing the evolution of the system with dissipation. For the system of
two coupled nonlinear oscillators obtained by the Haimniltonian ( 1), the corresponding

master equation in the interaction picture has the following form [11]

*aa‘? = *]“ -1, 7]
+ Z { ([(l.,’/), af] + [a,-,pa}]) + vitt; [[u.,-.p] ,(L,T] } , (10)
=t

where 7; are the damping constants and 72; are the mean numbers of thermal photons.

The exact solution to the master equation ( 10) has been found by Chaturvedi and
Srinivasan [11]. In this paper we adopt their solution to describe propagation of light
in a Kerr medium with dissipation. We assume that the reservoir is at zero temperature
(n; = 0) and that the field is initially in a coherent state. Moreover, we replace the
time evolution of the density matrix by the coordinate dependence (assumning that the
field propagates along the = coordinate). | This mneans that the damping constants 54
can be interpreted as the absorption coefficients (per unit length) related to the linear

absorption of the medium. With these assumptions the solution to the master equation

( 10), in the number state basis, has the following form

Pmyim_inginn (T) = (my,m_]|p(7)[ny,n-)

_ b(+)b(+)b( )5 exp [-/\2—T(U+ +o-)+ I‘b+'5—(T)]

ny Ym
X exp{i[6+<,9+ +é o + %[6+(J+ + 2do_ — 1)
+6_(o- +2doy — 1)] +A5+,5_(T)]}, (11)

where the bsi) are given by ( 9), and we have introduced the following notation

gy =mg +ng

by =my —ny

A [AY (+) M)+ AL
AP (r) + nn-,mAis’ (r) = A[B§)(r) + B,

()] + 1, nB(+) (7) + 1am B (),

C(13)

20 (4)
K

(

Crn(T) =

Am.n(T) = nm;n

Pan = m+ 2dn, 15)
a2
AEN(r) = —/\l :l -—[1 — exp(—Ar) cos(nm,,.‘r)], 16)
a ' -
B(i) W) = /\lj—lzexp( —A1) sm(r],,l ,.‘r)] (17)
In equatxons ( 11) ( 17) Tis glven by ( 6), a_nd 7 7 o .
A=yfe=y-[r, - o - S (18)

describes the relative (with respect to the’nonlinear coupling «) damping constant
assumed to be the same for. both modes of the field.

The solution ( 11) is exact and desplte the complex1ty of F5+ 5_ (T) and A5+,5 (),
1ts structure is qulte transpaxeut If the1e is no absoxptlon in the medlum, A= 0 both
s, 5. (‘r) and As, 5_ (T) are zero, and the den51ty matrlx factouzes mto components of
the ﬁeld state ( 8) The solutlon (11) wxll be used to calculate the expectatlon values

and variances of the Stokes operators

3 Quantum fluctuations in the Stokes parameters

The changes of the polarization of initially elliptically polarized hght when it
‘pr'o;:)agates through a nonlinear Kerr medium can be easily accounted for with the use
of the Stokes parameters. In quantum treatment of the two-mode field considered in
this paper, the following Hermitian Stokes operators can be‘defined [13]

So=ala, +ala’ o

‘.Slbza‘;a_+‘tzia;h o
R VT"' -1" oA -~ (19)
S2 = —i(ala- —alay) v '

S3.= aT+a+ —ala

where ‘ay (al) are the'annih;la;tiOn‘(creatioh) operators of the two circularly polarized-

modes. If the boson commutation relations are applied for a. and al; it is easy to



check that the Stokes operators themselves satisfy the commutation relations

' [S1,S2] = 2455 ‘and cyclic interchange of indices
[S:;S0) =0, . i=1,2,3.

- (20)

Moreover, we have

51+ 55 + 55 = So(So +2). (21)

The quantum mechanical expectation values of the Stokes operators ( 19) are the Stokes
‘parameters describing the polarization of the light beam. For ellipticzﬂly polarized light

the parameters of the polarization ellipse are given by [9]

tan 20 = (S,)/(51), (22)'

tan 27 = (S3)/(($1) + (52)*)'/%, '
where 0 is the azimuth of the polarization ellipse denoﬁng the angle between the
major \a.xis of the polafizati011 ’ellipé‘e and the z axis, and 7 is the ellipticity pzu'a.mel,ci",
——7r/4 <y <7/ tanr} describes the ratio of the semi-minor axis and the semi-major
axis of the polé.rizé.tion ellipse and the sign defines its handedness (plus indicates right-
handed polarization on the helicity- convention). » ‘

"The degree of polarlzatlon of the field can be defined as

((S3) +(83) + (S3))'"
(S0)

For the initial coherent state of elliptically polarized light the Stokes parameters have

P= (23)

the values
(g, a-|Solayy o) = |y |2+ |ac? = |af?
(a+,a_|Sl|a+,a_) = 2Re(a;a_) = |e|? cos 21 cos 26 24)
Ay, a |5'2|a+,a ) = 2Im(a}a_) = |&|* cos 27 sin 20
anacSolar,an) = ayl? — fa_f? = faf? sin%

where'|a|? is the total mean nuimber of photous. in the field while 0 = (¢_ — p+)/’l

and 7 define the polarization ellipse. The degree of polarization P is in lhis case (‘qual;

i~y

fully polarized field. However, the non~commutabi.]ity.of the Stokes operators puts
well known limits on measurements of the physical quantities representéd by these

operators. For example, according to the commutation relations ( 20), we have the

following Heisenberg uncertainty relation
C({(AS)H(AS)H) 2 |(Sa). )

Quantum fluctuations in the Stokes parameters of light propagating in a Kerr medium
without losses have been discussed by Tanas and Kielich. [9]. In this paper we wish
to generalize those results including dissipation into the system.- The exact solution

( 11) to the master equation enables us to derive exact analytical formulas for the

. expectation values and variances.of the Stokes operators as well as the characteristics

of the field polarization for the medium with dissipatioli. !

The expectation values of the Stokes operators are given by

o

(SO) = E (11 + 777')/’11,171:11,111(7-)
n,m=0
= E (n:—’r m)b(“zbfn 2 exp[~A7(n + m)]
n,m=0 v : .
X exp {(Jag[* + [aZ )1 — exp(A7)]}
= |af’exp(=Ar), . : : : , : : (26)
(S1) = 2Re Z (n 4+ )(m 4+ 1)pumsrmyim(7)
n,m=0
- 2|a+||a_|exp{~Ar FTa(r) ~
+(lay? + |a-?) {(—‘Xp(—)\r).ces[(l - 2(“7’] - I}}
x cos {1 — p_ + (Jas |2 — Ja—)?yexp(—AT)sin[(1 = 2d)7] — A_ly.,(r)}
= |af? cos 2exp {—Ar + [o11(7) + ) {exp(—At) cos[(1 = 2d)r] - 1}}
X cos { — |a]? sin 2y exp(—A7) sin[(1 _ 2d) 7]+ Ay 4(7)} (27)
(52) = 2Im Z 17 + l (777 + 1)/’1; m+1n4l, m( )
n,m=0

= |eaf*cos2yexp {—AT + Uopa7) + |af? {exp(=Ar)¢os[(1 — 2d)r] — 1} }



x sin {20 — |af*sin 2nexp(— A7) sinf(1 = 2d)7] + AL, (1)}, - (28)

oC

(S3) = Z (R~ m)pammm(T) = |af*sin 25 exp(— A7), (29)

n,m=0
where |a|?, 20 = @— — 4, and 7 are the parameters defining initial state of the field; A
describes the dissipation of the medium, and T'_; 1(v) and A_, (7} are given by ( 13)

and ( 14) or (A.3) and (A.4). It is to be kept in mind that ‘the latter two quantities

depend on 7, and that they vanish for A = 0. For A = 0 the results ( 26)-( 29) go over

into the earlier results of Tanas and Kielich {9].

According to ( 22) and ( 23), from ( 26)-( 29) we obtain

tan20(r) = tan:{20 — [af*sin2p exp(—Ar)sin[(1 — 2d)7] + Aoa(7)},  (30)
tan2p(r) = -exp {~la|*{exp(=A7) cos[(1 — 2d)7].— 1}} tan 2, - (31)

Pir) = sin?2n+ cos?2y exp{2|a|2{ex‘p(—Ar) cos[(1 — 2d)r] — 1}
+2F_1,1(T)}. ot (32)

Formulas ( 30)-( 32) are exact quantum expressions describing the evolution of the
polarization state of eliiptically polarized kﬁeld propagating in a Kerr medium with dis-
sipat/ion. It is evident from ( 30)-( 32) (see also the Appendix) that all polarization
parameters depend on 1 — 2d, that is, they crucially depend on the asymmetry pm:am—
eter d of the nonlinear medium. For d = 1/2, i. e for 1/2 & 1/2 transitions, the
polarization state of the field does not change. For the fully sym.m‘etric susceptibility
tensor x(w), d = 1, and there are changes in the polarization of the field. From'( 30)

and (A2) we obtain the following expression describing the rotation of the polarization

ellipse
—ad ) .
277)‘2—_3?&)—5{(1 — 2d)|af*exp(—A7)sin[(1 — 2d)7} -
+A [[cy|2 — |a)? exp(—A7) cos[(1 —~ ‘Zd)r]] }
1 1-2d .
= - §Sln 2ﬂm
A [Sa(0) — Salr) cosf(1 = 24)7]) }, (33)

1
0(r) = 6-— §sin

{( = 24)85(r)sinl(1 — 24)7]

where

Sor)= (S = lafPexp(=Ar), (3)

according to ( 26}.

’ Formula ( 33) is the exact quahtum formula, which evolves in two different
“timescales” (in fact lengthscales): one associated with the nonlinearity of the medium
(), and another ‘one related to the dissipation (Ar). For A = 0, formula (33) repro-
duces the earlier obtained result [9], which is still the quantum result and is periodic
in (1 —2d)r. Only for 7 < 1, when sm[(l — 2d)7r} = (1 — 2d)7, the classical result is
obtained: A;lother limit is A > 1, in which only the term proportional to A in the large
braces contributes if the terms of order A™! are retained. Again, the transition to the -
classical field 1s obtained by taking 7 < 1, i. e., by replacing cos[(1 — 2d)7] with unity.
This gives us the quantity [Sp(0) — So(7)]/A that appears in-the solution of the problem
for the classical field and the medium with dissipation. It is interesting to note that,
despite the fact that this classical ,i‘esult»has been obtained from the quantum formula
under é.sshmption A > 1, putting A = 0 in the resulting formula leads to the same
classical result which is obtained from the first term in the large braces of eq. ( 33) for
A=0and 7 < 1. Thus, the classical result without dissipation can be obtained from
eq. ( 33) in two different ways. For A = 1, the effects of nonlinearity and dissipation
are equally important, and in this case formula ( 33) must be used. in its full form. In
Fig. 1 the evolution of 8(r) is shown for different values of A, n = n/8,d = 1, and
laf? = 0.25,1,4, 16. ,

The ellipticity n(7) given By eq. ( 31} exhibits the r—dependence that is a purely
quantum effect (we have assumed the same absorption for both:circular components of
the field). The exponential does not appear for classical fields. For A = .0, eq. ( 31) goes
over into the earlier result [9]. The evolution of 1](7') is drawn in Fig. 2 for different
values of A\, n = 7/8,d = 1,-and |af* = 0.25,1,4,16.- As it is seen from Fig. 2, the
éllipticity n(r) approaches 7/4 when |af? > 1. ;I‘hi_s means the circular p;)larization
of the field. Thus the quantum ﬂuctuations of the field cause that the field which

remains polarized during the propagation can only be circularly polarized: For A = 0



there is a quantum periodici‘ty of the evolution Which is removed by the dissipatiovn.“
For n = 0, according to ( 31), there is no’change in the ellipticity of the field which
suggests that initially linear polarizafion remains linear during the évolution. "This
is true when speaking about the polarized part of the field. ‘However, one can edsil&
check, using eq.( 32), that in this case the degree of polarization rapidly deeps-to zero,

and :there is no, practically, the polarized part of the field. The degree of polarization

P(r) is plotted in Fig. 3 for n = 0;d =1, and different values of |a|® and Al “The

reduction of the degree of polarization is qﬁite ‘evident, and the dissipation prevents:

therécurrence of the initial degree of polarization. From eq. ( 32) it is séen that there'is-

a lower bound for the degree of polarization equal to |sin 25| This means, for example,

that for 7 = 7/8 taken in-Figs. 1 and 2 the degree of polarization P(7)’ caniiot  fall:

below the value 1/v/2, i. e., the field retains quite a bit of its polarization. ‘For-the

circular polarization the degree of polarization does not change at all. So, the effect of:

quantum field fluctuations is most dramatic when linearly polarized light propagates
thfough an isotropic nonlinear medium. The changes in the degree of polarization for
media without dissipation were discussed earlier [9, 10, 14). We have also discussed
the relation of the Stokes pa.ra.meférs with the phése properties of the field [15].

To study the quantum fluctuations in'the Stokes parameters, we calculate the vari-

ances of the Stokes operators and look at.their behaviour during the evolution. For-

the expectation values of the squares of the Stokes operator we get the relatious-

(512,2) = IEZRC-Z \/(n + 1)(77" + 2)(m + 1)("" + 2)/’n.m+2;ﬂ+2.m(‘r)v

n,m

+ Y (v m ot 2 -

N ﬂ:%lal", cos® 2n exp {Iozl2 [exp(—AT) cos[2(1 — 2d)r] — 1]
—2A1 + I';z,z(T)} cos,{40 — ||? sin 29 exp(—At)

x sin[2(1 = 2d)7] + A—z,z("')}

' +%|a|“ cds>2v?‘.1] éXp(—2X‘r) +al? 'exp(‘—/\.‘r)_, o . (35} ‘

100

(83 = Y (n+m pummm(T)

n,m

= |a|'sin® 2y exp(—2A7) + |a|® exp(—AT). (36)

Formulas ( 35) and ( 36) together with ( 26)-( 29) and ( A.1)-( A.6) allow calculgpiohs
of the variances of the Stokes parameters. The variances are intensity depend;ent, i
e., the quantum noise related with the measurement of the Stokes parameters is also
il}telléity dependent. Howcver, it is rather the relative noisé, or the signal-to-noise ratio,
that are interesting from the experiinental point of view. One can ask the question:
How will the quantum fluctuations of the field affect the signal-to-noise ratio 7 Our
exact- analytical formulas will give immediately the answer -to this question. Let us
define the signal-to-noise ratio for the measurements of the Stokes parameters as

¢Sl

The evolution of the signal-to-noise ratio ( 37) is plotted in Figs. ‘I-7 for vatious sets of

Ri(r) = (i = 1.2.3). (37

the parameters. In Fig. 4 there are plots of Ry (7) for 3 = 0,d = 1,]a|? = 0.25, 1,4, 16,
and (a) A =0, (b) A=0.1. For A = 0,i. e the absence of (lalﬁping in‘the system, the
evolution of the signal-to-noise ratio is periodic. The initial value of the ratio is jo|, as
it should be for the coherent state ja): However, owing to the quantum fluctnations
of the field the ratio rapidly falls down if the ficld is strong. That is, even without
damping in the system, the signal-to-noise ratio deteriorates drastically making the
measurement of (S) less certain. The presence of damping deteriorates the signal-to-
noise ratio still further, as it is scen from Fig. 4.(b), and it removes the periodicity of
the evolution. For the lincar polarization of the initial field, 5 = 0 and siny = 0, and
both (S,) and.{S3) are zecro all the time. That is, the only signal we can measure in
the case of linear.polarization is (Sy).

' For elliptical polarization with 5 = #/8, we liave the situation illustrated in Figs.
5-7, where R,(7), R2(7), and I4(7) are plotted for 3 = x/8 and all other parameters
being the same as in Fig.: 4. The signal-to-noise ratio I2,(7) is lower initially than for

linear polarization, it is now |a}] cos 2y} instead of laf, there are some oscillations at
]

11
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FIG. 1. Evolution of the azimuth 0(r) for n = x/8. The other parameters are taken

the same for all the figures, and they are: d = 1, la|?> = 0.25 (dotted line), 1 (délshed
line), 4 (dashed:-dotted line), 16 (solid line). Figul'e (a) is for A = 0, and (b) for A = 0.1
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the initial stages of the evolution if the field is strong, but deterioration of the ratio
owing to quantum fluctuations and dissipation is evident. The ratio Ra(7), shown in
Fig. 6, grows up initially indicating the conjugate character of S, with respect to S,
as one could expect from the commutation relation ( 20) and the uncertainty relation
( 25). However, at later times quantum fluctuations of the field deteriorate this ratio
as well. Of course, the dissipation still worsens the situation.

The behaviour of Rs(r) is different: if there is no damping I3(7) is constant and
equal to |a||sin 2y}, and it is damped when A # 0. This is shown in F-ig. 7. So, the
quantum fluctuations of the field do not deteriorate the precision of measurement. of the
Stokes parameter (S3). This can be explained by the fact that this Stokes parameter
describes the circularly polarized part of the field which is not alfected during the
propagation in the isotropic nonlinear medium. The ouly cvolution is the result of
the linear damping of the field. The quantum character of the field propagating in an

isotropic Kerr medium manifests itself most strongly when the field is linearly polarized.

4 Conclusion

We have considered the quantum field of elliptical polarization propagating in an
isotropic, nonlinear Kerr medium with dissipation finding the exact analytical formnla.§
describing the evolution of the Stokes parameters, which define the polarization of
the field, and the evolution of their variances,” which describe guantum fuctuations
in the Stokes parameters. We have applied-the exact solution ol the master equation
obtained recently by Chaturvedi and Srinivasan [11] to find the evolution of the Stokes
parameters and their variances. The quantum character of the flield alfects essentially
the polarization of light propagating in the medium. In case of lincar polarization
there is a rapid decrease of the degree of polarization. For the elliptical polarization
there is a lower bound for the degree of polarization equal to |sin2y|, which mecans
that the circular polarization remains unchanged during the evolution. The results for

the azimuth of the polarization cllipse, its ellipticity, aud the degree of polarization are

14

illustrated graphically for various sets of parameters. There are quantum effects that
can be fonnd in the evolution of these quantities despite the fact that they are defined -
by the expectation values of the Stokes operators that are linear in inteusity.

The quantum noise of the Stokes parameters of light propagating in a Kerr medium
is discussed in detail. The evolution of the signal-to-noise ratio for the measurements
of the Stokes parameters is studied. It is shown that quantumn fluctuations of the
strong field drastically deteriorate the signal-to-noise ratio for the measurements of the
Stokes parameters (S)) and (9,) related with the lincar polarization of the field. The
parameter (S3), related to the circular polarization of the field. is not alfected by the
quantum fluctuations. As one ("()ul(l expect. the dissipation in the system lowers the
signal-to-noise ratio in any case. Our exact fornm]as.t.lml. inclinde lincar damping allow
for the quantitative assessment ol its destructive role in the quantum evolution of the

field.

- Appendix

For convenience, in this Appendix we write down the explicit expressions for

I a(7) and A, ,(7) needed for our calculations in this paper. Let us deline the quan-

tities
; Jo2A ) :
flk(T) = m (l - (‘Xl)(——/\T) ('()S[In'( I — 2(’)]) (.\l)
, Jo]2A ) o .
Bi(r) = ——r————cxp(=A7)sinfk(1 ~ 2d)]. (A.2)

A2 4 {k(1 = 2d))?
Using ( A.1) and ( A.2), from the general expressions ( 13)-( 17). we can derive the

lollowing relations:

Poa(r) = AAy(r)+ (1= 20)Bi(7), (A.3)
A_ia(r) = sin2g[=(1 =2d)A(7) + A (7)) (AA4)
Poaa(r) = Au(r) +2(1 — 2d) By( 7). (A.5)
A_ya(7) = sin2p{=2(1 — 2d)As(7) + ABs(7)]. (A.6)
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KBaHTOBMe @nyKTyaunn napameTpoa CToxcak o
LA CBeTa, pacnpOCTpaHHmmePOCH B ﬂqeuxe s
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ﬂnﬂ CBeTa, paCHpOCTpaHﬂmmeFOCH B ﬂqenxe Keppa C nnccu— B

nauueu, nonyqum ‘TOYHble aHanuanecKne Bmpameﬂuﬂ, onucmna—ﬁy
mmue ssonmuum cpeanx 3Haqennu U nncnepcneu OHepaTODOB :
HoxasaHo,'qTo KBaHTOBme mnyKTyaunn HOHH cymeCT—Uf

BeHHo BosmymamT nonapnsaunm TIOJIA . Honyqeﬂm u nponnnchpu—"
poBaHm rpamuqecxu HBHME KBaHTOBue COOTHomeHHH, onucuBam—“

'mne Kak HaKHOH H snananHOCTb nonapnsaﬂnonﬂoro snnnnca,r

(“Tyauuu napameTpOB CTcha,jg -
”nmuun OTHomeHHe CHFHaHa K myMy nonmno COKpamaTbCH KBaHTo—jV ’

”’Be 'TOYHOTO’ aHannanecxoro pemeHus , e A ce
PaGOTa anonHeHa B Ha6opaTopuu Teopeanecxou mnsnxn w SR

‘TaK, CTeHeHb nonﬂpusaunn OocymnamTca KBaHTOBme ¢nyx-'
noKasaHo,

BMMH ¢nyKTyauuHMH SIBHO . nokasaHa - pOHb nuccnnauun Ha OCHO— S
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‘ ,Quantum Fluctuations 1n ‘the Stokes
\9Parameters of nght Propagat1ng
*1n a Kerr Med1um w1th D1ss1pat10n

0 E17-91-304

Exact analyt1cal expres51ons descr1b1ng the evolutlon\,

f;of the expectatlon values and the variances -of the Stokes S
foperators are’ der1ved for ‘the’ e111pt1cally polarlzed
"11ght propagatlng in-a Kerr’ medium with d1ss1pat10n. It
’is:shown that_ quantum fluctuatlons of the field essentla—
: '1ly affect the: polarlzatlon of ‘the. f1eld The exp11c1t
fquantum formulas descr1b1ng the- a21muth and the. elllptl—\ o
| city of the polar1zatlon ellipse as’ well ‘as the degree ,l»f"”
fof polarlzatlon are der1ved and 111ustrated graphlcally.
”Quantum fluctuatlons in the Stokes parameters are dlscus?
'sed,

“and; the evolutlon of; the: 51gnal to-noise ratlo is-

‘shown to" ‘be | .reduced. by the quantum field fluctuatlons.rﬁ“

dxeofﬁTheoretlcal Phy51cs, JINR j;,,g'h'

‘:fRole of the d15$1patlon is shown exp11c1tly in'a fully
‘lquantltatlve way . from the exact analyt1ca1 solutlons.
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