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1 " Introduction

- When strong-light of elliptical polarization propagates through a nonlinear

L i;;otropic medium its polarizé.tion ellipse performs the intensity-deﬁendent rotation.
‘This effect was first observed by Maker et al. .[1] and its classical explanation can .
"~ "be found in textbooks on nonlinear optics (2, 3]. To explain the self-induced ellipse
rotation there is xvlo’need for ﬁeldfquanfization. However, if the field propagating in a
nonlinear Kerr medium is treated a.s,;a. quantum ﬁeld,zsdme nevahenom'enéja. appear.
;. For instance, the field propagating in such a medium can s’que.e‘ze its o,v\}n_;qubant(gm
fluctuations [4]. Qua.nt.um propertieé of the field can also manifest themselves in
. the pblarization of light {5]— [7] by appearance of the unpolarized component of the
- ﬁeld They can also affect that part of the field whxch remams polarlzed

The polarlzatlon state of light propagating in a nonlmear medxum can be effec-

“tively described in terms of the Stokes parameters which are real numbers in the

- classical description of the field and become Hermitian operators in the quantum

description. Quantum fluctuations in the Stokes parameters of strong light propa-

o gating in an isotropic nonlinear medium without losses have recéntly been discussed
" by Tana$ and Kielich [7]. The Stokes parameters are related to the phase difference
" of the two orthogonal polarization components forming the elliptical polarization of

o -light; and since they are directly measurable quantities, they can be used to define

" an operational way of measuring the phase difference. The results obtained on this

- way can be compared with the results obtained within the Susskind-Glogower [8, 9]
and the Pegg-Barnett [10]— {12} phase formalisms.

- In this paper we derive exact analytical formulas for the Stc')keszp'ar‘ar’neters, which
are the expectation values of the Stokes operators, of elyliptically polarizgd light prop-
agating in a Kerr medium with dissipation. To do this we a.dopt' the exact solu-
tion of the master equation for two coupled nonlinear asc:llators obtained recently
by Chaturvedi and Srinivasan [13] to the case of light propagation in a nonlmear

medium with linear losses. The Stokes parameters of the outgoing light define its
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'polarization, and the exact quantum formulas for the Stokes parameters reveal a
" number of new features that are entirely due to the quantum properties of the field:
the rotation angle of the polarization ellipse is modified, there is a changé in the
ellipticity of the polarization ellipse (in contrast to the classical field), and there is a
change in the degree of pé}arization.Since the azimuth of the polarization ellipse is
directly'related to the vpha.;e difference between the two circﬁlar components of the
elliptically polarized field, the measuring of the azimuth (through t,he measurements
of the Stokes parameters) can be considered as‘a way of measuring the phase differ-
. ence. At~this point, however, we meet the problem of introduéing properly defined
“* quantum phase variables "[8]- [12]. Here we shortly discuss some of the diffe;ences

"~ associated with the unc}éfétariding of the phase-difference dependent quantities.

2 The;’riéstéfﬁéquation and its solution

Quantum propertles of elliptically polarized llght propagating in an 1sotrop1c k

nonlinear Kerr medium can. be described by the following effective interaction Hamil- =

tonian [4,6,7

H1=‘2'h'€ {af+2a2++at2a2 +4da ala_ a+} 1 .-

where a are the annihilation operators of the circularly right (+) and left (—) po-
larized modes both of frequency w, the nonlinear coupling constant & is real and'is

given by [4, 7]

_ K( 2nhw

with V'de'noting_the quantization volume, n(w)— the linear refractive index of the

medium, Xzyzy(w)— the third-order nonlinear susceptibility tensor of the medium.

The parameter d'in eq. (1) is defined by [4]

d _ erw(w) ‘
2 Tt (@) Xryry(w) : (3)

W) 2errv(w? ) v (2)

el Ve

and describes the asymmetry of the nonlinear properties of the medium. Ritze [14] .
has calculated this aSymmetry parameter for atoms with a degenerate one-photon

transition obtaining the results

(27 = 1)(2J + 3)/]2(2J? +éJ +1)] for J « J transitions
(2% 4 3)/[2(6J% - 1)]

d= (4)

for J « J — 1 transitions -

The coupling between the two modes depends crucially on this asy;nmetry parameter: -

If there is no damping in the system, the interaction Hamiltonian ( 1) can be
directly applied to derive the Heisenberg equations of motion for the field operators
which, after replacing the time ¢ ‘by —n(w)z/c to deal.l with the field propagation
instead of the field in a cavity, l;ake the form

0o stomolae @
" where
L n(wc)'ﬂz (6)

Since the numbers of photons alay are constants of motion for a system without

dissipation, equation ( 5) has a simple exponential solution that can be directly
applied to calculate the Stokes parameters [7].

To deal with the system .with dissipation we adopt the master equation solution
obtained by Chaturvedi and Srinivasan [13]. We assume the zero-temperature reser-
voir and the field being initially in a coherent sta;;e. Moreover, we replace the time
evolution of the density matrix by the coordin@te dependence assuming that the field
propagates along the z coordinate. Thus the darﬁping constants 4 that appear in
the master equation are to be interpreted as the absorption coefficients (per unit
length) related to the linear absorption of the medium. With these assumptions the
Chaturvedi and Srinivasan [13] solution for the density matrix in the number state

basis takes the form

pm+,m_;n+,'n_(T) = (771+, m—lij(T)|n+a n-—)



AT
= KDUPHDHD exp [~ (01 + o)+ Teys (1)
X exp{ [6+<p+ +é.o_+ = [6+(U+ +2do_ ~1)

+6_(o_ +2doy —1)] + A5+,5_(7)] }, (7
where the notation used is the following

ai]"*ﬂ

. 2 l
BE) = exp(—lax|*/2) Rl

or =myg +ng

ay = [ax|exp(ips), (8)

. . (9)

by =my —ny

Tra(r) = A (A7) + ACL(T)] + 1n BEL(T) + Mogm BUM(T), (10)
A N(T) = m, nA(+) (T) + 77n,mA1(1 M)A [B(+) (T) + Bv(.;w)z (T)] y (11)
Nmn = M + 2dn, - (12)
o 22 '
A(:t)( )= _)ﬁ;]—z,,:[l — exp(—A1) cos(PmnT)], (13)
BAC) = g el 09
A=/ =v-/k, . (15)

{
where the indices plus and minus denote the right and left circular components of the

initial field which is in the coherent state jay,a_) with the complex amplitudes a

and a_, X is the relative (with respect to the nonlinearity of the medium) absorption

of the medium for both modes (no circular dichroism), and 7 is given by eq. (-6). -

The solution given by eq. ( 7) is exact and, despite the complexity of Ts,5-(7)
and Ag+,5_ (), its structure is quite transparent. If there is no absorption in the
medium, A = 0, both T's, s (7) and Ag, s_(7) are zero, and the solution simplifies
considerably. We shall use the complete solution { 7) to calculate the expectation

values of the Stokes operators and phase variables.
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3 Quantum effects in the field polarization

The polarization of initially elliptically polarized light propagating through a.'
nonlinear Kerr medium is changed due to the nonlinear interaction, and the changes
can be easily accounted for with the use of the Stokes parameters. In quantum
treatment of the two-mode field considered by us, the following Hermitian Stokes

operators can be defined [15)

5’0 = af+a+ + af_a_,
' S‘l = af+a_ + af_a+,

Sy = —i(ala_ ~at

S3 = aia+ —ala_,

o

a+)1

where a4 (al) are the annihilation (creation) operators of the two circularly polarized

.modes. The quantum mechanical expectation values of the Stokes operators ('16) are -

‘the Stokes parameters describing the polarization of the light beam. For the initial

coherent state |ay,a_) of elliptically polarized light the Stokes parameters have the

values
50(0) = (a4, a|Solay, @) = |ay [? + |a_|? = |af?
51(0) = (a4, a_|Si]ay, ) = 2Re(a%a-) = |af? cos 29 cos 20 an
S53(0) = (ay ya|Slay,al) = 2Im(afa-) = |aj?cos 29sin 20
5a(0) = (@, a-|Sslay, a-) = |ay ! — a_|? = |a|?sin 2y
where |a|? is the total mean number of photons in the ﬁeld, 0= —(p4y —-)/2

defines the azimuth of the polarization ellipse, i.e., the angle between the major axis
of the polariiation ellipse and the z axis, and 7 defines the ellipticity parameter, .
—r/4 < n < 7/4; tann is the ratio of the simi-minor axis and the semi-major axis
of the polarization ellipse and the sign defines its handedness (plus means the right-
handed polarization in the helicity convention).

During the propagation in a nonlinear medium the polarization of the field can

change and the actual parameters defining the polarization ellipse are then given by



[7
tan20(r) = Sy(r)/Sy(r), } s
tan 2p(7) = S3(7)/[S3(r) + S3(r)]'/?,

where
Si(r) = Tr {S’;ﬁ(‘r)} | | (19)

are the expectation values of the Stokes operators for the resulting field. Another
quantity defining the polarization is the degree of polarization defined as
_ 15H(0) + 53(0) + S5

So(7) '
For the initial state |y, a_}, according to ( 17), the degree of polarization P(0) is

P(7) (20)

equal to unity, i.e., the initial field is completely polarized.
" The Stokes parameters of the resulting field can be calculated a.ccording to ( 19)
with the density matrix given by ( 7). The results are the following

So(r) = Z("+m)Pn.m;n,m(T)

n,m

= (las  + la_|?) exp(—A7) = |af? exp(=Ar), (21)

Si(r) =2Re > /(0 + D)(m + Dpamstinsrm(7)

= lalla-lexp{ A7 + T_us(r)+ (las P+ la-?) exp(=Ar) o - 1]
x cos {4 — - + (g |2 = Ja=|*) exp(=A7)sin F — A_y(7)} -
= |aj?cos 29 exp{—/\r + Toi(7) + |af? [exb(—)r) COS T — 1]}

X c0s {20 — |af?sin 27 exp(~Ar) sin 7 F A}, | (@)

Sa(7) = 2Im Z Vin+ 1)(m +'1‘)p,.,,,.+1;,.+1',,,(7')

= |a|? cos 29 exp{—/\f'+ T_11(7) + |a|? [exp(=AT) cos 7 — 1]}
x sin {20 — |a}? sin 2n exp(—= A7) sin 7 + Acia(n)}, (23)

S3(r) = Z(n — M) puminm(T) = |czk|2 sin 2n éxp(—/\r), (24)

where 7 = (1 — 2d)7.
Formulas ( 21)—( 24) are exact analytical results describing the Stokes parameters

of light propagating in a Kerr medium with dissipation. For A = 0 they go over into

“the earlier results of Tana$ and Kielich [7]. On inserting ( 21)—( 24) into ( 18) and

( 20) we get
tan 20(7) = tan {20 — |o|* sin 2 exp(~A7)sin 7 + A_11(7)}, (25)
tan 2n(r) = exp {—|a|*[exp(=A7) cos ¥ — 1]} tan 27, (26)
P?(7) = sin®2n + cos® 2nexp {2laf*lexp(—AT)cos 7 — 1] + 2Ty, ()} .  (27)

The striking feature of the quantum solutions ( 25)—( 27) is that for A = 0 they are
periodic in ¥ = (1 — 2d)7. This periodic behaviour is destroyed by the dissipation.
The essential 'consequenc'e of the quantum treatment of the field are'changes in the

degree of polarization and the ellipticity of the beam which are purely quantum

effects. There are no such changes for classical fields. The quantum field fluctuations

* are responsible for the lowering of the degree of pola.r_izzition [5}]—= [7] and making

that part of the field which remains polarized to be closer to the circular polarization.
The evolution of the degree of polarization is shown in Fig. 1 for different values of
the mean number of phot_on’s‘ a2, p =0,2 =0 /(a), aﬁd A =01 (b). Asitis
seen, the degree of pola.ri‘zationvrapidly falls down to zero for e > 1 when the
initial polarization is linear (7 = 0). For elliptical bolarization, however, there is a
lower bound for the degree of polarization equal to |sin 27|, as seen from eq. ( 27),
which means that there is no change at all for the circular polarization. If there
is no dissipation (a)' the degree of polarization shows quantum periodic recurrences.

The dissipation destroys the periodicity of the evolution, which is clearly seen from

the picture (b). The ellipticity 5(7) calculated according to ( 26) is plotted in Iig.



2 for various ficld intensities, n = #/8,A = 0 (a), and A = 0.1 (b). The value
of n(7) rapidly a.pproa.cheé 7/4 if |la|* > 1, i. e. the polarized part of the field
becomes circularly polarized. Again the dissipati'on removes duantum periodicity of
the evolution. Both effects illustrated.in Figs. 1 and 2 are purely quantum; were the
field classical, there would be no changes at all. In Fig. 3 the quantum evolution of
the 0(r) is plotted. This quantity describes the self-induced ellipse rotation, which
is linear in 7 for classical fields and‘the medium without dissipation (2, 3].
quantum result obtained from ( 25) is periodic for A = 0. The classical result is
obtained from ( 25) for 7 & 1 after replacing sin# with #. Thus all the quantities
defining the polarization of the outgoing beam exhibit quantum features in the long
r limit, despite the fact that they are aeﬁned by the Stokes parameters which are

the first order (in intensity) field correlation functions. In real physical situations we

have rather T < 1, but even in this case the quantum effects can be observed when

la|? > 1.

4 - Relation. to. the phase properties of the field .. |

Classically the az1muth of the polarlzatxon ellipse is dxrectly related to the phase
dlfference between the two arcular components of the ﬁeld e, 0 = —(<p+ -
P )/2 which is also true for the initial coherent state of the field. Thus the rotation
of the polarwatlon elllpse can be mtelpreted as a change of this phase difference,
and 0(1‘) could be consulered as a measure of the phase difference for the resulting

field.

define the quantum phase vana.bles ?, and What can we actually measure ? The

However, in quantum descrlptlon of the field the questions arise: How to
’\Stokes parameters we discuss in thls papex can be measured by simply measuring the

intensity of light that passed tlu‘odgh a combination of the optical elements such as

quarier-wavclcngth plates au(l/01: pola.rizexis. Knowing the Stokes parameters we can

8
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FIG. 1. Evolution of the degree of polarization P(r), for d = 1,7 = 0, different {a|?
(0.25— dotted line, 1— short dashes, 4 long dashes, 16— solid); (a) A = 0, and
(b) A=0.1

0.2 L : . 2 = .
0.00 6.28 12.56 0.00 6.28 12.58
T T

FIG. 2. Evolution of the ellipticity (7), for d = 1,5 = #/8, and the other parameters

are the same as in Fig. 1.



FIG. 3. Evolution of the azimuth 6(7), for d = 1,7 = 7 /8, and the other parameters

are the same as in Fig. 1.
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FIG. 4. Comparison of the evolution of 8(7) (dashed line) and (((;_) - ($+))/2 (solid
line), for d = 1,7 = 7/8,1 = 0, and |a|* = 16. :
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' :
calculate 6(7) according to ( 18) as

= Lignr 3200 2
0(r) = 3 ta.nv 50) (28) .

However, this quantity is not the quantum mechanical expectation value of the phase-

difference operator. The Hermitian phase formalism of Pegg and Barnett [10]— 12]

. allows for direct calculation of the phase-difference operator expectation value. Phase

.properties of elliptically polarized light propagating in a Kerr medium have becn

studied by us elsewhere [16, 17], and here we only recall the results we nec;d. In
the Pegg-Barnett [10]— [12] approach the phase-difference operator is simply the
difference of the phase operators for the two components of the field, and for the

medium with dissipation the expectation value of the phase difference is given by

[17]

~3ds) = 6N = —5ler —9) + Y %ﬂi{ o

n>m

X exp {—)‘%(n + m) ~— |a_|*[1 — exp(—AT) cos(2d7)] + I‘,,_m’o(-r)}
X sin {%[n(n - l) ._ m(m - l)] - |a—|2 exp(—)\T) Sin(QdT) +‘An—m.0(r)} h
—-»bf,_)bfn‘) exp {—):?—T(n +m) — |ag)*[l — exp(—A7) cos(2dr)] + I‘o,,,_m(r)}

. X sm{%[n(n —1)—m(m —1)] = lay|? exp(—A7) sin(?dr)
+AAo,n_n‘1(T)}}- C (29)

This expression is duite different from 0(7) obtained from ( 25). For comparison
we plot the evolution of both quantities in Fig. 4, for |af* = 16, = x/8,d = I,
and A = 0. T};e two quantities behave quite differently for long 7. lowever, for
la]? > 1 and 7 <« 1, i. e in the classical limit, they are indistinguishable as is
already seen from Fig. 4, where |aj? = 16. or course, the difflerence between 8(71)
and the corresponding phasc—diﬂerentge expectation value is not unexpected because

0(7) is calculated as the tan™' function of the measured Stokes parameters and,

11



generally, for any operator quantity a function of its mean value is differert from
the mean value of its function. Thus the measurement of the Stokes pdrarﬁeter, say
S1(7), gives us the expectation value of a function of both the amplitude and phase
variables. Here, the measured phase concept (18] which relates the measurement of
the appropriately normalized field quadrature to the mean value of. the phase cosivne
(or sine) can be invoked. From the form of expressions ( 22) and ( 23) one can expect
that Sy(7) is related to the mean value of the cosine (and SQ(T) to the sine) of the
phase difference. To check this hypothesis we recall the expression for the expectation
value of the phase-difference cosine obtained within the Pegg-Barnett [10]— [12]
formalism (which for physical states is the same as in the Susskind-Glogower [8, 9]

af)pfoach), The formula obtained by us earlier [17] is as follows

(COS($+ - ‘}—)) = Re an,m+l;n-;-1,m(7')

= exp [-A7 4+ T_y1(7)] Z bff)bflt)l bsn_)bs:ll
X exp[—A7(n + m)] cos [py — - + (n —m)F — A_11(7)}. (30)

A comparison of ( 30) and (722)_immediately shows that both expressions are de-
fined by the same matrix elements of the density matrix, and this is the presence
of W'in ( 22) that allows to sum up the series in ( 22). Its absence
in ( 30) prevents the summation to be performed there. Replacing bﬁ)l with b5 in
( 30) makes it possible to sum up the series giving the same expression as ( 22), apart
from the factor 2|ay |la_|. Thus it is tempting to consider the properly normalized

S1(7) as a measure of the phase-difference cosine. What is the proper normalization

in this case 7 From the form of eqs. ( 22) and ( 23) one would think of the normal- |

ization by \/S'm;—)- leading to cos 20(7). However, the comparison of ( 22)
and ( 30) prompts us thal; the proper normalization is rather by /52(0) + S2(0)
which leads “to the formula that should be very close to the expectation value of
the phase-difference cosine. In fact, for |a}* 3> 1 both formulas give indistinguish-

able results. In Fig. 5 we have shown the evolution of three different quantities:

12
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FIG. 5. Comparison of the evolution of S;(7)/[S}(0) + S3(0)]*/* (solid line),
(cos(és — 6_)) (long dashes), and cos({¢4 — 6_)) (short dashes), for d = 1,y =
7/8,la|? = 4, and (a) A =0, (b) A = 0.1.

S TSNS S
0.0 0.1 0.2

FIG. 6. The same as in Fig. 5 but for d = 1,7 = x/8, |a|* = 16, and A = 0.
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(cos($+ — ¢_)) calculated according to ( 30), the measured phasc-difference cosine
given by $y(7)/[S2(0)+52(0)]/?, and cos({¢4) —(¢-)). It is secn that even for jo|? =4
taken in the figure the agreement between (cos(¢y —¢_)) and 5,(7)/[S2(0)+S2(0)]'/?
is quitc good, and it becomes much beétter when |a|? increases. The third quantity,
qos(($+) - ((2)_)), behaves quite differently for long 7. However, for the most impor-
tant from the experimental point of view case, i. e. 7 < 1 and |af? > 1, all three
quantitics evolve in a'similar way, as seen from Fig. 6, where the initial stage of the
evolution is shown for |a|? = 16,7 = #/8,d =1, and A = 0. -

In conclusion we can say that the properly normalized Stokes parameters are a

good measurc of the expectation value of the phase-difference cosine (or sine), il

la|? >> 1, for any values of 7. For 7 « 1 they can also be considered as a good

approximation for cos({¢4) — (¢_)) (or sin({B1) — ($-))).

5 Conclusion

In this paper we h#vc studied the quantum cffects'in the polarization of ellipti-
cally polarized light propagating in a Kerr medium with dissipation. Exact analytical
formulas describing the degree of polarization and the parameters of the polarization
cllipse have been obtained for the medium with dissipation and initially clliptical
polarization of the ficld. It has been shown that ‘owing to quantum fluctuations of

the ﬁcld, the initially fully pola’rizc'd light becomes partially polarized. For elliptically

polarized initial light there is, however, a lower bound for the degree of polarization.

P which is equal to [sin2y|. Another interesting [eature of quantum evolution is
the fact that the ellipticity 5(7) approachés £x/4, i. e, that part of the ficld which
remains polarized approaches a circular polarization. Presence of dissipation in the
medium removes the quantum periodicity of the evolution. Qur exact analytical for-
mulas allow for giving precisc answers regarding the role of dissipa‘l.iox.l in the quantum

cvolution.

We have made a comparison between the Stokes paramicters which are directly .

14

measurable quantities and the phase broperties of the field. We have shown that the
appropriately normalized Stokes parameters can be considered as a'measure of the

expectation values of the phase-difference cosine (or sine).
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