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MaxaHbKOB B.r. HAP. 
HenHHeHHble CilHHOBble BOJ!Hbl H ABYMepHblH 
KJJaccHqecKHH aTTpaKTOP 

El?-91-22O 

ITpOBOAHTCH HCCJJeAoBaHHe nerKOOCHOro MarHeTHKa re113eH-
6epra c,o CITHHOM S = I nocpeACTBOM o6o6ll(eHHblX KorepeHTHblX 
COCTOHHHH rpynnw SU(3). ITOATBeP~AeHo HaJJHqHe BWCOKoqa­
CTOTHOH MarHOHHOA MOAW. TionyqeHw CHCTeMW ypasHeHHH, onH­
CbIBalOU(He cna6OHeJJHHCJ1Hble CITHHOBble BOJ!Hbl H B CTaJ.J,HOHapHOM 
npeAene CBOAHII\HeCH K HYlll. AHaJJHTHqeCKHe H qHCJJeHHble HC­
cneAoBaHHH YK83blB8IOT Ha HaJJHqHe B 4-MepHOM CITHHOBOM qia30-
BOM npocTp8HCTBe ABYMepHoro ceqeHHH /MHOroo6pa3HH/, HBJJH~ 
merocH aTTpaKTOPOM. 

Pa6oTa BWITOJJHeHa B na6opaTOPHH BWqHCJIHTeJJbHOH TeXHHKH 
H 8BTOM8TH381.l,HH OIDIH. 
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Makhankov V.G. et al. 
Nonlinear Spin Waves and 
Two-Dimensional Classical Attractor 

El?-91-22O 

An easy-axis S = 1 Heisenberg ferromagnet is studied 
by means of generalized spin coherent states defined on 
the SU(3) group. An additional high frequency magnon mode 
is revived. Systems of equations are obtained describing 
weak nonlinear spin waves which reduce to the familiar 
NLSE in the stationary limit. Analytical and numerical 
studies of the system show that in the four dimensional 
spin phase space there is a two dimensional section (mani 
fold) which is an attractor. This manifold (S 2 ) coincides 
with that of th~ spin phase space of the S = 1/2 (ors~) 
model which can be described by the SU(2) coherent states 

The investigation has been performed at the Laboratory 
of Computing Techniques and Automation, JINR. 
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Investigation of the quasi-one dimensional magnetic 

systems attracts a great attention because of simplicity of 

their mathematical description and possibility easy to 

check theoretical prediction by experimental data. The most 

investigated models conserve the square of classical spin, 

but this property or magnets reveals near the Curie tempe­

rature only, and at the higher temperatures square of clas­

sical spin does not conserve. Our approach in this problem 

is based on the using or the generalized cs of the SU(3) 

group, which takes into account this property. Such a CS 

was constructed in the paper (1), but parametrization used 

in (1) is not convenient. Therefore we shall use the cs, 
that up to reparametrization coincides with the above­
mentioned SU(3) cs. 

We construct the coherent states in terns of real 
functions in the following form (see also (2)) 

where 
t > = U(e,,,7)exp(2igQxy)I u > , 

( 1) 

Q =
2
-l 0QQ, . [ 0 0-1 ] 

xy -1 0 0 

is quadrupole moment, I u > is a referent state, and 

U(e,,,7) 
I\ I\ I\ 

-i~S
7 -iesY -i7S 7 

.. e e e 
(2) 

In fact the last function is a unitary operator, being 

Wigner function, that provide us to proceed into own mobile 
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(trial functions) using 

group, the group SU(3) 

the generators of corresponding 

for model under consideration. 

However,· even in the case of the standard Hamiltonian of 

the Heisenberg model, the quasiclassical behaviour of the 

S=l system can differs radically from one defined by 

Landau-Lifshitz equation as we shall see below (see also 

[10]) and its description requires to leave the sphere 

SU(2)/U(l): S2= 1. Therefore, description on the basis of 

SU(3) CS constructed on the CP2 space is more adequate. 

We shall investigate the S=l easy-axis o>O) Heisen­

berg model with exchange anisotropy 

H =-JI ( g g + 0 A A ) szsz (1) 
ea j j+l j j+l 

j 

and with single-ion one 
A A 

H =-JI ( s s + A A ) 0 szsz (2) 
s I j j+l j j 

j 

by using the SU(3) and SU(2) cs and then compare results. 

Let us remind the GCS constructed in [10], where they 

have the form 

I 1/J > = e 
I IO> 

here ID> - chosen referent state, 1 - elements of coset 

space ~~25 =SU(2S+l)/SU(2S)@U(l). Dimension of this space is 

2(2S+l)-2=4S. In the S=l case the SU(2) CS is 
1 

I 1/J > = --- { ID>+ v21/Jll> + 1/1
2

12>} (3) 
1+11/11 2 

and the SU(3) version is 

( 4) 

The S=l quantum systems live in 2(2S+l)-2=4 - dimen-

sional spin phase space, so the Hamiltonian 

the spin GCS (1) governs behaviour of the 

two- dimensional se~tion 

averaged via 

system in the 



c = ✓21{1, 
1 . 

( = ! }"2 
2 2 "1 

(5) 

of this space. 

It should be stressed, that in the SU(J) representa­

tion the conservation law 

S
2= 1 (6) 

breaks down in contrast to the SU(2) one, so we have 

S2+ { <S-S 2 ><S+Sz> + <S 2 S-><S2 S+> + <S_S_><S+S+> + 

+ ( 1 _ <S
2
S

2
> r } = 1 , (7) 

i.e. conservation of the squire of classical spin plus some 

terms of quadrupole nature. 

The Hamiltonians (1) and (2), averaged via SU(J) cs 
are 

H - I r ( A+ A (<sz>) 2 ) <S > <S-> + -
ea 

2 X X 

A+ A_ 

(<is'>)'- • (<S'>)'} dx - <S ><S > - (8) 

and 

H - I r ( A+ A c<sz>) 2 ) <S > <S-> + -s I 
2 X X 

- <S ><S > - (<S2 >) - o (<S S 2 >) dx . (9) 
A+ A_ A 2 AZA 2} 

The classical vacuum states in both models (8) and (9) are 

(1= (2= Q (10) 

hence A+ A_ "'z 
<S > = <S > = o, <S > = -1 and the quadrupole moment 

in (7) vanishes, i.e. the SU(J) easy-axis vacuum coincides 

with the SU(2) one. The GCS corresponding to this classical 
vacuum 

I 1/J > TTJ I O>J ( 11) 

4 

is just the same as in SU(2) model. 

In order to investigate a linear waves propagating in 

both systems we expand the Hamiltonians (8) and (9) up to 

0( 1(1 2
) and obtain the dispersion relations 

w = k
2
a

2+ 20 
1 0 

w
2
= 4(1 + o) 

for model (1) and 

w = k
2
a

2+ o 
1 0 

w = 4 
2 

(12.a) 

(12.b) 

(13.a) 

( 13 .b) 

for model (2). The relations (12.a) and (13.a) describe the 

low frequency (l.f.) waves of field ( and coincide with 
I 

those for SU(2) version. However, there appear additional 

high frequency (h.f.) modes of the field (
2 

with disper­

sions (12.b) and (13.b) .Note that quadrupole terms in the 

Hamiltonians do not vanish. 

Let us proceed to investigate weak nonlinear excita­

tions in system (1) and (2). Taking into account terms up 

to 0(1(1 4
) in classical Hamiltonians (8) and (9) we get 

H = a
2

1( 1
2
+ 201( 1

2
- 2((

2
( + (

2
() + 4(1+0) I( 1

2 

ea O lx 1 1 2 1 2 2 

+ (1-Jo)IC 1
4

- 8(1+0)1( 14
- 2(4+5o)IC 12 1c 12 

1 2 1 2 

for exrhange anisotropy and 

H. = a 2
1( 1

2
+ ol( 1

2
- 2(i:2( + (

2
() + 41( 1

2 

s1 O Ix 1 1 2 1 2 2 

+ (1 - o) I( 1
4

- 81( 1
4

- (8 + o) IC 1
2

1c 1
2 

I 2 1 2 

for single-ion anisotropy cases. 

By use of the equations of motion in the 

SU(3)/SU(2)@U(l) space 

oH oH 
i( + (1+1( 1

2
+1( 1

2
) { (1+1( 1

2
) - + ( ( -} 

I I 2 I o( 1 2 0 ( 
I 2 
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(14) 

(15) 



(16) 

. { oH 
i(2+ (1+1(112+1()2) (1+1()2) -::+ 

0(2 

oH} 
(1(20( 

1 

0 

we derive the systems of equations 

i( - ( + 2o(- 4( ( + 2(1-o)I( 12(= o, 
1 lxx 1 1 2 1 2 

(17.a) 

i ( + 4 ( 1+0 ) ( - 2 ( 
2 = o 

2 2 1 
(17.b) 

and 

i( - ( + 28( - 4( ( + 21 ( 12
( = 0, 

1 lxx 1 1 2 1 2 
(18.a) 

i( + 4( - 2(
2 = 0, 

2 2 1 
(18.b) 

where we took into account that ("' ( 2/2 in the vicinity of 
2 1 

vacuum. 

Looking for a solutions of (17) and (18) in the form 

iw t 

(
1 
(x, t) n

1 
(x) e 

(
2
(x,t) = n

2
(x) e 

1 

iw t 
2 

we see that for both models 

w = 2w 
2 1 

From (17.b) and (18.b) 

and 

2 

nl 
n = 

2 
2 - w + 28 

n= 
2 2 

2 
nl 

- w 

(up to O (1/» an estimations 
1 

(20) 

( 21) 

(22) 

follow. So the first two equations (17.a) and (18.a) of sy­

stems are reduced to conventional nonlinear Schrodinger 

equations (NSE) in the above approximation 

n - ( 20 - w) n + 2on3= o 
lxx 1 1 

(23) 

and 
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11 

} 
~ 
II 
J,\ 
(', 

!J : l 

n - (a - w)n+ on3= o, 
lxx 1 1 

(24) 

which possess well-known solutions. 

Expressions (20)-(24) mean, that weak nonlinear spin 

waves propagating in the easy-axis vacuum create solitons 

in such a way, that the field (
2 

is coupled to the (
1 

one, 

so the quadrupole terms vanish (naturally, up to O(n4
) 

terms). As a result the system tends "to live" in the two­

dimensional SU(2) cross-section of the full spin phase 

space [IP2
• 

Consider, whether any relic from the full phase space 

remains. Comparing equations (23) and (24) with the corres­

ponding ones obtained i~ the SU(2) model (S=l) 

ii/I 1/1 + 281/1 - 4oll/Jl 2 1/J 
xx 

( 25) 

and 

ii/I 1/1 + 81/J - 28 11/J 1
2

1/1 
xx 

( 26) 

and taking into account (5) we see, that t~e both corres­

ponding equations coincide, i.e. they describe the same 

stationary solitons. 

Let us consider computational aspect of the problem. 

We carry out computer simulation of systems (17) and (18) 

by means of the well-known explicit" leap frog" scheme. 

This scheme is stable for T ~ h2/4 , so we have chosen T 

= 0.002, h = 0.1. Computations were carried out in the 

interval x e [-60,60) with zero boundary conditions. 

We check conservability of scheme by computing the two 

first integrals of motion: 

Hamiltonians in plane metric 

H = - I { I ( I 
2 
+ 28 I ( I 

2 
- 2 ( (

2
( + (

2
( ) + 

ea lx 1 1 2 1 2 

+ 4 ( 1+0 ) I ( I 2 + ( 1-o ) I ( I 4 
} dx, 

2 1 
(27) 

H = - I { I ( 1
2 
+ 0 I ( 12 

- 2 ( (
2 

( + (
2

( ) + 
s! lx 1 1 2 1 2 
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+ 4 I ( I 2 
- I ( I 

4 
} dx, 

2 1 
( 28) 

integral of particle number 

N = I { 1(
1

1
2
+ 21(2 1

2
} dx. ( 29) 

In computer experiments we investigate stationary so­

liton-like solutions of type (19) where 
2 

b 7j 1 

7j = 
1 

cosh(i/ 20-w x) 
1 

(30) 7j = 
2 2 - w + 20 

1 

for the system ( 17) , and 

b. 
2 

7j 1 

7j = 
1 

cosh(i/ o-w x) 
1 

7j = 
2 2 - w 

1 

( 31) 

for the system (18), and bis a free parameter. 

Behaviour in time of the value 

l:;. I<: - r2; I 
x e [ - L' L) 2 "1 2 

sup (32) 

in computer runs shows us how close to the SU{2) cross-

section the system is. 

The study of stationary solutions (30) and (31) shows 

their stability and the both systems lie in the SU(2) sec­

tion for a long time. For example, experiments with b=0.75 

and b=0.4 show that the value oft::,, conserves and does not 

exceed 10-2 and 10-3
, correspondingly, up to time T=30. 

Integrals of motion are conserved with accuracy 

-6 
l:;.N/N ex 10 , 

for both systems. 

l:;.E/E ex 10-6 (33) 

Then we investigate a perturbed solutions. The both 

systems (17) and (18) display that the fields (
1 

and (
2 

alter in such a way, that the value of t::,, decreases in time 

and the systems tend to live in the SU(2) section. 

8 
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Resume 

A vacuum states of easy-axis S=l magnet lie in the 

SU(2) section. Linear waves are independent trajectories 

filling all the fourdimensional space. They consist of two 

branches: the l.f. one, which lies in the SU(2) section, 

and the h.f. one, that fills the rest of the space. The 

weak interact~on between brunches ("trajectories") results 

in that a part of h.f. brunch is captured by the l.f. one 

and they both come to the SU(2) section. Computer experi­

ments show, that initial states closed to stationary solu­

tions evolve in such a way that value sup I( - ( 2 /2i 
2 I 

conserves or decreases in time. This behaviour of the 

systems mean, that for both easy-axis models (1) and (2) 

the SU(2) cross-sect~on is the attractor for classical 

trajectories in the spin phase space of the initial quantum 
system. 

Classical phenomenological behaviour of the quantum 

ferromagnet according to the Landau-Lifshitz approach is 

reached via the asymptotic tend to the SU{2) attractor. 

We are grateful to prof.S.S.Moiseev for very illumina­
tive discussion. 
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