








(trial functions) using the generators of corresponding
group, the group SU(3) for model under consideration.
However, even in the case of the standard Hamiltonian of
the Heisenberg model, the quasiclassical behaviour of the
S=1 system can differs radically from one defined by
Landau-Lifshitz equation as we shall see below (see also
[10]) and its description requires to leave the sphere
SU(2)/U(1): s’= 1. Therefore, description on the basis of
SU(3) CS constructed on the CP2 space is more adequate.

We shall investigate the S=1 easy-axis ( >0 ) Heisen-
berg model with exchange anisotropy
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by using the SU(3) and SU(2) CS and then compare results.
Let us remind the GCS constructed in [10], where they

have the form

| ¥ > = e 0>
here |0> - chosen referent state, 1 - elements of coset

space CPZS=SU(2S+1)/SU(2S)®U(1). Dimension of this space is

2(2S+1)-2=4S. In the S=1 case the SU(2) CS is
1
| ¥ > = — { 0> + V2yl1> + w2I2>} (3)
1+1yl
and the SU(3) version is
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The S=1 quantum systems live in 2(2S+1)-2=4 - dimen-
sional spin phase spacé,<so the Hamiltonian averaged via
the spin GCS (1) governs behaviour of the system in the

two~ dimensional section

afé e e
N »:,‘2_153’ ‘3{;@'3:1‘1 g‘i',j %
r‘ : » ‘

1 ';e’bbr

e,




= V3 =1
=V, =3¢ (5)
of this space.
It should be stressed, that in the SU(3) representa-

tion the conservation law

s%= 1 (6)

breaks down in contrast to the SU(2) one, so we have
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s%+ { <878"><8"S%*> + <S87S7><S5%S™> + <8787 ><58'8"> +
A A 2
+ [ 1 - <s’s’>] } =1, (7)

i.e. conservation of the squire of classical spin plus some
terms of gquadrupole nature.

The Hamiltonians (1) and (2), averaged via SU(3) CS

are
2
a
0 Ay A_ A 2
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= <8'><8 > - (<8>)"- §(<8™>) dx (8)
and
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The classical vacuum states in both models (8) and (9) are

¢=¢=0 (10)
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hence <5'> = <§™> = 0, <S§"> = -1 and the quadrupole moment
in (7) vanishes, i.e. the SU(3) easy-axis vacuum coincides

with the SU(2) one. The GCS corresponding to this classical
vacuum

Ly > = m,lo>, (11)

is just the same as in SU(2) model.
In order to investigate a linear waves propagating in
both systems we expand the Hamiltonians (8) and (9) up to

o IC|2) and obtain the dispersion relations
w = k2a§+ 28 (12.a)

w=4(1 + 8) ~ (12.b)
for model (1) and

w = k2a§+ 5 (13.a)

W= 4 (13.b)
for model (2). The relations (12.a) and (13.a) describe the
low fregquency (l.f.f waves of field C1 and coincide with
those for SU(2) version. However, there appear additional
high frequency (h.f.) modes of the fiéld C2 with disper-
sions (12.b) and (13.b).Note that quadrupole terms in the
Hamiltonians do not vanish.

Let us proceed to investigate weak nonlinear excita-
tions in system (1) and (2). Taking into account terms up

to O(ICI“) in classical Hamiltonians (8) and (9) we get

H = allc 1% 2810 1°- 2T+ ¢T) + a(1+8)1¢,1°
+ (1—36)1§1|“- 8(1+8) 1¢_I°~ 2(4+58) 1€ 171, I (14)
for exchange anisotropy and
H_ = allg, 1% s1g 1% 2(T+ 3T + a4l )
(1 - 811" 81 1= (8 + )i 171G, 1 (15)

for single-ion anisotropy cases.
By use of the equations of motion in the
SU(3)/SU(2)eU(1l) space
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we derive the systems of equations

i - ¢+ 2$c1— 4T ¢+ 2(1-8)1¢,1%C,= o, (17.a)

i+ 4(148)¢,- 28°= 0 (17.b)
and

i&l— g, -+ 280 - 4T, ¢+ 21¢ 1% = o, (18.a)

i&2+ ag - 2cf= 0, (18.b)

where we took into account that C;=Cf/2 in the vicinity of
vacuun.
Looking for a solutions of (17) and (18) in the form
iwlt
= n,(x) e
iwzt
= n,(x) e

g, (%,t)

g, (x,t)
we see that for both models
w, = 2w1, (20)

From (17.b) and (18.b) (up to O(n?) an estimations
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n,= —————— (21)
2 - w + 28
and
2
nl
n=—— (22)
2 2 - w

follow. So the first two equations (17.a) and (18.a) of sy-
stems are reduced to conventional nonlinear Schrodinger
equations (NSE) in the above approximation

n,,o (28 - w)mn+ 26nf= 0 ' (23)

1xx

and
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n, - (8 - w)n+ snf= o, 7 (24)

1xx

which possess well-known solutions.

Expressions (20)-(24) mean, that weak nonlinear spin
waves propagating in the easy-axis vacuum create solitons
in such a way, that the field <, is coupled to the ¢, one,
so the gquadrupole terms vanish (naturally, up to O(nﬁ
terms). As a result the system tends "to live" in the two-
dimensional SU(2) cross-section of the full spin phase
space @PZ.

Consider, whether any relic from the full phase space
remains. Comparing equations (23) and (24) with the corres-
ponding ones obtained in the SU(2) model (S=1)

iy = y_+ 289 - aslyl3y (25)

and

iy =y + sy - 281yl%y (26)

and taking into account (5) we see, that the both corres-
ponding equations coincide, i.e. they describe the same
stationary solitons.

Let us consider computational aspect of the problem.
We carry out computer simulation of systems (17) and (18)
by means of the well-known explicit " leap frog " scheme.
This scheme.is stable for T = h2/4 , So we have chosen T
= 0.002, h = 0.1. Computations were carried out in the
interval x € [-60,60] with zero boundary conditions.

We check conservability of scheme by computing the two
first integrals of motion:

Hamiltonians in plane metric

Hea -7 J { Ich'2+ 25|C1|2— Z(ETCZ"' CfEZ) +
+a1+8)1¢, 1% + (1-8) I¢ I* } dx, (27)
2 2 =2 >
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+ a1, - gt } ax, (28)

integral of particle number

N = J { IC1I2+ 2IC2|2} dx. (29)

In computer experiments we investigate statilonary so-

liton-like solutions of type (19) where

’ | o (30)
= 30
= n“‘
Ea ' 2 2 - w + 23
cosh (Vv 28-w, X) 1
for the system (17), and
2
b n,
= 31)
= n= (
n, ’ 2 s - o
cosh (V §-w X) 1
for the system (18), and b is a free parameter.
Behaviour in time of the value
A= sup ¢ C/2] (32)

xel-L,L1

in computer runs shows us how close to the SU(2) cross-
section the system is.

The study of stationary solutions (30) and (31) shows
their stability and the both systems lie in the SU(2) sec-
tion for a long time. For example, experiments with b=0.75
and b=0.4 show that the value of A conserves and does not

7 exceed 107° and 10-3, correspondingly, up to time T=30.

Integrals of motion are conserved with accuracy

AN/N « 107°, AE/E « 10°° (33)

for both systems.

Then we investigate a perturbed solutions. The both
systems (17) and (18) display that the fields ¢ and (,
alter in such a way, that the value of A decreases in time
and the systems tend to live in the SU(2) section.

Resume

A vacuum states . of easy-axis S=1 magnet lie in the
50(2) section. Linear waves are independent trajectories
filling all the fourdimensional space. They consist of two
branches: the 1.f. one, which lies in the SU(2) section,
and the h.f. one, that fills the rest of the space. The
weak interaction between brunches ("trajectories") results
in that a part of h.f. brunch is captured by the 1.f. one
and they both come to the SU(2) section. Computer experi-
ments show, that initial states closed to stationary solu-
tions evolve in such a way that wvalue sup Icz— cf/zf
conserves or decreases in time. This behaviour of the
systems mean, that for both easy-axis models (1) and (2)
‘the 5U(2) cross-section 1is the attractor for classical
'trajectories in the spin phase space of the initial quantum
system.

Classical phenomenological behaviour of the quantum
ferromagnet according to the Landau-Lifshitz épproach is
reached via the asymptotic tend to the SU(2) attractor.

We are grateful to prof.S.S.Moiseev for very illumina-
tive discussion.
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