





In the previous paper [1] exact expressions for the mean
values of .the field and atomic operator’ products were ob-
tained. Using these expressions one can eliminate the field
operators from the hierarchic equation describing the time
evolution of a system with atom-field interaction. In partic-
ular, these expressions’can be applied to examine the super-
fluorescence problem [2-5].

Usually {he~5uperf1uorescence process 1is considered for
the case of 'a vacuum initial state of the field ( spontaneous
generation process ). In the recent experiment [6] the cha-
otic ( thermal equilibrium ) state of the field was used to

initiate the superfluorescence generation by the inverted

nuclear spin-1/2 system ( see also [7] ). In principle, any
state of the field can be used to initiate the superfluores-
cence of the two-level macroscopic system. So, in the present
paper an important case of the initial squeezed vacuum state
of the field will be considered. ‘

The standard approach to the theoretical description of
the superfluorescence by the point-like two-level N-atom sys-
tem is based on the Dicke hamiltonian [ 3]

+ + + -
= g hwkakak+ hQR3+ g hgk(R a+ a R ), (1)

Here the operators a:, a, correspond to the k-th mode pho-

tons, and the operators R describe the two-level N-atom sys-

tem
. +
[akl aq] - akql
[R, R'] =+ R*, [R', R'] = 2R, Rl = N/2. (2)

To describe the superfluorescence  process in the ini-
tially inverted atomic system, ip is necessary to. calculate
the time dependence of the mean photon number <nk>E<a:ak> and
of its derivative d<n >/dt.

In the He1senberg representatlon the equatlons of motion
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for the field operators squeezing operator by Stoler [8]

1 1

¥ 2 +2
+ + + S(E) = n €xp ( ; €kak B ; Ekak )
- = - - . = _ + - k
1dak/dt wkak + gkR., 1dak/dt w a, gkR
: Therefore
have formal solutions of the form | ' | <n 5= le|2 (6)
o .
- . + ~s P P
ak(t) = ak(t) -1ia, a/(t) = ak(t) + 1A , (3) v where 6 6
. f = ¥sinh E=re *
v=e sinh r_, « .
where .
- ~ . To calculate the mean values
a,(t) = a(t Jexp{-iw (t-t )}, — |
@a Afa >

k k“t ? k k't

. .
A =g { Qr exp{-iwk(t~t)}R”(r).

let us use the expressions obtained in [1]
o .

: ~+ T+ ~+ 7 ~+
. a i = <a A + < , a A, a > -
Therefore for the mean photon number in the k-th mode we ob- @40, @< W <@, k>t<[ k k] ¢ )

~

tain : L « ) _ s ~

+ T+
7 ’ <a , a >[4, a D .,
L oL, - . _ (7)
n > =<Kn>+ A A>-i(<a A> - <4 a> ). (4) : - o~ ~ ~ ~
k't k7t MRk kK7t ' o <A:ak>t= <ak>t<A:>t+<a:' a >t<[ak’ A:]>t_
Here . ’ ; ~ ~

~+ +
. = <a , a > <la , A D
<nk>t = Tr nk(t)pt ;. K Kkt K k't

[l

Here (B, C) <BC> - (BYC>. .

° . ; For the initial state of the field described by the sta-
sideration at the 1n1t;a1 time t . If we suppose that the ~ tistical operator (5) we have .
interaction between the field and the atoms 1is absent for

where P, is the statistical operétor of the system under con-

t<t°, we can choose pt in the following form ; ‘f <a+, a> = |v |2‘
o . . k k“t k
_ ) <; p 5 = <;+ ;+>x - - uv e—zxwk(t—to)

pto Peiera P.ton k* Tkt k’ “x’c¢ T kK k ’

In our case Priera has the form ’ ; where uk=cosh r.
+ 0
Piield = s(gy)loyols (g} , (5)
i Therefore instead of (7) ve get

vhere |0) is the vacuum state of the field and S(£) is a



* * 2iw (t- )<[Ak' g 7>

a ]> +H A

2
@ray = v 1%A,,

. _ ) (8)
ala > = Iv 1%a,, A+ ukvke'z‘“k(“‘ dqat, it p,

Using now expressions (3) to calculate the commutator in the
- right-hand side of (8) we finally obtain

i@y #ara> 0= v 1°da, a0 (9)

k [

So, for the mean number of photons (4) we can now write

+ .
> = v 1P+ alay + v 1%da), 4D

I (10) .

Then the radiation intensity is defined by

I(t) =} ho, ;t<n > (11)
k

One can see easily that

dA /dt = g R (t), dalsdt =g R (t).

Therefore from the expressions (10) .and (11) wexhavé

.

I(t) = Z hw g, { <R A+ (A R > *

v I2(«(RE >  + <4, R "D} (12)

t

Now to obtain the time dependence of the radiation intensity

we should calculate the correlation functions

t

g, J T
t
[~

R'a,> = et %R (IR
(13)
. |

g, J a7t

t
o

ARy = e O (YT RF (R (8D .

For this aim let us use the so-called Markoff approximation
[3-5] ‘ |

Ri(t) o~ Ri(t)eilﬂ(t-t)e—|c—t|/2rl T <t (14)
Substituting (14) into the expressions (13) we obtain
+ o + -
<R Ak)t= Fk R R >t
(15)
+ - ¥ + =
(AkR >t= Fk R R )t

where
} ot et(Q-ek)(tft)e—lt-t\/zT.
. .

It should be noted that usually the case of the adiabatic

switching on of the interaction is considered [4, 5] and so

one should put t =-o.
In the one- mode resonance approx1mat10n

r = 2gqT

and we get the time evolution of the radiation intensity in

the case of the initial squeezed vacuum state of the fielad:

I(t) = hw {2gTCR'R > + agT|v|?®R >, } .

Now one ought\to calculate the one-time correlation functions

<R+R_> and <R > . For this aim let us use the hierarchic
equatlon method [4 5, 11. Let 0 be an atomic operator (e. g.
0=R'R” ). Then the corresponding equation of motion for its

mean value is

ih 5,<0 =

[0, HI> |



Taking into account the explicit form of our hamiltonian and
using again the exact expressions of paper [1] to eliminate
the field variables one can obtain the following exact hier-
archic equation for the atomic system in the case of the ini-
tial squeezed vacuum state of the field:

540>+ 10 <[0, R D> = g {<AT[0, R™]>+ K[R", 0]&> +

IvI*<ra, [0, R' 1D, + <", [0, RID>, )+

“ve—zxw(t—to)

<ro, '], a'p, +

* X

w¥o¥et @t ) 1o, R, ap,

(16)

Then for 0=R'R™ we get
d oy + BN + 2 +
2 SRRD> =29 {(KRRRR> + KRR + [V|"(KR'R, A]> +

<[A+f;R3R_])t) + uve_?‘uct—56)<[a+, R+R3]>t +

* ¥ -
eaiw(t t

uv

JrR", a]>, } . (17)

If we use here the approximation (14) together with the de-
coupling

[

+ - + -
R'R R> R'R > <R, (18)

instead of the exact equation (17) we obtain the following

approximate equation

dys/dp = 4|v|®x - 2(1 + 3|v|®)y - z + 2xy + 4|vi®c . (19)

Here

X =<R)> , y=<®RR> ,

z = uve-ziw(t_t0)<R+2>t + u*v*ezxw(t_to)d?—z)t
= otpm. p?. _N N
C=<RR+R-R> =5 (5+1)

and we have used the time scale p=2gl't. Analogously, for O:R3
we obtain
dx/dp = - 2|v|®x - y . (20)
It should be emphésized that C=const because the operator
R+R'+R§—R3 is an integral of motion for the hamiltonian (1)
To solve the equations (19), (20) we ought now to write
also an equation for the variable z. Using the hierarchic
equatién (16) together‘with the approximations (14), (18) .and

with decoupling

+2 ~ +2 _ +2
RTER> = (R CRD - R,

R

-2 -2 -2
<R,R 5, R <R > - <R 5,
we get
2, . .2 2 2
dzsdp = 12|vi°(1 + |v|%)x - 12|v|(1 + |v]|T)y -
(1 +'2|v|2)z + 2xz + 8|v|%(1 + lv1?)c . (21)
Thus, we obtain the closed system of the ordinary differen-

tial equations (19)-(21):
.choose the initial values of the variables x, y, z.

To solve this system, we ought to
For this
‘aim let us consider at the initial time the atomic system
independently of the field and introduce the free energy

F =

- elnTrexp{-hQR_/ 6} (22)

where 6 is the atomic temperature. The calculation of the

Trace in (22) leads to



(23)

F = - N eln2cosh(hQ/26) .
Using (22), (23) and the constant of motion C one can easily
get ‘ ' ‘ '
X(to) = 3F/3(hQ) = - (N/2)th(hQ/28) (24)
y(t )= N°/4 + N/2 - (N/2)th(hQ/28) - (N/2)sech’(hQ/26) - :]
R
(N°/4 )6h*(hQ/26) . (25) f
Now, setting. the initial inversion value x(t ), it is possi-

,.mble to deflne the 1n1t1a1 polarlzatlon value y(t ) u51ng (24)

and (25). Note, that for the Dicke states the operators R
and R are the raising and lowering operators respectively.
Hence, :
+2 * % -2 .
z(to) = uvdR >z + UV (R >z =0
[+] Qa

due to an orthogonality of Dicke states with different j.
Let us consider now a process in which the field is ini-
tially in a chaotic state: A
pa(to) B /Tr(e Bn ), n = a+a, B = hw/kBT.
For the inversion x(t) and polarization y(t) one can obtain
the closed system of ordinary:differential equations:

8x/3p = - 2 ax - ¥,

4 ax - 2(1 + 3 a)y + 2xy + 4 «C, AR

|

For the radiation intensity we have L‘

It

8y/dp

where p=2gT't, a=(ef-1)7"

151on x(t) falls down from N/2 to —N/2

the expression:

I(t) = hw (2gTy + 4gTax). (26)
It is interesting to compare the time behaviour of the inver-
sion x(t), the polarization y(t) and the radiation intensity
I(t) in the both cases of choosing the field initial state.

Let us start consideration of particular cases of prepa-
ration of the atomic system initial state:

(i) the total inversion of the atomic system is given
by initial conditions

o x(t )

= N/2, y(t,) =N, z(t ) = 0. A

The atomic system inversion evolution x(t) for different

values of the parameter |v|2 which characterizes the sque—

'e21ng degree of the field at an 1nit1a1 ‘moment t t j 1s grven“

5. At Ivl =0 ‘the initial state:

1n Fig.1. We have chosen gT-lO

of ‘the field is nonsqueezed vacuum In thlS case the inver="

At ~a nonzero value of
Ivl one can observe the residual -inversion. , 1ncrea51ng as
the squeezing degree of the initial field increase§;,Thls can

be easily understood if we take into consideration the fact

that the mean value of the photon number in squeezed vacuum

is equal to |v|®. Hence, the mean field energy in this state

is proportional to lvl2 There is an energy exchange between
the field and the atomic system in the superfluorescence pro-
cess. The residual inversion is explained through a partial
absorption of the field energy by atoms. Note that the in-
crease of the residual inversion is.limited by value x=0. At
this value of the inversion N/2 atoms are in the excited
In Fig.2 the time behaviour of the polarization y(t)

The polarization pick falls down and shifts to the

state.
is shown.
right as the squeezing degree of the initial field increases.
On the c¢ontrary,. in the superfluorescence process with a cha-

otic state of the field at the initial moment the shift of




B o
o o

N
o

|IFESERERENUENN NS URUSEANNEENE)

z(p)

|
N
o

[
(=)
aata gl b sl

|
=)
[«

L BN U A S S N S AN Sut Al S B mt N N B At It 0 R B A O SN AN B B

0.3

p \

Fig. 1. Time dependence of atomic inversion for an initially
excited atomic system ( N:loo,‘x(t°)=N/2 ) interacting with

: 2
an initially squeezed vacuum field state with : (a) |v]|“=0;
(b) |v|%=3; (o) |v|2=10. The time scale p=2gI't is used.
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Fig. 2. Time dependence of atomic polarization for an ini-

fially excited atomic system ( N=100, x(t°)=N/2 ) interacting

"with an initially squeezed vacuum field state with : (a)
|v|2=0; (b) |v|2=3; (c) |v12=1O.The time scale p=2gl't is
used. o
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Fig. 3. Time dependence of atomic polarization for an ini-
tially excited atomic system ( N=100, x(to):N/Z ) interacting
with an initially chaotic field state with : (a) a=0; (b)

«=3; (¢) a=10. The time scale p=2gI't is used.
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.Fig. 4. Time dependence of normalized radiation intensity for

an initially excited atomic system ( N=100, x(t_)=N/2 ) in-
teracting with an initially squeezed vacuum field state with

(a) lv|2=o; (b) [vl®=1; (c) [vi®=3. The time scale p=2gT't
is used. ' :
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Fig. 5. Time dependence of atomic inversion for an initially Fig. 7. Time dependence of atomic polarization for an ini-

excited atomic system ( N=100, x(t°)=0 ) interacting with an
initially squeezed vacuum field state with : (a) |v|2=0; (b)
‘~|v|2=3; (c) |v|2=10. The time scale p=2gl't is used.

tﬁally ex?x?eé atomic system ( N=100, x(t )=0 ) interacting
with an initially chaotic field state with : (a) a=0; (b)
a=10; (c) a=30.The time scale p=2gI't is used.

: 0.10
2500 441 ‘ i
. " 0.08
2000 .
3 0.06
1500 3 < ]
~ ] N i
, 1 ~ 0.04 -
— ] o8 i
;’ ] \N_’ :-
10005 . 3
. 0.02
500 3 0.00 -
oé ] : ~0.02 T T T T T T
Qégﬂrrr7ﬁﬂ'j;gz—frffTﬂf 008 0.2 ; . 000 005 010 015 .020 025 0.30
Fig. 6. Time dependence of atomic polarization for an ini- Fig. 8. Time dependence of normalized radiation intensity for

., tially excited atomic system ( N=100, x(t )=0 ) interacting an initially excited atomic system ( N=100, x(t,)=0 ) inter-
(a) - acting with an initially squeezed vacuum field state with
2_.., 2 :
(a) [v|®=0; (b) |v|®=3; (o) |v|?=10. The time scale p=2gTt is

used.

with an initially squeezed vacuum field state with
fv|%=0; (b) {vi®=10; (c) |v|?=30. The time scale p=2gl't is
used. t
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the polarization pick to the right is absent (Fig.3). It
seems like the increase of the polarization relaxation time
is an effect of the initial field squeezing. In Fig.4 the
time behaviour of the radiation intensity is given. As |v[2
increases, the intensity maximum decreases and the radiation
absorption by the atomic system increases, which is consis-
~ tent with the presence of the residual inversion (Fig.1).

(ii) The partial inversion of the atomic system is given

by the initial conditions
x(t ) =0, y(t ) = N°/4, z(t,) = 0.

As in the case (i), the residual inversion increases as the
squeezing parameter |v|2 increases (Fig.5). The greater the
squeezing of the initial field, the sooner a saturation of
the residual inversion is reached. The behaviour of the po-
larization y(t) is -given in Fig.6. The squeezing of the ini-
tial field increases the polarization relaxation time. On the
contrary, in the case of the chaotic initial state of the
field the increase of the field energy, corresponding to the
increase of the ‘parameter a = (eB—l)_l, leads to the decrease
of the polarization relaxation time (Fig.7). In Fig.8 the
radiation intensity evolution is shown. The radiation process
occurs in a shorter time as |v|2 increases. The field energy
absorption by the atomic system is observed after the radia-

tion.
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