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1. INTRODUCTION 

Reliable information on thermodynamic properties of vari­
ous matters used in industry is the basis for developing a more 
elaborate equipment in chemical and oil industry, mechanical 
engineering, energetics and others. I\lloreover, developing and 
promoting o:f efficient methods of mathematical simulating and 
systems of automatic design of different processes increase 
the necessity of using computer programs for calculations. As 
a source of information on therrnodynarnic properties not the 
tables obtained from experimental and calculational studies are 
used with increased frequency but the computer programs provid-

ing calculations with high accuracy and minimal computer time 
consuming. The computer program realises an algorithm based 
on a certain mathermatical model describing the laws of be­
haviour of real matters and their mixtures in a one-phase state 
and in the region of phase transitions liquid-solid state. 
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Modern status of the statistical physics opens new possi­bilities for choosing various approaches in simulating the 
matter stateo However, it is obvious that, for instance, the method based on the solution of an integral equation for the radial distribution function with a subsequent derivation of the state equation is inapplicable due to large computer time consuming. Almost all the available approaches do not admit a consistent description of the liquid-solid state phase transi­tion. To a great extent the problem is compl'icated in mal(ing an attempt to simulate an interaction of nonspher:ical Yaolecules. 

To simulate a condensed state the most LUliversal are thought to be the Monte-Carlo and molecular dynamics methods. They enable one to achieve a qualitative description of all specific features of a phase diugrum. Here, one can consistently simu­lute the interaction of various molecules (of water, polymers, etc.) in various state regions. In particular, the state equation can be calculated in the region of liquid-solid state phase 
transition in the binary syste~ and is considered in Sec.1. 

In simulating mixtures of any molecules the methods of computer simulation have no basic limitations. However, their direct application in practice is hardly possible due to a lHrge computer-time consuming. 

At the same time, there are a great many empirical and 
semiempirical state equations approximating sets of trial data 
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for various state branches. Equations of the van der Waals­
type and the virial equation underlie these approximations. 
Therefore, they offer certain extrapolation possibilities. 
However, these models fail to describe the behaviour of the 
matter in the region of the liquid-solid state phase transi­
tion since in the mathematical structure the transition is 
not taken into accoWlt by any means. Introduction of additional 
terms into the state equation in order to describe one more 
van der Waals loop for the p:: f{~ 7') dependence is not justi­
fied. As is shown in ref. 1), one can hardly expect any progress 
in calculating the phase transition parameters in the case 
when each phase is described by its equation allowing for only 
one class of configurations: crystalline and liquid. More sen­
siPle is a simultaneous inclusion of various states on the basis 
of a unique equation. However, one cannot advance along this 
line without a clear differentiation of configurations defining 
condensed states. Unfortunately, there is no universally accept­
ed criterion to make a constraint. In ref. 1) a possible separa­
tion of the classes of states is demonstrated using the. distri­
bution function in the energy space where this distinction 
amoWlts to several per cent. Therefore, it becomes clear why 
this division is impossible on the basis of the radial frmction 
in the coordinate space where it is one order of magnitude less 
(in defining the position of the basic maximum). 

In calculating thermodynamic properties the most optimal 
is thought to be a combination of the methods of computer simu­
lation allowing one to reveal the basic laws of the behaviour 
of the matter with the methods of constructing the approximat­
ing state equations. 
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2. MODEL SYSTEMS IN THE MOI,TE-CARLO METHOD 

The efficiency of the calculational method of thermodyna­mic properties, determination of the phase transition parameters, manifests itself, as a rule, in studying the behaviour of the many-particle model systems. Most simple but rather essential are the systems of hard particles (spheres, discs, etc.) and of particles interacting by the Lennard-Janes law. For both the systems the whole phase diagram is investigated. Both the sys-terns can be used as the trial ones while passing to real matters through corrections by the methods of pertt.U'be.tion theory or through the introduction of the so-called effective potentialso The basic result of the computer methods of simulation is the proof of a possible description of the liquid-solid 
st~te transition. It is also shown that the difference between the condensed phases is dif:ficul t to reveal, especially in the coordinate space. The :fact that there is a difference in the values of the energy characteristics (energy attraction and repulsion of the Lennard-Janes particles) cannot unfortunately allow one to formulate a clean-cut criterion of a phase transi­tion. It can be explained by the changes both in the .first co­ordinate sphere and in the subsequent onea1 •2 ). 

As for practical applications, one o.f the basic problems is the absence of recommendations on ·propagating the nrethods for describine mixtures. There are no papers on a direct calcu­lation of the state equation for mixture in the region of phase transitions. As a rule, the calculations are made of the excess thermodynamic functions in the one-pl~se state. The comparison 
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with ~~tal data for matters close to the properties of 
the Lennard-Jones fluid is satisfactoryo Similar results have 
been obtained within the theories where the mixture is simulated 
by an individual matter with average characteristic parameters3)o 
Howev·er, it is obvious that in the cases when molecules of the 
matter in the mixture differ essentially its description on 
the basis of averaging of this type leads to unsatisfactory 
results, which is especially obvious in determining the phase 
transition coordinates. 

Now we consider how the results4) change for the model of 
the argon+krypton mixture of different compositions. The model 
is a mixture of particles interacting through the Lennard-Johns 
potential. The ratio of the energy parameters G'I<'Z. /CA-t =1 ,335 
and of the scale parameters &j(j'A~ = 1.075. The in~eraction 
of molecules of different types was determined by the parameters GAe-~OK. r- a ~ ~ of the same potential, ~t·K.oz. = .2 and C.A-t-k-t. ~('14-t"~The 
basic cell was chosen as a face-centered cubic lattice; the 
particles of both the types were not mixed in this case. The 
computer experiments were performed for three compositions 
(25%, 50% and 75% component). An additional difficulty in com­
parison with the simulation of a pure matter4 ) was the deter­
mination of the initial values of the attraction (A) andre­
pulsion (R) energies. The table gives their values for the ra­
dius of tlle potential cut-off' Rc = ~' where l is the edge 
of the basic cell. 
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Initial values of the attraction and repulsion energies and the number of generated chains for various compositions of the LD mixture 

Mole fraction 
of argon 

1. 00 
0.75 
0.5 
0.25 

simulating the 

Ao 
6.046875 
7o448742 
9.044937 

10.64158 

argon-krypton mixture 

.BQ ./'1 
12.7500 16 
14.25957 19 
16.29419 27 
18.]3363 21 

The change of the A and l!J parameters was investigated in 
the limits Am :5 A S:Am f.dA ~ Bn ~ !J ~ Bn+AB where 
41/ = 0.04, 11 h7 t: /2 and Ll/3 = 0.14, 1 ~ n S. 32. The 

optimal values of irl , n, , ..&;4 and AiJ were chosen empi­
rically. The choice criterion was the completeness of the cell 
filling (Am and tB, ) reliable from the statistical viewpoint 
and sufficient for further calculations. Each generated chain 
contained 128000 configurations. 

The MC calculations prov~ded the histograms determining 
the nUmber of states with different values o:f A- and B 
According to them, simple calculations gave the dependences P :- f (Vj7') and the distribution :functions o:f the most probab­
le values of If and ~ that can serve as an analog of the 
radial distribution function in the energy space. The isoterms 
calculated for the pure matter and mixtures are represented in 
Fig, 1 in the given coordinates: G= *".%_. , "C"' ~.3 and Prr.J ,...,.z vAe Jr~ ~t • Fige 2 shows the cross section of the surface -L2(14;~~xJversus ,4 while the reduced density changes from L = 1.25 (liquid state) to Z:: = 1.12 (solid state). 
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Separation of the liquidus and solidus lines by integrating 
over energies turned out to be a more difficult task for the 
mixtures than for the pure matter. Therefore, the temperature-composition diagram for the fixed pressure .]j"" = 11.08 should be considered approximate (Fig. J). At the same time, the spe­cific volume of the mixture up to the line of hardening is 
very close to the value defined as 

V/>1 "~"' · ~(,.,_ 1" Xkz. ~~ 
which is in agreement with experimental data:A V'.e.x~ 0 with increasing pressures>. 

However, these results do not allow one to make any assump­tions as to the transi tiorl mechanism, to determi.ne rather pre­cisely the limit of existence of a homogeneous phase. This phe­nomenon can be explained by the 11 Softness 11 of the Lennard-Jahns potential. 

It is most probable that the transition from the liquid 
state into the crystalline one is mostly due to the interac­
tion of the hard cores of molecules - their repulsiono The re­pulsion slightly manifersting itself in the condensation at the critical point plays a crucial role in the structure formation in the many-particle system. Probably, the fol'mation of a hard phase at sufficiently low temperatures is smoothed out by the effect of a still strong attraction of particleso Therefore, the pattern of the liquid-crystal transition in the Lennard­Jahns model is smoothed out. 

In the light of the afore-said the study of crystallisa­tion in the 'hard particle system is of particular interest. 
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Investigations of certain models for these systems6- 9 ) demon­
strated their principal importance for the development of the 
statistical physics. The hard particle model admitting an exact 
solution in the one-dimensional case was knovvn to be used for 
verifying various theories. In particular, because of the siJ~)­
lici.ty of the potential interaction function for solving integ­
ral equations for the radial distribution function. However, 
since various approaches of the statistical ph~sics are based 
on the asswnptions of the interaction smallness, a possibility 
of expanding the functions over the interaction energy parameter 
in a power series and the decisive contribution of binary inte-
ractions are a priori inapplicable to the hard particle 
model. On the contrary, in this case an infinitely strong in­
teraction takes place at a certain distance. At the same time, 
under a strong compression this system of particles behaves as 
cluster in which a multiparticle interaction cannot be neglecteda 
Undoubtedly, the theory aspiring to success in describing "so­
lid11 liquid, the process of hardening, should have a possibili­
ty of descr-ibing the behaviour of the hard particle system as a 
starting point of investigation. Hel'e, the problems of space 
geometry, the package and arrangement of particles, are brought 
to the fore, i.e., the mathematical basis in this case in the 
theory of geometric probabilities. This fact has first been 
pointed out by Bernal6). The rundom dense package introduced 
by Bernal is treated as a model for liquid. The difference bet­ween the density of a package of this type found by Bernal and 
the density of the ordered paclcage corresponds upproxi.mately 
to the difference of the densities of liquid and hard phases 
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of noble gases. The properties of the random dense package and 
its structure were studied in detail in many papers in order to 
reveal differences from the regular structure. However, prac­
tical results were not obtained. At the same·time, investiga-
tions in the framework of the Monte-Carlo method have shovm 
that the density of the Bernal model does not determine the 
density of liquid in the process of hardening7). Obviously 
here the situation described above takes place as well: a 
small resolving power of the method based on the study of the 
particle distribution in the coordinate space around a randomly 
chosen particle. It is to be mentioned that the basic resulto 
in the Bernal model were obtained by an experimental realisa­
tion of random densely packed structures. 

The most dense random package is not yet strictly defined; 
therefore, theoretical investigations by the computer simula­
tion provide ambiguous resultsa It is clear that in a dense 
package particles touch each other. At the same time one did 
not succeed in introducing geometrical probabilities as yet. 
As regards the theory of geometrical probabilities in the con­
sidered case the distances between the points, angular distri­
bution of the nearest neighbours around the central particle, 
are thought to be random elements. However, it is difficult 
to choose unambiguously the probability measure of these ele­
ments in the two- and three-dimensional space 10 r 11 ). If the 
whole variety of configurations is made discrete with the basic 
properties of the model preserved, one can obtain rigorous esti~ 
mates. 
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In ref's.B,9) the models have been considered in which the use was made of' an exact solution for the one-dimensional system of' ha:rd particles and in the second deg:ree of' freedom a discrete distribution is introduced instead of' the continuous one. This provides a possibili tyof using combinatorial methods, which sim­plifies the problem considerably • .At the same time, the model preserves the basic property of' the system of hard discs (or spheres). The degree of a maximally possible compression of the model is determined by a mutual arrangement of particles. The basic results of the investigation of the state equa­tion of the models8 •9 ) are the following. The density of the random densely packed structure is a random quantity but not a fixed one as in rer. 6 ). It is distributed by the Gauss law around the mean value of ~ • If the value of the system density equals this mean value, then one can observe a sharp turn on the isotermo It can naturally be identified with the liquid-solid state transitiono By analogy with the Be:rnal model the value of the density of' the random dense package should correspond to the bending point on the isoterm (Fig. 4). 
As will be seen furtl1er, a large role in constructing the state equation is played not only by the value of this cri­tical density but also by the ~ndex o<:. in the Gauss .flUlction .exffc( (V;:,--I{)J wlllch defines the distribution. 
It has been attempted in ref. 12 ) to calculate these quan­tities for the system of hard discs and to obtain for it the state equation. The main purpose in this case is the calculation of the distribution function of random densely packed configura-tionsoWith this one can unambiguously obtain the statistical sum, 
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and consequently, the st~te equation. The scheme of reasoning 
underlying the approach developed in refa. 8 •9• 12 ) is the fol­
lowing. 

The ensemble of states of the many-particle system which 
will be used for calculating macroquantities can be represented 
as a set of topologically ordered systems, i.e., the systems in 
which a sequence of particle coordinates does not change under 
compression or expansion of the system volume V • In the topo­
logically ordered system the number of accessible states is 

tV proportional to (V- Vc) where ~ is the condensate volume, 
i.e. of such a state of the system of~ particles when none of 
the particles can be shifted without changing the position of 
its nearest neighbours. The condensate is an analog of the ran­
dom densely packed structure. Of the largest density is the con­
densate that is a hexagonal regular package (on the surface) 
or a face-centered one (in the three-dimensional apace). The 
configuration in the volume V can be formed by successive 
transpositions of particles without violating their topological 
order from the condensate of the volume Vc ( V o Consequently, 
the formation probability of a configuration is proportional to ..12(~~){V- If)'( where _.f2(~ I{) is the formation probapli­
ty of a condensate of the volume 1£ • _f2.(V, li,:,}~P(IO/jPfY,J/(, 
where /;16~ is the distribution function of the conden~ate 
density, and ~ is the volume of a crystalline condensateo 
The function .12 {~ Ve) is the Gauss :flmction with the centre 
I{" V.z_ ; therefore, it is obvious that ..Q(t-; Ve_) at I{>~ 
and .fl.(~~) increases sharply at JI'Z. $' ~ (the contribution 
of the configurations close to a regular package increases). 
This specific feature of the function }'('~~manifests itself 
in calculating the state equation (Fig. 4). 
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The criterion of a phase transition under such a conside­ration is formulated as follows. Under the compression of the system a liquid state exists as long as the volume of the system is larger than the volume of the most probable random dense package. This can be realised only in the metastable region. 
Further compression leads to the rearrangement of a condensate 
with increasing role of the states close to a regular latticeo 

In the usual case the transition parameters are determi-
ned on the basis of the Maxwell rule. It is seen that the densi-ty of the Bernal package is larger than the liquid density and less than the solid state density-in the phase transition. It has been shown in refo 12 ) that the curve of the state equation is symmetric at the points p ~ fr"L , 1/:: v~ wi.th respect to the vertical passing through the point ~ 

Now let us consider one of the most widely spread state 
equations - the van der Waals equation 

t __g_. v.a (1) 

It is known that the first term of the equation allows for the repulsion while the second term for the attraction between the moleculeso The first term is specific of more complex and exact equations obtained in13). By the equality~£ 
11 

we mean a minimally possible volume of the system of hard spheres 14). However, it 
is obvious that for the liquid this role should be played by the volume of the most probable condensate and 6' o The pres-• sure should tend to infinity in the solid phase not specific of the liquid state. In ref. 12 ) the condensate volume is deter­mined from the condition of maximum production _[), ~ ~ • 
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· .tlXf{d (V0 • V1-) '-} Then, for the liquid state region 

f. 
V- V~ (!V·Vt:fl-f _1.)Yz 2 -f [ T J o<' 

(2) 

The state equation obtained (2) can immediately include the har-
dening line, where ~"' ~ (7) and c{"' flrr3(.,where I} and J{ are 
the coordinates of the phase transition points. 

To use (2) for practical calculations one should determi­
ne Vz: and o( • For pure matters one can use the procedure 
described in refs. 15 , 16 ) where the parameters of the state equa­
tion are calculated in the process of optimizationo The beat 
agreement of calculations with experimental data on thermodynamic 
properties of pure matters is the best criterion of optimisation. 
However, this possibility does not eliminate the problems one 
encounters in extending eq.(2) to mixtures. 

It would be most consistent to determine the density of 
the Bernal package for each given mixture. However, taking account 
of both the principal difficulties of the method, mentioned 
above, and purely technical ones, arising due to the inclusion 
of a small number of particles 12), one cannot admit this way 
to be optimal. At the same time, the results 6 ' 12 ) indicate that 

the volume of one particle obeys the Gauss-type distribution. 
The particle volume in this case is the volume of a polygon 
(or polyhedron) of Voronoj, which is formed by perpendiculars 
erected from the midpoint of intercepts connecting the central 
and neighbouring particles. The volume of such a polygon is just 
the effective particle volume. To the point, each of the topolo­
gically ordered system can be represented as a system of the 
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Voronoj polygons (mosaic) shifting under the volume expansion without rotations and change of relative arrangement in the 
spaceo The particles always touch by the same edges. It is na­tural to assume that in realising a random process with a correct­ly given probability measure the effective particle volume in a random package can be determined by simulating only its nea­rest neighbourhood. In particular, in the two-dimensional space a particle m~ interact with 4-6 particles. The interaction in this case is assumed as the influence on the form of the Voronoj polygon (number of edges). Consequently, a large number of ex­periments requiring a small time consuming could rather accu­rately estimate one of the most important parameters of the 

state equation. This concerns both the pure matter and mixtures with any composition. 
To fulfill the basic property of a dense package (conden­

sate)~ each particle should touch directly at least four neigh­bours. Four-five particles of the first coordination sphere can have coordinates (angles given as random numbers) uniformly distributed in the interval (0,2~). The main problem is to occupy the second coordination sphere. Here, the following 
variants are possible: the first when the particles are arran­ged maximally close to a chosen centre touching simultaneously two particles of the first sphere (Fig. Sa), and the second when the second sphere is occupied by random pairs (Fig. Sb)o 

It turned out that in the first case the mean volume of the principal cell (the Voronoj polygon) is several per cent larger than in an absolutely correct lattice. In the second case, we have obtained for this volume a value approximately equal to the 
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mean one (2% leas) obtained in ref. 12 ) for a system of ~ 100 
particles. Taking into account that in ref. 12 ) the particles of 
the first sphere had, due to the imposed "crystallinity11 , an 
effective volume somewhat less than the mean one, then this 
coincidence indicates that configurations of the type shown in 
Fig. 5b are typical of the moat probable random condensate. 
Though particles in ref. 12 ) were added so that each particle 
touched simultaneously the two other particles, a stochastic 
nature of the process manifested itself in choosing one conti­
nuation out of several possible oneso 

For the mixture one can calculate the effective volume 
of a particle of my kind. The environment of the particle is of 
theni 11th kind and turns out to be proportional to the IIPle p:Jrtion 't j_ of 
particles of the given kind in the mixture. Assuming the uni­
formity of filling, for the effective 1{ volume we get the es­
timate 

where 0:· and 6j are the diameters of the 11i''th and 11 j "th 
particles and ,4~· is the maximal number of particles of the 
"j"th kind around the 11i"th particle. For A~i in ref. 17 ) for 
hard spheres the following estimate has been obtained; 

()) 

Then, for the averaged effective volume of a molecule in the 
Jbi.x:ture we have 

(4) 
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The relation (4) gives for(V). ~values more close to the volume ,,,., 
typical of the largest particles than the mean ones over 

~ JJ <' v). = fz s,· r~· 
lni)t. ~,; 2 . 

The difference is more essential the larger is the difference between the diameters of molecules of the components. This is in agreement with the fact that in the mixture of effective spheres the effective size of particles of a smaller size is always larger than the proper size. For the most-used relations f5;ks,., <1·1 the calculations showed that the specific volume of aJ condensate can be calculated by the linear relation <V>m:)(.={X.·l{ , which coincides with the results obtained within the MOnte - Carlo method. For the mixture of hard par­ticles with similar dimensions relations (4) and (5) give equiva­lent results. At 0~> 1 the distribution :fUnction <V"7 has J not one sharp but several smeared extrema, which does not allow one to estimate (Y> unambiguously. llll)t. 

). CALCULATION OF THERMODYNAMICAL PROPERTIES 

As ~as already been mentioned above, one of the most uni­versal methods used for calculating thermody~cal properties and the parameters of phase equilibriums is the method of the state equation. As a rule, the mathematical structures are ob­tained empirically by analysing the available experimental data on the pressure of saturated vapor, density in the liquid and vapor phase, etc. Especially, this concerns the dependence of 
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the state equation coefficients on temperature. The dependence 
on the density is chosen either in the form of the van der Waals 
structure or the equation (EVR) 18). The first is based on the 
particle impenetrability model; and the second, on the expansion 
of the statistical sum over the density powers. At present, 
these approaches are being developed by determining the depen­
dence of the state equation coefficients on temperature. It is 
to be emphasized that in the elaboration of the so-called few­
constant equations (of the van der Waals equation) the main 
problem is a more accurate description of the experimental 
data on phase equilibriums in the mixture, whereas in the 
construction of many-constant equations (of the EVR-type) the 
problem of exact calculation of the thermodynamical properties 
of mixtures is solved by adding new terms. It is obvious that 
in the first case the purpose is justified since in the technolo­
gical programs a rapid and exact calculation of the phase equi­
librium parameters is very important for calculating the equip­
ment. Since in determining these parameters the chemical poten­
tials of components (the volatility coefficients) are calculated, 
i.e., the integral quantities, inaccuracies in the state equa­
tion are not so strongly reflected. However, the gain in time 
and simplicity of programming computer operations is essential. 
Investigations devoted to the modification of many constant 
state equations are baaed on a natural assumption that with in­
creasing accuracy of the calculation of equilibrium properties 
in a wide range of the phase diagram one can achieve a high ac­
curacy of the calculation of phase equilibriums as well 19). 

Realization of this idea in practical problems encounters 
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numerous technical di~~iculties. First, this is the problem of selecting experimental data, attributing statistical weights to these data which de~ine the degree of their importance, the choice of the region of de~ining data, etc. 
Obviously, the chosen mathematical problem should provide an adequate description of the P-V-T data in a wide range of tem­peratures e = ~Tc at e ~ 1 and f) !!: 1. 
In refs. 15• 16 ) the algorithm has been suggested which allows adaptation of the chosen state equ'ation to the conditions of a concrete problem. It was used as a basis for elaborating a computer code package activ·ely used for providing matter mix­tures with the technological data on the thermodynamical proper-ties. However, this adaptation does not always solve the prob­lem as well. Therefore, the search for new analytical dependences is still urgent. 

Following the modification of the BVR equation 
..H =- <- e 1- {.Ba e- Aa- c, e·J -c2 r (t e- a)z.3.,. 

fo/.."!:6 faJe- 2 {/r-,rrj ex;>{-rcz) ~ 
in the Starling version20) 

l -.J -~ ) 2. JT = <- e t (B. fJ- Ao- ~ fi fdi
0 & • 4; & / c:: r 

t- ( t e _ a. - o~ e ·) Z:3 
f o1. (a. 1- e~ &-~ r:£.,.. 

.;. cT 3 e-~(1ttfz:') .v:xp(-f'z-Zj 
and then in a more comple~one 1 9) 

-2 -!. ~f 1/""'c:-e +(/3of)-/f-0 -Ca8 -rZue-~e)r?r 
f { t e - 4 e -I- e ci r- f cP') z-3 r-
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we can note that the basic problem is to guarantee a satisfac­
tory description of the dependence plY; r) for the temperatures 
fl at (9» 1 and f) ( 1. Since the matter behaves differently 
in these regions, the equation is also added by functions of the -ll 
type e (11> 1) in which the point e = 1 separates the bran-
ches of different slope. The exponents are chosen empirically and 
the coefficients are determined from the regression analysiso 

In approximating trial data the methods of nonlinear pro­
gramming15) allow variation of a set of functions. 

In partic~ar, for the state equation20~ a considerable 
decrease in errors of description is achieved by the following 
modification( t. !::! £. _, X !Y ..f) .' 

JT = r. 9 ,.. {8" e f (8, -r .8:~1&) ~~ f ~) ~ 
- Ao - c;, fJ-2 

.;. .:J., eoo,J- E;, eJr:2 ..;.. ff rJ- cz-

- c!e)[3 fd. (t:l ft:!&"J~c rcr:J§(/ft'cJ~tfJ?Zj. 
The efficientcy of modification can be judged from a joint ap­
proximation of the data on the density and heat capacity, density 
and pressure of saturated vapors of nitrogen, argon and methane 
in the range of temperatures 80-150 K0 and pressures up to 100 
bar. An average error in describing these properties is two-three 
times less than the state equation20). 
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Fig.2. The i'unctionti. (A, Bmax); a) is a crystal, 
b) is the two-phase region and c) is liquid. 
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Fig.J. The (6- x) diagram of the 
mixture Ar-Kr, (J.r= 11.06). 
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Fig.4. The state equation 
of the system o~ impenetrab­
le particles. 
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Fig.5. Variant of the oloseot 
paCkillg. 

Thus, based on the results of investigations of the model 
systems in the MOnte - Carlo methods aimed at defining the con­
tribution of the interaction of hard particle nuclei in the 
state equation and on the approximation of the contributions 
determining the attraction between molecules, we can propose 
the following new form of the state equation: 

22 



The equation parameters t{ , 't and o( can be defined as the 
temperature functions. The model can be used for calculating 
thermodynamical properties and parameters of phase equilibriums, 
limits of existence of liquid and gaseous mixtures. 

In conclusion, we should like to note that approach to 
the construction of the state equation for pure matters and 
mixtures, which are based on the lattice models, did not ex­
haust themselves21 ). They have recently been generalised to the 
mixture of molecules of It - In~. ( t - is the number of 
cells of the lattice occupied by the molecule with contact 
parts of different types) 22 ). This allowed a satisfactory des­
critpion of the thermodynamical properties of hydrocarbon mix-
tuxes of alcanes. 
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