


1. INTRODUCTION

Reliable information on thermodynamic properties of vari.
ous matters used in industry is the basis for developing & more
elaborate equipment in chemiea] and oil industry, mechanical
engineering, energetics and others. Moreover, developing and
Promoting of efficient methods of mathematical simulating and
aystems of automatic design of different Processes increase
the necessity of using computer Programs for caleculations, As
& source of iuformation on thermodynamic properties not the
tables obtained from experimental and calculational gtudies are .

used with increased frequency but the computer programs provid-

ing calculations with high accuracy and minimal computer time
consuming. The computer progrem realises an algorithm baged

oh a certain mathermaticel model describing the laws of be-
haviour of real matters ang their mixtures in a one-phase state

and in the region of phese transitions liquid-solid state.



Modern staiug of the statistigal rhysics cpens new poggi-
bilities for chocsing various approaches in simuleting the
matier state, However, it ig obvious that, for instance, the
Rethod besed on the solution of en integral equation for the
radial digtribution function with a subsequent derivation of
the state equation ig inapplicable due to large computer time
consuming., Almost all the avallable approaches do not admit g
consistent description of the liquid-gsolig gtate phase trangi-
tion. To g great extent the problem ig complicated in naking

an attempt to simulate an interaction of nonspherical noleculea,

To gimulate g condenged Ftate the most universal are thought
to be the Monte-Carlo and molecular dynamics methods. They
enable one to achieve & qualitative degecription of nll gpecific
features of a bhase diugrum, Here, one can conaistently simu-
late the interaction of various molecules (of water, polymers,
ete) in various state regionsa. In particular, the state equation
tan be calculnted in the region of liguid-golid state phase

transition in the binary system and ig considered inVSgc.i.

In simulating mixtures of any molecules the methody of
computer simulation have na basic limitationg. However, their
direct application in practice ig hardly possible due to g

large computer—~time consuming,

At the same time, there are a great many empiricsl ang

Semiempirical state equationg approximating sets of trial data



for various stete branches. EBquations of the van der Waalg-
type and the virial equation underlie these approximations.,
Therefore, they offer certain exirapolation poasibilities,
However, these models fail to describe the behaviour of the
matter in the region of the liguid-golid state phase tranai-
tion since in the mathematical structure the transition ig

not itaken into account by any means., Introduction of additional
terms into the state equation in order to describe one more

van der Waals loop for the ,D:f'[l/} 7) dependence is not Justi-
fied. A9 is shown in ref.1J, one can hardly expect Uy progress
in calculating the phase transition Paremeters in the case

when each phase is described by its equation allowing for only
one class of configurations: cryatalline snd liquid. More sen—
sible is a simultaneous inelusion of various gtates on the bagis
of a unique equation. However, one camnot edvence along this
line without a clear differentiation of configurations defining
condenped stateg. Unfortunately, there is o universally accept-
ed criterion to make a constraint. In ref.1) a possible separa-
tion of the classes of states is demonstrated uging the distri-
bution function in the energy space where this distinction
amounts to several per cent. Therefore, it becomes elean why
this divisior ig imposgible on the basis of the radial function
in the coordinate space where it is one order of magnitude less
(in defining the bPosition of the bagic maximum),

In calculeting thermodynami e properties the most optimal
is thought to be a combination of the methods of computer simu-
lation allowing one %o reveal the basic lawﬁ of the behaviour
of the matter with the methods of constructing the approximat-

ing state equationa,



2. MODEL SYSTEMS IN THE MONTE-CARLO METHOD

The efficiency of the calculational method of thermodyna~
mic properties, determination of the phase transition Parameters,
manifests iteelf, as a rule, in studying the bahaviour of the
many-particle model systems. Most gimple but rather egsential
are the systems of harg particles {spheres, discs, ete.) and of
particles interacting by the Lemnerd-Jdones 1aw, For both the
systema the whole rhase diagram ig investigated. Both the ays-
tens caen be used ag the trial ones while passing to real metters
through corrections by the methody of Perturbation theory or
through the introduction of the So-called effective potentials,

The basic result of the computer methods of simulsetion
is the proof of & Pbossible deseripiion of the liquid-solig
state transition, It ig also shown that the difference between
the condensed pheses is diffieult to reveal, especielly in the
coordinate spece. The fact that there im g difference in the
values of the energy cheracteristies (energy ettraction and
Tepulaion of the Lennard-Jones particles) cannot unfortunately
allow one to formulate g clean-cut criterion of a bhage transi-
tion. It can be expleined by the changes both in the firat co-
ordinate sphere and in the subsequent ones1’2).

Asg fdr pPrectical applications, one of the basic problems
is the absence of recommendetions on Propageting the methods
for describing mixtures. There are no Papers on a direct celeu-
leticn of the state equation for mixture in the region or phase
transitions. As 8 rule, the caleculations sre made of the exceas

thermodynami ¢ functions in the one~phase state. The comparison



With experimental data for matters close to the propertiss of

the Lennard-Jones fluid is satisfactory. Similar results have
been obteined within the theories where the mixture is simulated
by an individual matter with average characteristic parametersBJ°
Bowever, it is obvious that in the cases when melecules of the
matter in the mixture differ esgentially its description on

the bagis of averaging of this type leads to unsatisfactory
regults, which is especially obvious in determining the rhase
transition coordinastes,

Now we consider how the results4) change for the model of
the argon+krypton mixture of different compositions. The model
ies a mixture of particles interacting through the Lennard-Johns
Potential, The ratio of the energy parameters 6;’/4£4¢ =1,335
&nd of the scale parameters 070:4,‘ = 1.075. The interaction
of molecules of different types was determined by the paramecters
of the same potential, G:QQ_K,’:Q-”';O}’ and (%t__h_"@;'cﬁt The

basic cell was chosen asg a face~centered cubic lattice; the

particles of both the types were not mixed in this cese. The
computer experiments were rerformed for three compositions
(25%, 50% and 75% component). An additional difficulty in com-
pPorison with the simlation of a pure matter4) wasg the deter~
mination of the initial velues of the attraction (4) and re-
pulsion (R) energies. The table gives their values for the ra-

dius of the potential cut-off RL =§2{: where Z{ is the edge
of the bagic cell,



Table

Initisl values of the atiraction and repulsion energies
and the number of generated chains for verious compositions
of the LD mixture simulating the argon-krypton mixture

Mole fraction

of argon Ao 8‘, N
1.00 6.046875 12,7500 16
Q.75 T.448742 14,25957 19
0.5 9.044937 16.29419 27
0.25 10.64158 18.33363 21

The change of the A and A barameters wasg investigeted in
the limits Am 5/4 5/4)‘!1 7"414) Bn -{5 55’]*43 where
AA-o.01, 412m £/2 anda AB = o0.14, 1 < n < 3o, The
optimal values of m o, on o, /4 and AB were chosen empi-
rically. The choice criterion was the completeness of the cell
Tilling (Am end 5,,' ) reliable from the statistical viewpoint
anld sufficient for further calculations, Each generated chain
contained 128000 configurationg.
The MC calculations Provided the histograms determining
the mumber of stetes with different values oz A ang & .
According 1o them, simple calculations gave the dependences
P = PIVT) and the aistrivution functions of the most probab-
le values of /f and B that can serve &s an analog of the
radial distribution function in the energy space. The isoterms
calculated for the bPure matter and mixtures are represented in
Fig. }Dinathe given coordinetes: &= A‘b—/cs,4¢ s CF %—22 and
7= P
_Q(A}ﬁie))veraus A while the reduced density changes from
ma
T = 1.25 (Qiquid atate) to T = 1,12 (solid stats).

«» Fig. 2 shows the tross section of the surface



Separation of the liquidus and golidus lines by integratiné
OvVer energies furned out to be a more difficult task for the
mixtures than for the pure matter, Therefore, the temperature~
composition dimgram for the fixed pressure J/ = 11.08 ghould
be considered approximate (Fige 3). At the seme time, the spe-
cific volume -of the mixture up to the line of hardening is

very close to the value defined ag

Kn = Xae 1:/4?_ * Xey' Wy
which is in agreement with experimental data: g sz'* 0 with
increasing pressure5).

However, these results do not allow one to make any Bsaump-
tionsg &3 to the transition mechaniam, 4o determine rather Pre~
c¢isely the limit of existence of s homogeneous Phase. This phe-
homenon can be explained by the "softness" of the Lennard-dehng
potential,

It is most probabie that the transition from the liquid
state into the crystalline one isg moatly due to the interag—
tion of the harg tored of molecules - their repulsion. The re-
pulsion slightly maniferséing itself in the condensation at the
critical point Plays a crucial role in the structure formation
in the many-particle system, Probably, the formation of a hard
phege at sufficiently low temperatures ig smoothed out by the
effect of a still gtrong atiraction of particles, Therefore,
the pattern of the liquid~-crystal trangition in the Lennard-
dJobns model is amoothed out,

In the light of the afore-said the atudy of cryatallisa-

tion in the harg particle system ig of particular interest,



Investigations of certain models for these SystemsG-g) denion-
strated their principel importance for the development of the
statistical physics. The hard particle model admitting an exact
sclution in the one-dimensional case was known to be used for
verifying variocus theories. In perticular, beceuse of the simp-
licity of the potential interaction function for solving integ~
ral equations for the radiel distribution funetion., However,
since various approaches of the 8tatistical physice asre based
on ithe assumptions of the interaction smallness, g Possibility
of expanding the fumetions over the interaection energy paraneter
in a power Series and the decisive contribution of binary inte-
ractions 8re a priori inaspplicable +o the hard particle
model, On the contrary, in this case an infinitely gtrong in-
teraction takes place 2t a certain distance. At the same time,
under a sirong compression this system of particles behaves asg
cluster in which a multiparticle interaction cannot be neglected,
Undoubtedly, the theory aspiring io Success in describing "go-
1id" liquid, the Process of hardening, should have a possibili-
ty of describing the bebhaviour of the hard particle system as g
atarting point of investigation. Here, the problems of space
geometry, the package and &rrangement of particles, are brought
to the fore, i.e., the methematical basis in this case in the
theory of geometric probabilities. Thig fact has first been
Pointed out by Bernals). The random dense backage introduced

by Bernal ig tremteq as 8 model for liquid. The difference bet-
Wween the density of e backage of thig type founa by Bernal ang
the density of the ordered package corresponda approximately

to the difference of the dengities of liquid and hard phases




of noble gases., The Properties of the random dense package and
its structure were studied in detail in many papers in order to
reveal differences from the regular structure. However, prac-
tical results were not obtained. A%t the fame -time, investiga-
tions in the framework of the HMonte-Carlo method have showm
that the density of the Bernel model does not determine the
density of liquid in the Process of hardening7). Obviously
here the situation described above tukes blace as well: s
small resolving power of the method based on the gtudy of the
particle distribution in the coordinate space around a randomly
chiosen particle., It isg to be mentioned that the basie¢ resulis
in the Bernal model were obtained by an experimental realisa-
tion of random densely packed structures.

The most dense random package is not yet strictly defined;
therefore, theoretical investigations by the computer simula-
tion provide embiguous results., It ig clear that in a densge
Package particles touch each other., At the seme time one dig
not succeed in introducing geometrical probubilities as yet,

As regards the theory of geometrical probabilities in the con-
sidered case the distances between the points, angular digtri-
bution of the nearest neighbours around the central particle,

are thought to be random elements, However, it ig difficult

to chooge unambiguously the Probability measure of these ele-
ments in the two- and three-dimensional space10’11). If the

whole variety of configurations is made discrete with the basgic
Properties of the podel preserved, one can obitain rigorous estim

mates.



In refs.8’9) the models have been considered in which the
use was made of an examct 8olution for the one-dimensiongl system
of hard perticlesg end in the second degree of freedom a discrete
distribution is intioduced instead of the continuous one, Thig
Provides =a pOSSibilityOflming combinatorial methods, which gim-
plifies the Problem censiderably, At the same time, the model
breserves the basgic broperty of the system of hard diges (or
sphereg). The degree of & maximelly possible cempression of the
nodel is determined by a mutual arrangement of particles,

The basic resultg of the investigation of the state equa-—
tion of the modelss'g) are the Tfollowing. The density of the
random densely packed gtructure is a random quantity but not g
fixed one &g in ref.s). It is distributed by the CGauss law
around the mean value of Lé « If the value of the system density
equals this mean value, then one can observe a sharp turn on
the isoterm, It cean naturally be identified with the ligquid-
solid state transition, By anelogy with the Bernal model the value
of the density of the random dense backage should correspond
to the bending Point on the isoterm (Fig. 4).

As Will be seen further, a large role in constructing
the state equation ig Played not only by the value of this cri-
tical density but also by the index of in the Gauss Tunction

-Qxf[-a( (V.- Wywhich defines the distribution,

It has been attempted in ref.12) to calculate these quan-

tions.With this one can unembiguously obtain the gtatistical aum,

10



and consequently, the stq.'t:e equation. The scheme of reasoning
underlying the approach developed in refs.e’g'm) is the fol-
lowing.,

The ensemble of states of the meny~particle system which
will be used for calculating macroquantities can be represented
as a get of topologically ordered systema, i.e., ‘the gystems in
which & sequence of particle coordinetes does not change under
compression or expangion of the system volume V « In the topo-
logically ordered system the number of ABcceadsible states is
proportional to (|- lé)ywhere lé is the condensate volume,
i.e. of such a state of the system of /f barticles when none of
the particles can be shifted without changing the position of
its nearest neighbours, The condensate is an anglog of the ran-
dom densely packed structure. Of the largeat density is the con-
densate that is & hexagonal regular backage (on the gurface)
or a face-centered one (in the three-dimensionsl space). The
configuration in the volume V can be formed by successive
trangpositions of particles without violating their topological
order from the condemsate of the volume ]é < 4 o Consequently,
the formation Probability of a configuration is Droportional to
_Q[‘d K-)‘(V-' l{: )": where _0/16 Vc) is the formation proballyi.li-
ty of a condensate of the volume Ié . _Q/V; lé)——zoﬂé)/p/‘/’/l{)/{',
where /Dﬂé) is the distribution function of the conden%ate
density, and Vq: iz the volume of a crystalline condensste,
The function L [{._) is the Gauss function with the centre
Vc = Wz i therefore, it is obvious that _Q(-Pj Jé) at Ié) ‘é
end 2(v, Vc) increases sharply at V;_ < lé (the contribution
of the configurations close to a regular package increamessg).
This specific feature of the function P/Jé) manifests itself
in calculating the state equation (Fig. 4),
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The criterion of a bhase transition under such a conside-
ration i$ formulated as follows. Under the compression of the
gystem a liquid siste exlsts aa long as the volume of the system
is larger than the volume of the most probable random denge
package. This can be realised only in the metastable region,
Purther compression leads to the Tearrangement of & condensate
with increasing role of the states close 1o & regular lattice,

In the usual cage the transition parameters are determi-—
bed on the basis of the Maxwell rule, It is seen that the densi-
ty of the Bernal package is larger than the liquiq density and
less then the solig stete density.in the phase transition. Ii
has been ghown in refo12) that the curve of the state equation
is symmetric at the pointa }>=/21 y U Vé with respect to the
veriical passing through the point ké .

Now let us consider one of the most widely spread state

equations - the van der Weals equation

LT a4
/D ‘f;::{j -;Ef (1)

It is known that the first term of the equation aliows for the
Tepulsion while the second term for the attraction between the
molecules, The firat ferm is Specific of more complex and exact
equations obtained in13). By the equality‘é” We Dean & minimally
Possible volume of the system of hard spheres14). However, it

is obvious that for the liquigd this role gshouilgd be played by

the volume of the mogst brobable condensate ang .J' o The pres-
Sure should tend to infinity in the S0lid phase not Specifiec

of the liquid state, In rer, 12} the condensate volume is deter-

mined from the condition of maximum Production _[Zﬁj lrc’)

12



. ,QXID{:O( /l/c - V@) ’-/ Then, for the liquid state region

RT 4 & (2)
P 2 2 2 ) VZI//Z
V- Ve {L—_V?/!f ;/.)2 v .
z (77 "XE
The state equation obtained (2) can immediately include the har-
. . 4

dening line,where V:'z"'gﬁ)and A~ /e/%,where ff’ and l{ are
the coordinates of the phase transition points.

To use (2) for practical caleulations one should determi=
ne L@ and o . For pure maiters one can use the procedure
degscribed in refs.15’16) where the parameters of the state equa-
tion are calculated in the Process of optimization. The best
agreement of celculations with experimental datas on thermodynemic
Properiies of pure matters is the best criterion of optimisation.
However, this rossibility does not eliminate the pProblems one
encounters in extending eq.(2) to mixtures.

It would be most consistent to determine the density of
the Bernal package for each gliven mixture, However, taking account
of both the prinecipal difficulties of the method, mentioned
above, and purely technical ones, arising due to the inclusion
of & small number of particles12), one cannot admit this way

to be optimal. At the same time, the result56’12) indicate that

the volume of one Particle obeys the Gauss~type distribution,
The particle volume in this case is the volume of a polygon

(or polyhedron) of Voronej, which is formed by perpendiculars
erected from the midpoint of intercepts connecting the central
and peighbouring particles. The volume of such & polygon is just
the effective rarticle volume. To the point, each of the topolo=-

gically ordered System can be répresented mg g syatem of the

13



Voronoj polygons (mosaic) shifting under the volume expansion
without rotations and change of relative arrangement in the
Space. The particles alweys touch by the same edges. It is nee
tural to assume that in realising a random process with a correct=
ly given probability messure the effective particle volume in

& random package can he determined by similaiing only its nea~
rest neighbourhood. In perticular, in the two~dimensional apece
& particle mey interact with 4-6 particles. The interaction in
this case is asgumed 23 the influence on the form of the Voronoj
Polygon (number of edges ), ConSequently, & large number of ex-
Periments Tequiring a smell time consuming could rather aceu-
rately estimate one of the most important paremeterg of the
state equation., Thigs concerns both the pure matter and mixtures
with any composition.

To fulfill the bagic broperty of a dense package (conden-
sate), each partiele should touch directly at least four neigh-
bours. Fourefive particles of fhe first coordination Sphere
can have coordinates {angles given as random numbers ) uniformly
distributed in the interval (0,257). The mein Problem is %o
occupy the second coordination sphere, Here, the following
varients sre pogsible: the firgt when the particles AYe Arran-
ged maximally close tg a chosen centre touching simultaneously
two particles of the firat sphere (Fig, 5a), and the 8econd when
the second sphere ig occupied by random pairs (Fig. 5b).

It turned out that in the Piragt case the mean volume of the
pPrincipal cell (the Voronej polygon) is Several per cent larger
than in an absolutely correct lattice, In the Second case, we

have obiained for this volume g value approximately equal {o the

14



mean one (2% less) obtained in ref, 127 for a system of ~ 100
particles. Taking into account that in ref.12) the particles of
the firsgt sphere had, due to the imposed "erystallinity®, an
effective volume somewhet less then the mean one, then this
coincidence indicates that configurations of the type shown in
Fig. 5b are typical of the most probable random condensate,
Though particles in ref.12) were added so that each particle
touched simultanecusly the two other partiecles, a stochastic
neture of the process menifested itself in choosing one conti-
nuetion out of several possible ones.

For the mixture one cam calculate the effective volume
of a particle ofany kind., The environment of the particle is of
the"i"th kind and turns out to be proportional to the mole portion X; of
particles of the givenm kind in the mixture. Assuming the uni-

formity of filling, for the effective ]{ volume we get the eg-

((55 gy

where (. and 07 are the diameters of the “iMth and “jmth

timate

particles and 44d is the meximal number of particles of the

"3"th kind around the "i"th particle. For 4.; in ref, 17) for

Y
hard spheres the following estimate has been obtained;

Y. [%)” )

Then, for the averaged effective volume of a molecule in the
mizture we have
3

— 4{577#01
Vol Eu(E) Fyl @
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The relation (4) gives for-(V?ny,values more close to the volume

typical of the largest particles than the meen ones over

" G re]”
= Z ____“:.____d- (5)
. /9}/' :

The difference is more essential the larger is the difference
between the diemeters of molecules of the components. Phis isg
in agreement with the fact that in the mixture of effective
Spheres the effective gize of particles of 8 smaller gize is
always larger than the Proper size. For the most-used relationg
ECTV (’1.1 the calculetions showed that the specific volume
of & condensate can be calculated by the linear relaetion
(V)m';‘,.=gx[ }{ » Which coincides with the results obtained
within the Monte - Carle method. For the mixture of hard par-
ticles with similar dimersions relstiong (4} and (5) give equive-
lent results. At 6:%—_)1 the distribution function <V> hag
hot ome sharp but sevgral Smeared extrema, which dees not allow

one to estimate (V') unambiguousiy,
ax,

3. CALCULATION OF THERMODYNAMT CAT, FROPERTIES

Versal methods used for calculating thermedynamical Properties
&nd the parameters of phase equilibriumsg is the method of the
state equation., As a rule, the mathematical Structures are ob-
taineq elpirically by @nalysing the available eXperimental dgtg
on the pressure of saturated vapor, density in the liquid eng

Vapor phasge, ete. Especially, this concerns the dependence of

16



the state equation coefficients on temperature. The dependence
on the density is chosen either in the form of the van der Weals
structure or the equation (BVR)18). The first is based on the
particle impemetrability model; and the Hecond, on the expansion
of the statistical sum over the dengity powers. At present,
these approaches are being developed by determining the depen-—
dence of the state equation coefficients on temperature. It is
to be emphesized that in the olaboration of the so-called few-
constant equatiohs {of the van der Waals equation) the main
problen is a more mccurate description of the experimental

data on phase equilibriums in the mixture, whereas in the
congtruction of many-constant equations (of the BVR-type) the
problem of exact calculation of the thermodyneamical Properties
of mixtures is solved by adding new terms. It is obvious thet

in the first cese the purpose is justified since in the technolo-
gical programs & rapid and exact calculation of the phage equi=-
librium paremeters is very important for calculating the equip-
ment. Since in determining these paremeters the chemical poten—
tials of components (the volatility coefficients) are calculated,
i.e., the integral quantities, inaccuracies in the state equa-
tion are not so strongly reflected. However, the gain in time
and simplicity of programming computer operations is esgential,
Investigations devoted to the modification of meny constant
state equations are based on a natural essumption that with in-
¢reasing accuracy of the calculation of equilibrium Properties
in a wide range of the phase diagram one can achieve = high ac-
curacy of the calculation of phase equilibriums as well19).

Realization of this idea in bractical problems encounters

17



aumerous technical difficulties. First, this is the problem of
selecting experimental data, attributing statigtiea] welghta to
these data which define the degree of their importance, the
choice of the region of defining data, etc.

Obviously, the chosen mathematical problem should provide an
adequate description of the P-V-T date in a wide range of tene
peratures 9 = ;7;: at 6 2 1 and 6?51.

In refs. !2216) the algorithm has been Suggeated which
allows adaptation of the chosen state equation to the conditions
of & concrete probiem, It was used aa & basis for elaborating
& computer code Package actively used for Providing matter nix-
tures with the technologiecal data on the thermodynamical Proper-
ties. Howsver, thig adaptation does not always solve the prob-
lem as well, Therefore, the search for new analytical dependences
is s8%il] urgent,

Following the modification of the BVR squation
=78 ¢+ (8, O-A4-¢C87)z *(E6-a)rs

+ATé *cz'Je'f/;f{z‘f/ exp f{a’—),

in the Starling version29)

- -3 -
T =76 +t(Bg-4-é &t -6 67 )e2s
(€O -a-Ad5")> toAfardd e~

# c‘c"@“?//flza) exp (- yT?)

and then in a more comple%bne19)
-2 -3 .
T=28 +(8,0-A,-¢ ¢ *2,6-~L£607
' ~/ - =23
*(fe~aqe -€ G- £,
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1 (a+d 6" 160 +f5% )¢ # (e85 +

+6¢9‘°" + A67)(147T2) onp Fet)

we can note that the baaic Problem is to guarantee & satisfac-
tory description of the dependence /ﬁﬁjt) for the temperatures
& at 2 1 and @< 1. since the matter behaves differently
in these reglons, the equation is alsoc added by functioans of the
type 6; ﬂh>f) in which the point & = 1 separates the bran-
ches of different slope. The exponents are chosen empiricelly and
the coefficients are determined from the regression analysis.,

In approximating trial dats the methode of nonlineaxr pro-
grammngw)

In particular, for the state equation204 & considerable

allow variation of a set of funcitions.

decrease in errors of degeription is achiseved by the following
modlflcatlon(‘f , X "’d’)

=786 + /B o 4 /4*52'@_)@‘%/1‘/@’)”
- A, - Q@“z # Zg@"{éé}yzz */(€6-a-
T O AL @+ d6)TE 4T red) empfir?).

The efficientcy of modificaiion cah be judged from & joint ap=-
Proximation of the data on the density snd heat capacity, density
and premsure of saturated vapors of nitrogen, argon and methaene
in the range of temperatures 80-150 K° and Pressures up io 100
bar. An average error in describing these properties is two-ihree

times less thean the state equationzo).
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Fig.3. The (©- x) diagram of the Fig.4. The state equation
mixture Ar-Kr, (¥ = 11.08). of the system of impenetrab-
le particles.

21



Pig.5, Variant of the closesgt
packing.

Thus, based on the results of investigations of the model
systems in the Monte - Carlo methods aimed at defining the con~
tribution of the interaction of hard particle nuclei in the
state equation and on the approximation of the contributions
determining the attraction between molecules, we can Propose

the following new form of the state equation:

f’ﬂ Q/QM/D/Q).

G 7"(../?'_/7‘
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The equation paremeters & , 2% and O( can be defined as the
temperature functions. The model can be used for calculating
thermodynamical properties and parameters of phase equilibriumg,
limits of existence of liquid and gaseous mixtures.

In conclusion, we should like to note that approach to
the construetion of the state equation for pure matters and
mixtures, which are based on the lattice models, did not ex-
haust themselvesz1). They have recently been generalised to the
mixture of molecules of ‘& - mer, ( € - is the number of
cells of the lattice occupied by the molecule with contact
parts of different types)zz). This allowed & satisfactory des-

critpion of the thermodynamical properties of hydrocarbon mix-

tures of alcanes.
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