


1. INTRODUCTION
The Hubbard Hamilfonian
o +
H= 3 +: | QasCjs + %Z"‘Lfe%ﬂ—c
CJ‘G N . Ly !
is surely one - -of the simplest to incorporate the electron-

i/

electron on—-gite repulsion 1. The c¢reation {(annihilation)
operétors for electrons with spin o in Wannier gtates con-
tered around the i-th site of the crvystal lattice are given
by aza ta., 7. n o, is the corresponding number operator and
tij is a corresponding hopping jntegral. In spite of its gim-
plicity, very few exact results exist in the literature. One
of the bowerful tools for the investigation of the systems
described by this Haﬁiltonian is the double-time retarded
Green Function (GF) introduced by Bogolubov and Tyablikov/Z/

/34 combined with the equation of .motion for

and by Zubarev
this function. But it is well recognized that relatively easy
usage of the Greén Functionslis partly spoiled due to some
shortcomings inherent in the equation of motion method. This
method leads to a whole hierarchy of functions of higher or-
der, and-it is necessary to terminate this hierarchy at a
certain stage. It means, one is forced to use some decoupling
progedures or terminating the infinite set of equations. Very
often "the branches” of "a tree" of equations have next
"branches" and it is very difficult to use some definite de-
coupling procedure common for all higher—-order Green Funct-
ions present at the ends of those "branches".

In literature there exist some methods for evaluation of
the mentioned above GF and autocorrelation functions which

/4

. base on & projection operator method of Zwanzig and

/S/ /6—14/).

(see, e.g. In this case the construction of

“Mori
the higher—order GF (or autocorrelation functions}) is highly
putted in order.

In this paper, we demonstrate by the Hubbard Hamiltonian
_that ail these "different'" methods lead to the infinife con-
tinued fraction expansion for GF, and moreover, with the same

successive gteps of this expansion.
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&he paper is organized as follows. In the‘next section,

‘in the subsection (2.1) we present the generalization of the
Ichivyonagi's method/ﬁ/ constructing the Dyson—-type eguations

‘ for higher-order GF and using the procedure of time differen-
tiating over boih time arguments. In the subsection (2.Z) we

ﬂave obtained'the saﬁe eguations using a projection operator

method applied to the operators being functions of the left-

hand side time argument, only. In the subsection (2.3)., ths

general form of GF is obtained using a tridiagonal form of

the corresponding basis operator set. The subsections (Z.4)

and {(2.5) are devoted to some consideratieons concerning the

known methods for calculations of the Green Functions. The

last section containzs concluding remarks.

+

2. THE EQUATION OF MOTION METHOD AND THE GREEN FUNCTION
7 CALCULATIONS

In this section we are going to obtain formally exact
expressions for the Green Functions. All methods to be dis-
cussed are founded on the eguation of motion (for some opera-—
tors) approach and the-projectjon operator method. In subsec—
tions (2.4)and (2.5) we placed also a short discussion about
methods known in literature and discussed their relation to

the methods presented in former subsections.
. \

2.1.

Ugsing the mefhod of differentiating the Green Function
over both time afgumeﬁts,lchiyonagi was able to obtain the
Dyson equation for this function with the explicit expression
for the self-energy (mass) operator. Here, we generalize this
approach to obtain a segquence of eguations for the mass oper-—
ators appearing in the corresponding Dyson—-type equations.

Let us consider the double-time Gréen Function defined

by Zubarev as fol}ows/é/:

G (4-#)= -1 0G-)L L fo O TNy =& fo 1 §200>

where <...> denotes an average with respect to the cano-—
nical density matrix of the system described by the time-
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independent Hamiltonian and temperature T

. “frm  ~BH CHE, —CHE
LAY=7 T%e‘A,Z Tt = (T, A=e"A"

and &(t) is the step function, unity for positive and zero
for negative value of time.

Accordingly, with the idea of the equation of motion me—
thod for the operator f (t) and with the projection operator
method of Zwanzig/4/ (6/

; , : . A ,
Jr ~_‘M’_}i{ O+ (- fe Bz (@ t.Wre " tG-RILL
o - +}>
' _ (2)

cne can obtain

where PO is a projection operator on operator subspace span—
ned by fo.Performing the differentiation of the Green Func-—
tion (1) over the left—hand side. time argument, we obtain

d G- =8 E-tO o, P+ GE-R ), @)
ot

where F {t—t'}) is a new, higher—order Green Function defined

as follows/s/

Rz 0 S Rurotg (T @y

For this new GF one has (after the differentiation over the

right-hand side time argument)

(%g R et)= S0 c(t-R )L AP B et 1, Gt
Mo -t)=-c6l-t)<e R Lo, (R U-RILEYTYS L ¢

Now let us calculate GF ﬂo(t—t'}.Using the operator identity
’

t ' .~
- ; 3 -— '-Po 't
Lt =Pl ,(-L Lt P)L‘E’L CU-R L L

ez e (7)

o

one can obtain



S U L= £, j D, Lf;-,(i)di

(8)
where AL ,
L1 B)= ef ST (=P fe (9)
Introducing the new higher—order GF
. . P +, .,
My (-t =~ B (£-¢9< i o), £, (1 )1'> (10)

one can transform Eg.(8) as folliows /7/'
oL -t <{L"5'1 @) ‘F°+E> —{c dt' =
SR

.](a (4 -+)dt' ~

“as B4l = Mtﬂf
L, BLE
._-F}(t) 0_5 <{’§°}_§D+]J> G

it e < ’ {
_ f € Z}f‘“ io f*} 3 LAttt = 0= Mo 4D, L {fo, (St

and similarly .

M) fo
S e Lpm fa(ty ¢ R T g

w 112}
SN \
where we have used the relation‘<{‘}@g,4;%y>=(3 /97 Having
~in hands this formula we can,as a next step, represent GF

n_(t) .Ea.(6). as follows /67,

ﬂﬁﬂ—-—u@&)({ (1- 2olde, (€ h‘L c(A-BOL §°>+B>_ .
:,tew({%}H—ﬂb“6‘“)54’\4‘*41%* M)A o 5

13)

= M)+ jM,,(e')F;(JC—Jr')/(HO,.{G Nt 0.

Taking the time—Fourier transforms of Egs.(3.5,13) Ichivonagi
get for GF (1) the following equatlons/é/

G(E)= Gul® + GolE) T ce>cvace>/<{gu,4;}\

(14}
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Mo (E)= M, )+ M, (E) Gl E) WQCES/<{1C:,4J}9

(15)
froem which the Dyson equation can be easily obhtained
R - RNy
GrE)= cro(gjarc;o(i;) MUEGE L 4T
Goo (B = £ { L6, LTV /(B + D .
}

and G(E) ,HO(E) and MiiE) are the Fourier transiorms of the
corresponding Green Functions (4), (6) and (10). The result
(16} is exact but the evaluation of the self-energy reguires
considerable efforts. Approximations are possible, of course,
but here we want to obtain formally exatt representation for
the self-energy. We proceed formally following the method
described above, Egs. (2-17}.

Let wus consider the egquation of motion for the
higher—~order GF Mi{tmt') . Eq.(10G}. OUne obtains

g_ai M )= - BE-EDL S D4R G-t o My B-t), e

where we have i1ntroduced the higher-order GF Fi(t-t') defined

as follows:

U YS Rt S COI

. {19)
= BN L, P CRILE,
{1 (f.‘)“—' é——w‘Fg(f)-+(1—Pq)ﬁ(f)£t1.35‘.‘--}1({‘)—%6 (20
4{{111{1+}> ](J, (20
. (21)
{2 = c(41-ROU-POLLy -
Heré, we have used the projection operator Pi which
/5/.

projects onto the operator subspace spanned by f1
Performing the differentiation of Fi(tut') over the second

time argument, we get



i‘ £ ()= U o g Dy - e Pl )+ T -

where

m, (Jc P)=—c6l f)({ o P")L?z,( Pty YN

(23)

Using the operator identity similar to (7) but for the
operator (1—P0)L rather than for L one obtains analogously
to (8) ‘

o1~ &)Lti 6 )+ J C(-POLG f) b (1- PO () At

e
(24)
where | J(’f‘ PC,.)('IF P, )L_L_r
-qu(“t):k‘f 4z - : (23)
introducing the Green Function Mzit—t')
' (26)

My (e-#) == 8k =€) L [ £, @, £ )

and performing similar calcutations as in 'Eqs {12-16) one
obtains the Dyson—-type equat:on for the Fourier transform of
M (t)

Mo (EYy=M(E)+ MY CE)M,_CE)M B £ 1}»}.

(27)

Mf(E}z 4{&«;& B/(EHJ‘ - (28)

) |
. Continuing the procedure described above one ¢an obtain in

the i-th step the Dyson—tyﬁe equation for GF
M. (-8)= -0 OG-8 L £ D, 55N @

with a "free-like" GF M, (E) in the form '
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Mi(‘E):<{-§C,.-{£+}>/:CE - L<{'§t‘1[f}> /<{-ff) -ﬁb) (30}

The operators f are constructed according to Mort

/5/. Taking into account Egs. (16),(27) and the next

algorithm
corresponding to greater values of index "i" one obtains the
Green Function G(E)} in the form ,of the finite continued

fraction

e fh Ldbod }>/<Ho £D Dl S dBen
Erao— Beo - E+ W = Mo {0, £

or infinite ceontinued fraction

1 4{40)%+}$—1 <{§m¥»ﬂ>ﬂ L. (32)
G- Moey ™ M2, EY!

G(D)=

2.2,

In this subsection, we present the evaluation of the
Green Function (1) within similar mefhod as 1in a previous.
subsection but using the differentiation over. the left-hand
side time argument, only. This method was used in /7/ in
considerations concerning the moment relaxation and related
problems. Here, we adopt this technique for the calculation
of the retarded doubie«time GF defined in Eq.(1). ’

Firstly, let us calculate the time derivative of the

cperator I (%) /5.7/ using the operator identity (7)

1w e LLLEE, £
LB flfi e | e s

where f (t) is given in Eq.(9).
Using this formula in the egquation for the time derivative of;

(33)

the Green Function G(t) , we get



dG“f‘ ont)<{§o{o}>+m GW+ j«‘u‘” A croetaar.
- <{§°’°> (34)

Taking into account the éeguality

<{ICL§}‘ (1), )[o+}>:*<{§1 (Y, .g}> , (35)

one obtains
aj;&}: S Lo, >+ G- cﬁt.mf& DL for £ Dol

(36)
where Mifr) is given by Eq.{(10).

The Fourier transform of Egq.(36) leads to the result

GEY=L Lo LV /Bt ML {fo L) 7
which is equivalent to formulia (16).

In comparison with the method presented in the previous
subsection, here we use the operator identity (8) in the
equation for G(t) (right in the functien corresponding to
Fo(t) and not in the function Ho(t) which can be obtained
writing down a next equation of motion for Fo(t), only. The
method presented now can be extended and. for example, in the
n—-th step cone obtaing

A
, . c{ wt
%_@_ (Opfuw B+ e (1=Pmok s *

"PM me

+ .
Lo (4T Cl-BOLAT
+ Se ( : L Jgmm—-i {38)

where Lh is defined as. 1in /5/.

Transforming the last term in Eq.(38) in a similar way as 1in
Eq. (33}, we get



AN stosle (b M OM D 0 M (4)
D DL fn f Iy - J Z{fm {M‘*}B ! (39)

where Mn(t) is defined by Eg.(29). )
Finally. for the Fourier transform of GF (1) one ¢btains the
identical eguation with Eq.(31). Thus, the Green Function
G(E) obtained within the methods described in this and
previous subsections are equivalent to one another even at
each step of the continued fraction expansion.
. Let us apply formula (31) for the calculation of the
one—particle Green Function
ag hlalcWy
’ (40}
for the Hubbard Hamiltonian (1). Using the following form for
the general expression for the space- and time-Fourier
transforms of GF (44Q)

Ao 21 LEATDA S (a1)
E+Uof E+w1—MﬂE»<{%Afb

GE)=

one obtains

+
€ Al O >= =

VA (1-<m2 )

E -V <m) - By o — —M2C@ei0) -
UZCM_@S (1 - <’ﬂ_¢§) :

The higher-order GF Mz(ﬁ,a;E) represents all the remaining

terms of the infinite continued fraction expansion (32). 1f
we reject Mz ., i.e. we keep only two first steps of the
continued fraction expansion, then the resulting GF

<< e t am_>> is equivalent to the solution obtained by

Ko
Roth /15/_

The function B, __, contains the higher~order



equal-time correlation functions (see. for ' example/lj/l

and & is a Fourier transform of the hopping intearal.

Similar approaches has been déveloped in papers/snlz/.

/137 "also obtained the Dyson

For example, Fedroc and Wilson
equagion‘for the one—-particie GF. They considered the time
differential equation for GF and also applied the projection:
operator P0 which projects out of the equation of motion of
fott) the needed GF and relates the complementary. part to

GF at another time . After formal scolving of the

corresponding_différentiaL equation. they obtained exactly

the same eguation as was obtained above. Kishore/4/

also
studied the quasiparticle spectrum of the Hubbard model using
the projection operator formalism. He used another form of

the operator identity (9}

TR S U N - QS I
E-L = E- {(1-P)L E -(1-PiL E-L

Chao et ai./10/ derived alsc the same Dyson eguation for GF
(2) and proposed a differential ‘equation approach for the
calculation of the higher-order GF entering into the
corresponding mass operator. Also. a perturbation scheme was
teveloped for calculation of this mass operator/a’g'ls/.

It is not surprising that all these methods (and the one
presented in the subsection {2.1)) give the same expression
for the self-energy  operator. All the methods are
constructed, in fact, on the same operator identity (7).
although this identity is used in different places of the
theory or in various represeniations (in the Laplace or
Fourier form. in the time-differential eguation form).

Let us compare the self-energy Milt}/<'{fo.f;}>2 calcula—
ted from Eg.(10) (for operators satisfying j;f°'f;})=l) with

. the self-energy expression given by Kishore We have 1in

the successive steps

ME) = -L'@(%K{e"u'm Lo, (- RILEYTYY —
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—\@(‘E) <{' Le\:('if—PovL“:(’f_ PQ)L-go)-Fo+‘]>_?

The last expression coincides with the results of Ref./g/.

2.3.

In this subsection, another method is suggested for cal-
culations of the Green Function. We are going to obtain GF
defined in Eg. (1) applying the algorithm of differentiation
over the left-hand time argument of .the correspondihg higher—
andé higher—-order GF which appear in successive equations for
lbwer—ordef GF. But opposite to the usual scheme, see
e.g./lf, where the higher-order . GF are constructed simply
from the operators which are obtained from the equation of
motion of lower—order operators, here we will work with GF

built from the oberators forming a special operator basis.

Using the projection operator technique developed by MOFJ/S/
and a modified Lanczos algorighm of_Sherman/16/ one obtains
/77

the basis operator set {f _} as follows (cf. |

C-S-o:bg“{o + —g'1 >
iq(":bg {-‘o +b:‘F1 + Lo ;
de ghedhe B @

L ‘Fm N—1 'Fm-+ bﬂ‘;m t ‘(M“"‘ '

Here,f0 iz an operator which is used in the definition of
lal

the required GF, Eq.{(2). The coefficients b b are

n—i
given by the formulas (/17 16/)

B =L U WAL DK dx D b5=0,
n = L 4w, /< 1(,?._4, Lur B> - | (44)

Using formulas (43) one can write the eguation for GF

£ E9= GrolE)
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(B~ )G o (O =S L o D4k, 7, G (O + G

or in the matrix form

e e5] (4 -k 0 0 - [TE-edy

Gro ()| oy, A~k O o y
f :O —O-:L 4 "bl. . 3 =

where

e Oyt
j\j‘:—\’\:_l‘ai\ X

In order‘to obtain Go

J

a:=(E-b Y b,

the (1.1} —-element of the matrix F Defining
1 ~b. o ...
D= det |-Qiag d ~ bs‘m o
[
O
.
one can obtain (cf./7/)

Bt PR

_— - 42

(5 =(t-boas 2, et (f-bi0n, 22 Y

:) I
Finally, for the Green Function GOO(E) we obtain

4 2
N Lo b
ke - 2

E-bl- E~ b} - E-~ % -~
Similar calculations have also been perférmed by Lado
al./18/ {see also /19/) for the Laplace transform of

time—autocorrelation function.

Taking as an example the Hubbard model

the operators f with a.
o Lo

matrices), we immediately obtain

12

(now the coefficients

and
(44
for

}

- _
k—transtorm

will

of

5

{459)

(46)

o(E) is is sufficient to calculate only

(47}

(48}

(49}

et
the

identifvying

be
the



Green Function (4.9) the expression given by Eg.(42) but in
the form of the infinite <¢ontinued fraction (without the
"mass' operator present in (42}}. The Fourier transforms of

the coefficients b;(i.)) and b:(i.jl are as folows:

bl ()= VXM S(1-4n_ )
o) (K)=DBp ¢ + UU1-<m.).

Note that this variant of the method for calculations of GF
can be comparable with the methods described in the ‘previous
subsections dnly in the limit of the infinite continued
fraction expansion. In the case of finite number of levels of
the corresponding continued fracticon one cannot describe the
effect of the omitted equations for higher—-order GF in the

form of the mass—iike operator. In this case we have

[ 1 ( N
Grop (ED (e-wy!
Geyo (B o O
. =(I1-B) y (50)
c‘_mo CE) (E" b:T‘IG_mﬂ,O(E)J
where .
0 (E-b5)" 0 .- ‘
(- 0 0 Ce-e! Y
0 (E-bz )by 0

v
il

N (S

(E-62)"8.2, 0
L J

and finally. for the Green Function << foif; >> we get

13



) t Gomaro(E)
P 4 (- HCE iyt —Rmes=s
4%“;"+> ﬂ E b ( olet [1-B] (51)

Although, in principle., Eg.(49) 1s a complete sclution.
but in practice one must vremember that only a few
coefficients (for a many—body Hamiltonian) can be calculated.
So, in some points approximations are inevitable. In this
respect, expressions {31) or {41} are more useful for
construction of approximations. In this case, after abrupting
a corresponding continued fraction at some level. one can use
various approximation for a mass—like operator. In this way,
some information about the rejected higher—-order GF can be

saved. Expression (51} does not give such a possibility.

2.4.
‘Another way of constructing the infinite set of coupled
Dyson—-type equations for the Green Functions of increasing

/14/. For the sake of

order has been given by Tsercovnikov
completeness we shall here briefly outline the main idea of
this approach.

Let Ao be an operator or vector buiit up from operators
depending on the probiem under consideration. For example,
for the Hubbard Hamiltonian we can identity the operator
vector with the annihilation cperators &, of the electron
with spin o described by a Wannier state centered on a site
"i" of the crystal lattice. Next, one constructs the seguence

of the vector operators according to the preécription

CAM = WA+ Uln,meDAmeq » =002, - 52

Note that such definition of the operator sequence 1is
different from the definition used in the previous
subsections and the set A does not create an orthogonal
operator basis of the corresponding superoperator space. The

Fourier tranform of the equation of motion for the Green

14



Function << A_(t) | AY(t) >> after the differentiation over:
the first and second time arguments) can be transformed so

that as a final result we get the Dyson eguation

LA AL S = LANAL ST «AJATY M) e AdlATS (53)

where

Eea Aty =L (A Ay + | 0@ “W(oleAlals® (

W (0)= U(0N<L [AnATYY K {A?,A':b

363

and

Mi0) = {40 ALTS UG DEANATS, U0 Ao ASYS (s,

Such a construcﬁion of the Dyson équation was possible onl?
because of introducing the so-called irreducible Green
Function << AilA: >>, according to the formula

&A|BY = 4AIBY - L AlAI N Aol A4 s BS .

The irreducible GF << Al B >>1 is defined so that any linear
in Ao operator part of A and B does not give any contribution
to it. This procedute can be repeated and it vresults in an
infinite set of the Dyson—type equations for still higher—
order irreducible Green Functions’*%/. This set of equations

can be written in the form of the continued fraction

1 A ANt A AT
(@Al a3) - (LANATSOTE (A AT YT

(58)
which is nearly the same as that in Eg.(32). HNote howewer,

expansion

ZAAT D=

that now the effect of the nonorthogonality of the basis
operator set is recompensated by introduction of the
irreducible GF apprqach, Taking into consideration only the

15



first +two steps o¢of the continued fraction (587 one
/1b/. It should be

stressed that this approach is very elastic with respect to

immediately obtains the Roth vresult

the decomposition (52). It can be easy checked that it 1s a -
rather difficult task to obtain an operator A, and matrix
U(l1l.2) for the Hubbard model using this formula. Fortunately.
we can work within this approach taking simply

T

CAQL: LJ("OAM + A )

or even . A
I-Am_ _"'AM'P“ -

in every case the general formula (58) remains the same and

the subsequent steps of the continued fraction are unchanged.

2.5.

~ It shoudl be emphasized that such a choice of a basis
operﬁtor set as in the previous subsections was performed Iis
nct in every case the best choice which can be found. In this
context, we mention the work by Elk /17/. Performing similar
operations as in the previous subsections., 1.e. after the
differentiation of the GF << A(t)| A'(t') »>> over both
time arguments and using the decomposition

(A= W A+D
(39)

one can obtain the Dyson egquation with the self-energy

defined as follows/17/:

SE=ALT NEUA S GRS IEAAS' T 50
where
Vo= <{AAD /(E-w)
M ()= <{B,A> + ¢BIF'Y. 61

The form of the decomposition (59) iz still sufficiently
arbitrary, although the term B . contains dperators which

cannot be expressed by operators A. On the other hand, as was

16



mentioned by Elk/l7/. this decompositioﬁ 15 esgential because
it influences the mean-field solution of the problem under
congideration (61). From the géneral point of view (compare.
for example, the coherent potential appreoximation 1in the
theory or the electron propagation . in allovys) this

decomposition should be performed so that the expression
-1 + ‘ tyn=1
LA LB AT + 4BIB™S JL{AAT (62)

could reachfthe smallest value as possible.Only in this case

one can say that almost all information about the system
which can be put in the zero—ocrder {mean—-field) Green
Function is indeed contained in it. In other words, the
self-energy contribution reaches the minimal values. It means

/17/. Generally. it

that one shouid minimize expression {62)
iz very difficult to say anything about the higher-order GF
<< BiB" »> and usually one accepts the condition of vanishing
value of the correlation functicn < {B.A+} > . Note that
this is exactly the same condition which we met during the
derivation of the Dyson eguation in the previous subsections
2.1, 2.2 and 2.3. It 1s equivalent, speaking in the language
of those methods, to the orthogonalizatien procedure of the
operator elements of some superoperator space. As was
mentioned by Elk. the spin systems may be examples of such
systems for which & vanishing value of ({ B,A+} >does not
denote the best choice of the mean—-field Green Function.

.

3. CONCLUSIONS AND REMARKS

In this paper we have investigated one of the existing
technigque used in 2 solid state theory for caléulations
of the many-body effects, namely, a technigque of the
retarded, double~time Green Functions calculated within the
equation of meticon methed. As fhe standard eguation of motion
method for Green Functions leads to & very compiicated system
of many equations for many higher—-order Green Functions, we

have  considered ancther method within which the corresponding

17



equations for higher-—-order functions were obtained in rather
a regular way, 1.e. within the method constructed on the
bagis of the projection cperator .formalism of Zwanzig and
Mori. It is well Kknown that this formalism has been
succesfully applied to a large variety of ﬁroblems concerning
relaxation phencomena in physical systems. Here. as has
already been mentioned. we used the idea of this approach to
the calculations of the retarded,. double—time Green
Functions. We have shown that "different' methods. e.g., ‘the
methods using a concept of differentiation over both (or one)
time arguments or method using the operator basis set in &
tridiagonal form, lead to the same, even at each stage of the
calculations, continued fraction expansion for calculated GF.
The continued fraction expansion for GF is,. in fact. only a-
formal exact solution because only a few of the coefficients
can be calculated. So at some place of the theory, the
approximations are inevitable. In this respect the methods
using the idea of the differentiation over both time
arguments are more appropriate as 1in this case one can obtain
GF in the form of the finite continued fracticn "with a
mass—like operator (in the last stage of this fraction) in
the form more useful for further approximaticons (see.

/14,19/)

One can check in a relatively easy way that the successive

e.g

parts of the continued fraction expansion of GF lead to known
solutions. For example. for Hubbard model and the Green
Function c¢onstructed [{rom the annihilation and c¢reation
electron operators one obtains the Hartree-Fock solution

taking only the first part of the infinite continued fraction

(42), (49) or {(58). Taking into consideration the first two

parts of this fraction one obtains the Roth result. 0On the
%

other hand., one can use a finite continued fraction

representation of the GF. e.g. Eg.(31). In such a case, even
after abrupting the fracticn after the first step and using
the simplest possible approximation for the self-energy term.
i.e. approximating the corresponding correlation functions by

the products of all possible two-point correlators with

i8



different time arguments, one obtains results eaquivalent to
the self-consistent second—-order in U perturbation

/14, 20/

theory If one calculates the Green -Function built

from the so-called Hubbard operators a . (l-n._ 3 and
n . the first step of the infined continued fractién

a

9339; ihe result of Roth. [t is n&t surprising that now cne
obtains the same result as this in the two-—step approximation
of the corresponding infinite fraction in - the former case.
Now, the Hubbard cperateors contain aiso the second basis
eperator f1 which was needed te construct the Roth !
solution using the one-particle GF.

Although the prrojection operator methods discussed above
allow us for more systematic, in comparison with a usually,
used version of the equation of motion method, construction’
of the successive equations for higher-order GF, they have
also some shortcomings inherent in the ‘equation of motion
methoed dindependently of their moditfications. Namely, the .
higher correlation functions appear in the succeésive stepé

—F
Eq. (42) contains the spin, double—hop and density correlation

of this apprcach. For example, the function B? in

functions. The problem of this higher-order
correlation function can be, to a certain extent, ‘removed
using the matrix GF << F1{ F" >> , where F=(f .f ,f_....)
rather than <<fii f: >» It i1s also worth noticing that
the continued fraction expansion of GF can be 1identified
with the results of Feenberg's perturbational approachlzl/:
In summary, we have calculated the'retarded. double—-time
Green Function using the ideas of the projection operator and
the eguation of motion methods. Different modifications of .
these approaches. as well asgs the vresults known from the
literature car bel represented by the continued (fraction

expansion with exactly the same steps of the fraction.
. . ‘
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