


1. Introduotion

it is well known that the photcemisslon experiments on the d-
band transition metals deviate from the results of the band atructure
calculationa. Eapecially nickel is an example for which discrepancles
are very serious. For example, the measured a-band width is smaller
by about 30% than the caleculated one’ 13/
ture appears on the quaeiparticle band structure about 6 eV below the

Fermi laveljn'sf and the exchange splitting near the top of the fifghs
/1|"'/

, & resonant satellite strue-—

d-subband 1e only half as large ae the predicted from band theory

Now it is generally accepted that these effects can be understoocd as
coneequences of strong correlations in the Ni d-bands.

A realiptio model to describe such electron correlations in narrow
energy bands was p}oposed by Hubbardlg/, and in the pimpleet case the
Hamiitonian takes form

H-—-Z'Jc.-jaf"s Qe+ Up Lo Mis Mg (1)
iJ'G L8

where the creation (annihilation) operators for electrone in Wan -
nier states associated with the i-th site index with § are given
by Cl; (Cl;q) . The operatdr M;g 1a the corresponding number opera-
tor and U characterizes the strength of the intra-atomic Coulomb
interaction. '

The electron correlation effects can be allowed for by introducing
the self-energy 2 (K,E) . The real part of this function oorresponds
to the shifted energy eigenvalues and the imaginary part implies broaden-
ing of the bends. Once we have it, we can oalculate the one-electron
gpeatral funetion ’

: AR E)=—% Im (E'-ep~ T (R EDY ()

Without the many-body intersctions the spectral function (2) reduces
to a.gset of delta functions peaked at the corresponding band energies.
Due to many-body interactions, the ppectral function will be extended
over a wide energy range and w;ll show more or' lese pronounoed struo-—
ture. In recent years,' there has been a oconsiderable amount of expe-

rimental work dealing' with the metal eleotronic band etructure. The
experimental band structure determined, e.g. from photocemiseion data‘:
ogrresponda for every :-value to the maxima of the epectral function
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(2)}. In this context, it is evident that the self-energy 2(2 E)
is a very important characteristic of the many-electron system and its
careful calculation is very desirable. ‘

Since the three-dimensicnal Hubbard model is not integrable, there
are different approximate methods for including the correlation effeects.
In apite of many attempta which seemed to be very reasonahle/1o_1ul w
have decided to calculate the self-energy within second—order in W
( W being the bandwidth) perturbation approach/15_23/. Although the
perturbation series expansion has not had its convergence properties
investigated and 1t may be convergent for small values of the parameter
WW  or the convergence may only be aaymptotia, it 1s also (eapecially
in recent years) widely uaed in investigations of the heavy fermion
problem described by the Periodic Andersen Model (PAH)lau 28/. This me-
thod of descripfion of the correlation effects automatically reproduces
the Fermi liquid behaviocur which 1s usually expected to he fulfilled’eg/
Most of the existing approximations have difficulties in reproducing
properly thia Fermi liquid behaviourla?l (for PAM).

Recently, Bulk and Jelitto/17/ have performed the caloulations of
the quasiparticle band structure using the one-band Hubbard model. The
correlation effects were included within the modified second-order pes=-
turbation theory intended to describe also stronger correlations than
one usually tries to describe within the standard second~order perturba-
tion approach. In addition, the calculations were performed in a self-
econslstent way, although only the quasiparticle oooupation numbers
and the chemical potential wer} caloulated in a selfoonsistent scheme.
It means that the quasiparticle band structure needed for the ealcula-

- tion of the self-energy was unchanged during the selfconsisteney procees.
Also, the self-energy they used depends on a wave vector only through
the first k -dependent term in a special expansion formula. As we have
shown in Eef./JO/,.sueh a short expﬁnaion formula oan give for the melf-
energy in some oases results which are even worse than the obtained
within so—called locel approximation (iLdependence of the self-energy

is retained absolutely).

The purpose of this work is to investigate the quasipartiole band
structure based on a more realistic version of the Hubbard model 1),
namely, on the degenerate d-band model. We anlao present the self-energy
curves with full-ﬁ-dependence as well ap we use this nearly axactly
calculated self—energy for calculations of the spectral density of the
quasiparticle states, quasiparticle energy bands and quasiparticle den-
sity of atates. We have performed all these caloulations within non-aslf-
consistent and aeIfopnaistent waya. In the oase of selfconsistent app-
roach we have used =t each next step of the iteration process the e&ner-—
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gy band structure obtained in the preceding step.

The paper is organized as follows, In the next section we present
the results of the -ﬁ —dependent self-energy calculations. In Sec. 3,
we give the spectral density of states, the quasiparticle energy bands
and the quasiparticle density of states celculated within the fcn-self-
consistent approach and in Sec. 4 within the selfconsistent approach.

Sec. 4 contains alsc some remarks and conclusions.

2. The second-order U -perturbation seif—energy

For the sake of completeness we shall briefly outline the main

.1deas used in computation of the second-order contribution to the self-

energy. We refer to our previcus paper for more detailsjjo/, see also
for independent similar calculations performed for PAM in/26/
The second-order contribution to the self-energy for electrons in
d-band degenerate Hubbard model reads (we consider a paramagnetic case
and the spin indices will be omitted):
M(E,E)= i{éz‘ o (-fe: - fopd + (- 42 fag froz
N* £=

Eveg-crg-<3.3

The numerical factor 9 correspends to all the available scattering

(23

channels for a given sbin electron, Now U is the average cn-site
Coulemb integral taken to be the same for each of the five d—bands.
The expression for the self-energy (2) can be arranged in the

form (/15-17,20,25-28, 30/)

M(EE)= 9U‘Z & E f f [ t“‘:‘”‘i ‘”‘jjr N, 05 DCR ) DR DR

.

= gtjzﬁgjefklg,ﬁ4lfﬁiE) (3
7

where the function N (W1, t%,th) contains all f* factors
appearing in Egq. (2) anda R denotes atomic positione in the erystal.
The functions 1)(R E) are "the lattice density of states" correspond—
ing to the lattice Green functlons/31 32/

G—cﬁ,w:—"—ﬂe"""?(g-e.,)", (4)
NT k

Note that in formula (2) a8 weil as in formula (3) we have to do asix—
feld integration. This rather ineconvenient, from computatiohal point
of view, formulas can be transformed as follows/17’26'30/:

M(EEJ=9UZS=ZO € (RSDIM (R E) | | )
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where e(Rs k)= Z ;‘Eﬁ & (RS K )=1 y Rs=l§‘|
R P FE
DCR% E)=D" EY

and IDFE(E) corresponds to the band structure €z . Here R¥ denotes
the position vector of the atoms lying in the same neighbour shell and
the sum is performed over neighbour shells. Such a reformulation of the
initial expansion formulas for P7(E:£E) is possible because "the latti-
ce density of states” D(RS E) 1is the same for all vectors B° con—
necting the central atom with atoms lying at the same digtance from it
(here " s "lenumerates the succegsive nelghbour shells). The fuﬁctions
e(]QfE?) for successive values of S have been given 1n Ref. /30/ In

this way, in order to obtain the gelf— —energy at many g ~points of the
Brillouin zone (BZ), one has to calculate the 3-fold integrals at the

beginnlng of the problem and multiply them by functions (RS °) . All
k- -dependence of the self-energy 1s contained in the functions & (RS )
and energy—dependence in the 2-fold integrals. The first term in expan—
sion (5) corresponds to the lecal approximation of Treglia et a1/15/ and
the first two terms correspond to the formula used by Bulk and Jelitto
in investigations of the one-band Hubbard mode1/17/. Note that in order
to perform self-consistent calculations, one should begin working with
the self-energy expressed in the general form

M(E,c)=-9[%f Z G

UMULP k¥$
rather than in the form (2). Here, T denotes the temperature and 0,
the Matsubare frequencies, A1l further calculations remain the same ex-
cept for D( R*E) to be inserted

= (i, )G—r"‘i("w i, - um.)G-a (ven)

-
8

D(REY=- % Tm 4 ) G,?(E)edk'R_ (6)
&

This idea was used by Schweltzer and Czychell irn second-order Lf—perw
turbation treatment around the nonmagnetic Hartree-Fock solution of PAM
/27/. They gave also another efficient algorithm for computations of thé
3-fold integrals appearing in Eg. (5). Note that usually one calculates
the imaginary part of the self-energy and this means one has to perform
two~dimensional integrals over some appropriate area in the energy space
/337 Instead of this procedure, Schweitzer and Crycholl transformed the
3-fold integral present in (5) to the following form:
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where Aﬁ()l)'_“ Td? .D(R,?))(_(?)é_‘.)'z) .
Bﬁ(ﬁ):jd? D(R 'Z)(f'f(‘?))e"d)'e’ \

and J‘m E>0 , -DC'Q,E) is given by Eq.(6). This way of calculations
is very useful especially in the nonzero temperature case.

3. Belf-energy, spectral density and quasiparticle density of states:
non-selfconsistent results.

Let us applf the results of the previous section, Egs. (2—4), for
the calculaticns of the self-energy for a model electron band structure,
Here, we compare the self-energy curves calculated within the commonly
used local approximation with those calculated with full ﬁ;dependence.
In additicn,we calculate the self-energy along formula {2) using the
Honte-Carlo integration method. The 'double (P.d.) sum in Eq. (2)
was performed using for each ?—vector about one million of randoem ge—
nerated pairs of vectors (,5’,@') . First, we calculated  the imiginary
part and in the next step, the real part by the Kramers—Kronig rela-
tion. The calculations here done for a model SC crystal lattice with
degenerate electron energy bands €z calculated in a tight-binding
scheme for s—wave funtions with nearest-neighbour hopping integrals,
only. The bandwidth W equals 6 eV and the band limits are {-3eV, 3eV).
We have checked that formula (5) with the first six terms included
" works very well and such expansion can be served as a fast method (in
comparison with the Monte-Carlo type integration) for the self-energy
caleculations. Here, we give extensive numerical results for various
bandfillings, Figs. 1-5. The full curves denote the results of Monte—
Carlo type integrations, the broken curves represent the results obtai-
ned within local approximation (only the first term in Eq.(5) is taken
into accgunt) and the dotted curves show the results obtained by using
Eq.(5) with the first six terms included. In all these figures we give
only the imaginary part of the self-energy. In Figs. 1-4 and 5 the
bandfilling is equal toNg<1.25, 2.50, 5.0, 7.5 and 8.75 electrons/bands,
respéctively. For all cases we show the results for three values of the
T:)-vectof, namely for E=(000)W1'_Pu k= (1003 —X ’ = (111 T — R.
At the first sight, we can conclude that the :Ldependence of the self-
energy is most prominent at the point I of BZ . pt this point of k-
Space there are largest differences between the local approximation
and exact calculations. They can be explained by looking at the for-
mula (5) (ef. /17/). The successive terms in this expansion formula
enter into the general expression for the self-energy with "weighte"
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the other hand, the local approximation

seems to be rather unsatisfactory, es-
pecially for bandfillings far away from
the half-filled case - see, e.g. Ne=
2.5 el./bands, point [+ for E<LEp
and point R for EDEg ;Ne =1.25 el./bands, point R for E<E; ,as
well as, for EDEp ;Ne =7.5el./bands, point [ for E<LEr i Ne=8.75
el./bands, point [* for E<Ep . So large discrepancies between the
exact results and the obtained withir local approximatioq may lead, a9

rule, to different lifetimes and energies of the corresponding quasi-
particles. For example, there are especially great differences in the
values of the imaginary part of the self-energy forlfi(OUO)TVh, Ne =
8.75 el./bands, Fig. 5. The main (exact) minimum is about 40% deeper
than the one obtained within the local approximation, and there . is a
low energy tail only within the local approximation.’
It is interesting to study to what extent these differences in
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the self-energy curves can modify the spectral density of atatés, or
equivalently, can lead to changes of the energy and lifetimes of the
corresponding quasiparticles. Therefore, we have calculated the spect-—
ral density of states, =-¥m Jm ( E- €p— XZO&,EdY T | for the band-
fillings Ne =5 el./bands and Ne =8.75 el./bands for two values of the
Coulomb strength UYAw=1/4 and Q4d=1/2, Figs. 6,9 and 12,15, respectively.
In these figures we have displayed the spectral density of states for
two special directions in BZ, namely for M-X ana ™R directions.
Looking at Figs. 6,9,12 and 15 one can observe the existence of two
groups of well defined peaks in the spectral density of states. One group
of peaks is centered essentially around the point [ (!Q) the low (high)
—energy excitations, and the second group is spread over the whole BZ,
The comparison of the SOlld and broken curves emphasizes the necessity
of inecluding +the full k —dependence into the self-energy. We observe
expressive effect on the lifetime of the excitations which we identify
with the narrow peaks in the spectral density of states In comparlson
with the results of Ref. /307 in which only first two 1n formula (5) are
‘used, we observe significant quantitative changes within the low- and
high-energy excitations. The lifetimes of thé corresponding quasipartic-
les increased 51gn1f1cant1y On the other hand, the influence of the
self-energy k ~dependence on the quasiparticles extending over whole BZ
is rather small and leads to deereasing of their i1ifetimes. The ing—
rea51ng of the lifetime of the low- and high-energy quasiparticles can
be 51mply explained in terms of the K- and E-dependence of the self-
~energy, see Figs. 3-4. Just taking into cohsideration the full ELdepen—
dency of the self-energy leads to the disappearance of its long low-—ener-
gy tail (for peint [ at E<Eg and small bandfillings) or high-
—energy tail (for point R at EYE, and large bandfillings). This
means that the corresponding guasiparticles are nearly not damped in
comparison with quasiparticles obtained within the local approximation.
As for the peaks . of the quasiparticle spectral density of states which
belong +to the energy band branch spreading over the whole BZ, one can
observe the following effect due to the full -;—dependent self-energy.
For half-filled bands the lifetime of these quasiparticle excitations
is shorter independently of the correlation strength and for large band-
fillings the iifetime of these excitations is longer.

For better understanding of the spectral density of states picture
in our model system we have depicted in Figs. 7,10, and 13, 16 the solu-
tions E(K)of the equation

ECR) = €p - 2N U- MU ERN=0 . (8

Some of these solutions just represent the quasiparticle energy bands.
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But one has to be careful because some of these ECE) curves are merely
mathematical solutions of Eq.(B) and do not represent any real physi¥

cal guasiparticle band. Significance of such simultaneously performed
calculations of the spectral density of states and solutions of Eq.

(8) was thoroughly explained in Ref./17/ by Bulk and Jelitto. Here, we _
have also performed similar analysis btut for degenerate d-band Hubbard -
model with nearly exact i—dependent gelf-energy - Eq. (5). In Fig. 7 ‘
we present the solutions of Eq.(B) for the halifilled band case for

Ly@d=1/4. The dotted, full and broken curves correspond to the self-

energy calculated within the Hartree-Fock approximation, exact and lo-

cal approximation, respectively. We have deploted all mathematical sclu-

‘tiens of BEq.(8), although, as we have mentioned above, some of them have

no physical meaning. It is obvigus that the figure has to be analy-—

zed only simultaneously with the spectral density of state curves,

Fig. 6. Then, it is clear that nearly circular in shape branch of solu-

tionse ECE) in Fig. 7 which are, located around " and R points of

BZ do not correspond to the quasiparticle energy band. They correspond,

speaking in the language of the spectral aensity of staﬁes, to the low-

energy lying gquasiparticle peaks located just mainly around T and R

points of BZ. It should be also noted‘that only a lower (higher) part

of these solutlons correspond to the well defined peaks. The other

part of this solution branch is situated in an energy reglon with large

damping-compare the lmaglnary part Ff the self-energy in Fig. 3 for i

P { BY point for low (high) energies. i
In Fig. 10 we present all sclutions of Eq.(8) for the halffilled

band but for stronger correlations, UAw=1/2. At the first sight, one i

can notice five solution branches spreading over the whole BZ for the '

case of exact self-energy and only one branch for the case of approxi-

mate-;-independent sélf—energy (it is a middle one cantered around zero

energy value). But only after a careful comparison with the spectral

density of states, Fig. 9, we can conclude that in this case there is

only one quasiparticle energy band with the well defined peaks (of the

corresponding spectral density) 1n the whole B2 with energies lying 1in

a narrow energy region centered arcund zero energy value. Although one

can observe very sharp peaks of ‘the spectral density of states along a

lowest branch of solutions of Bg.(8) forAE—points along A line of BZ,

the corresponding peaks around R point of BZ are rather indistinetive

from the broed background. For that reason we should not rather iden-

tify these branches of ECIZ) with the quasiparticle energy bands. Two

others branches of solitions of Eq.(8) are situated in an energy reglon

corresponding to a large damping. Note that in the case of-ilindependent
]
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self-energy there is only one branch of solutions of Eq.(B) in spite of
amall differences between heights of the guasiparticle peaks {(full and

broken curves).
In the case of nearly filled energy bands there is only one branch

of zolutions of Eq.(8) independently of the correlation strength,
Figs. 13,16. The full'zldependence of the self-energy leads to much bet-
ter defined peaks of the spectral density especially for low—energy
lying quasiparticle excitations.

The knowledge of the spectral density of states enables us to cal-
culate the density of‘quaaiparticle states

D(E)=- & & Tm (E- e ~ZCEEDY 9

In Figs. 8,11 we have displayed DCEY for halffilled energy bands for
V&d=1/4 and 1/2, respectively. Figs. 14 and 17 show the same funciion
for nearly filled bands,Ng=8.75 el./bands. First of all we observe the
satellite struectures, especially clearly visible for stronger correla-
tions independently of the bandfilling. They are very strong for half-
-fijled bands and cccur at the winga of the original energy band. In
addition, we observe a pronounced narrowing of the central peak of the
quasiparticle density of states. Comparing-Figs. 7 with 8 and 10 with
11 one can attribute the narrow central peaks to the main branchee cf
the quasiparticle band structﬁre located on the energy scale in the vi-
cinity of the zero energy value. The satellite structure can be explai-
ned by additional excitations vigsible on the spectral density of states,
Figs. 6 and 4, and located arcund [ and R points of BZ. The full
ﬁLdependence of the self-energy influences, in principle, only the sate-
1lite regions of D{E). It makes the satellite structures sharper and
narrower. Note also a consideréble band narrowing with increasing

the correlation strength. The quasiparticle density of states can be
parts for half-filled {(nearly full) bands

of

decomposed into three (two)
and the width of the main part of D(E) can be attributed to the quasipar-—
ticle energy band, Figs. 7 and 8, 10 and 11, 13 and 14, 16 and 17.

In Figs. 14 and 17 we have marked on the energy axis the positions
of the Fermi levels E; and Ep 3 E% corresponds to the initial Hart-
ree-Fock density of states (dropped 1ines) and is consistent with the
corresponding bandfilling. The Fermi level Ef , on the other hand, is
obtained using the quasiparticle density of states corrected by the cor-
relation effects (solid lined. It is slear that these differences bet-

ween both values of the Fermi levels are consequencea of the non-self-—

econsistent caleculations. In the case of the half-filled bands the Fermi

levels E} and Ep are the same for symmetry reasons.

6
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4. The self-consistent approach

The non-selfconsistent U -perturbation treatment of the correla—
tion effects in the Hubbard, PAM or Anderson models is very often used
in literature in context of various problems (see for example/15'16’
18—20'%_27'30’33’31‘/).'The nen-gselfconsistency means, however, that
the guasiparticle band structure used for the calculations is not con-
slstent with the one obtained from such calculations. Moreover, the
Fermi level E; caleculated on the basis of the quasiparticle band struc-
ture is net equal to the one-electron Fermi level E; . Due to the po- °
sitive real part of the self-energy near Ee y the Fermi enefgy Eg is
less negative than Ef (compars Figs. ™, 17 ). For that reason, some
of the quasiparticles below the true Fermi energy Er have infinilte 11-
fetimes and those at E¢r have short lifetimes/19/. The first attempts
to restore this deficiency of pthe non-aelfconsistency was made by Klein-
man and Mednick/19/ but their procedure is not uniquely determined.

The 1dea of the selfconsistency in solid state physics is not new.
We remind only here the theory of 10ca119;tion of GﬁtzelBs/, theory of
superconductivity/BGI or even the so-called Hubbard—ﬂI solufion. Recent-
ly, we have performed the selfecnsistent calculations of the quasipar-
ticle density of states for the Hubbard model/22’23’33/. The main reéult
of these caloulations was the disappearing of the satellite structure
on the quasiparticle density of state curves. These results were confir—
med by other authorslza’B?/. .

In order to compare the results of the previocus sectlons with the
selfeonsistent caleulatibns, we present here the spectral density of
states, the quasiparticle energy bands (solutions of Eq.(8)) and qua-
Biparticle density of states for Na =5 el./bands and U/w =1/4, 3/8 (Pigs.
18-20) and for Ne =8,75 el./bands, U/W =1/4, 1/2 (Figs. 21-22). We have
performed calculations for half-filled bands and for‘HAd=3/8 (and not
for UAy=1/2 as in Fig. 9-11) because of the numerical convergence prob-
lems., We hope that such a small difference in = correlatibn strength
does not forbid us to make & comparison with the non-selfconeistent re-
sults obtained forf#ﬂh1/2. The calculations were performed for the SC
tight-binding electronic structure and all energies were measured in the
half-bandwidth units (the initial free electron energy band was placed

in (-1,+1) limits). The self-consistent procedure has been deseribed in

/22’23/. The self—eﬁergy we have used in this approach was cal—

our papers
culated within the lceal apprexlmation, In thig way, we can calculate
the quaslparticle density of states bperforming only one—dimensional in-
tegrals at each step of the 1teration proceas. On the contrary, using

- .
the full k—dependent self-energy, one has to perform three-dimensional
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Fig. 18.

The spectral density of states
in selfconsistent approach.
Ne =3 el./bands and UAw=3/8.

Fig. 19.

The quaslparticle band structure
in a selfconsistent approach.

Me =5 el./bandp and YW =3/8.
The full line corresponds to so—
lutions of Eq.(5), the broken
line corresponds to the spéctral
density of states peak ‘s posi-
tions .and dotted line corresponds
to the Hartree-Fock solution.

Fig. 20.

The quasiparticle density of «
states for Ne =5el./bands’ and
Wiw=1/4 (full line), Ww =3/8
(broken line). The dotted line
represents the Hartree—Fock so-—
“lution.

Fig. 21.

The same as in Pig. 18 but for
Ne =8.75 el./bands and UwW=1/2.

110057,
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The self-energy for nickel un-—
correlated density of states.
The full {broken) line corres-—
ponds to V/W =1/4 (1/2) in a
selfconsistent approach and
dotted line in a non-selfeon-
sistent approach.

Fig.

Fig. 24

The same as in Fig. 23 but

for bee canonical uncorrelated
density of states with band-
filling corresponding for iren.



integrals over a complex function for many energy values forming a suffi-
ciently dense energy grid. The knowledge of the gquasiparticle density
of states on a dense energy grid is required because this functien is
input data for the self-energy calculatiouns. The replacement of the &-
depeﬁdent self-energy by the i—independent one can only be justified if
we could guarantee that such simplification does not introduce any qua—
litative changes in & final result. According to our earlier calcula—
tions, we can conclude that the selfconsistency process always removes
the satellite structure independently of its strength. Therefore, we ho-
pe that despite a atronger satellite structure in the case of i—inde—
pendent self-energy, the selfconsistency process remeves this structure
from the quasiparticle density of states, too.

~ As selfconsistent results for the gquasiparticle density of states
do not exhibit any additional satellite structure, the quasiparticle
energy bgnd should contain only one branch of values ECIY) without any
other possibilities. Indeed, in Fig. 19, Ne =5 el./bands,Ww =3/8, there
is only one band (full line). The dotted curve corresponds to the Hart-
ree-Fock result, and the breken curve was congtructed using the energy
values corresponding to the positions of the spectral density of state
peaks. The spectral density of states, Fig. 18, contalns for every-i—
value only one well obtained, sharp peak. There arewany additional qua-
siparticle excitations at low energies (for M point of BZ) or at high
energies {(for R point of BZ). The guasiparticle density of states cur-
ves, Fig. 20 - full (broken) line corresponds to YWw=3/8 (Yw =1/4), are
very smooth in comparison with those in Figs. 8,11. Very similar results
are obtained also for greater bandfillings. For example. Figs. 21 and 22
show the spectral density of states and the quasiparticle density of sta-
teg, respectively, for Ne=58.75 el./bands and Yw=1/2 - Figs. 21,22 left-
—hand side and for Yw=1/4 — Fig. 22 right-hand side.

In Figs. 23 and 24 we show the self-energy calculated within the

local approximation (dotted curves) in a non—selfconsistent way and in
a selfconsistent way. Fig. 23 corresponds to the nlckel initial-uncerre-
lated density of states (Ne =9.4 el./bands) and Fig. 24 corresponds to
the bec cancnical d-band uncorrelated density of states /387 with the
tandfilling appr—opriate for iron (Na =7.4 el./bands). These results ob-
tained for realistic uncorrelated densities of states in a fully self-
consistent way confirm those of Bulk and Jelitto obtained within their
thermodynamically selfconsistent scheme. Namely, in a selfconsistent
approach there iz except explicit dependence of the self-—energy on the
Coulomb sirength alsc additional pronounced implicit corrections. It is
interesting that with increasing correlation strength the self-energy

-
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increases much slower than with U? facter. For that reason the resulis .
obtained within the selfconsistent approach even for greater values of
the electron cerrelations could be more reliable than the correspond-
ing non-selfconsistent results obtained for the same values of L .

In summary, we have compared the self-energy curves calculated
within second-order U —perturbation treatment for the degenerate d-bands
Hubbard model with full ;—dependence and within the lopeal approximation.
Based on this ;—dependent self-energy, we have calculated the spectral
density of states, the quasiparticle energy bands and the quasiparticle
density of states. Taking the ﬁ—dependent self-energy one obtainsg narro-—
wer ana éharper satellite structures on the quasiparticle energy bands.
We have also compared all these results with those calculated in a self-
cengistent way. In this case, the spectral density of states hag one-—
peaked character without any (besides the main peak) additional quasi-
particle excitations present in a non-selfeconsistent approach. As a con-
Sequence, also the quasiparticle density of states does not‘ contain any
satellite-like structures regardless of the correlation strength or band-
filling. '
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