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1 . INTRODUCTION 

The Hubbard Hamiltonian111 

H = 4=. tij a,"i;.aps -r ¥ f; 11te1"1<-~ 
'J 

is surely one-of the simplest to incorporate the electron-

electron on-site repulsion U. The creation (annihilation) 

operators for electrons with spin a in Wannier states cen­

tered around the i-th site of the crystal lattice are given 

aia "), ni.a is the corresponding DUITlber operator and 

t . is a corresponding hopping integral. In spite of its sim-· 
' J 

plicity, very few exact results exist in the literature. One 

of the powerful tools for the investigation of the systems 

described by this Hamiltonian is the double-time retarded 

Green Function (GF) introduced by Bogolubov and Tyablikov121 

and by Zubarev131 combined with the equation of .motion for 

this function. But it is well recognized that relatively easy 

usage of the Green Functions is partly spoiled due to some 

shortcomings inherent in the equation of motion method. This 

method leads to a whol~ hierarchy of functions of higher or­

der, and it is necessary to terminate this hierarchy at a 

certain stage. It means,·one is forced to use some decoupling 

procedures or terminating the infinite set of equations. Very 

often "the branches" of "a tree'' of equations have next 

''branches" and it is very difficult to use some definite de­

coupling procedure common for all higher-order Green Funct­

ions present at the ends of those "branches". 

In literature there exist Some methods for evaluation of 

the mentioned above GF and autocorrelation 

base on a projection operator method of 

'Mori 151 (see, e.g~6-141 J. In this case the 

functions which 

Zwanzig141 and 

construction of 

the higher-order GF (or autocorrelation functions) is highly 

putted in order. 

In this paper, we demonstrate by the Hubbard Hamiltonian 

that all these "different" methods lead to the infinite con­

tinued fraction expansion for GF, and moreover, with the same 

successive -steps of, this expansion. 
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The paper is organized as follows. In the next sect1on, 

in the subsection (2.1) we present the generalization of the 

Ichiyonagi's methoct161 constructing the Dyson-type equations 

for higher-order GF and using the procedure of time differen­

tiating over both time arguments. In the subsection (2.2) we 

have obtained the same equations using a projection operat;or 

method applied to the operators being functions of the left­

hand side time argument, only. ln the subsection (2.3), the 

general form of GF is obtained usin~ a tridiagonal form of 

the corresponding basis operator set. The subsections (2.4) 

and (2.5) are devoted to some considerations concerning the 

known methods ·for cal cul at ions of the Green Functions. The 

last section contains concluding remarks. 

2 . THE EQUA Tl ON OF MOT! ON METHOD AND THE GREEN FUNCTJ ON 

CALCULATIONS 

In this section we are going to obtain formally exact 

expressions for the Green Functions. All methods to be dis­

cussed are founded on the equation of motion (for some opera­

tors) approach and the projection operator method. In subsec­

tions (2.4)and (2.5) we placed also a short discussion about 

methods known in literature and discussed their relation to 

the methods presented in former subsections. 

2.1. 

Using the method of differentiating the Gr-een Function 

over both time a:rguments,Ichiyonagi was able to obtain the 

Dyson_ equation for this functlon with the explicit expression 

for the self-energy {mass) operator. Here, we generalize this 

approach to obtain a sequence of equations for the mass oper­

ators appearing in the corresponding Dyson-type equations. 

Let us consider the double-time Green Function defined 

by Zubarev as follows 131 : 

( 1 ) 

where< ... > denotes an average with respect to the cano­

nical density matrix of the system described by the time-
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independent Hamiltonian and temperature T 

<A'y=r 1 Tr-e-0~ 'Z= Tref'H' p== (kf, n·1, A(+)=e''H~ e-dH 

and G(t) is the step function, unity for positive and zero 

for negative value of time. 

Accordingly, with the idea of the eqUation of motion me­

thod for the operator f
0

(t) and with the projection operator 

method of Zwanzig 141 and Mori 151 one can obtain 161 

+
0 

({ )= < {+o' +:1> fo (t)+ ( 1- !;,) f•o (t)E L I.Jo fo (f\+e' l~ (1- f?,) lf• 
<it.> ) to l '> (2) 

where P 
0 

is a projection operator on operator subs_pace span­

ned by f
0

.Performing the differentiation of.the Green Func­

tion (1) over the left-hand side. time argument, we obtain 

d.. G(+-t')::: -d;· (-t-t·)<: { .{<>, f,")'> -1-ct.J'o G U· -t')+F~ (H-'), <3l 
d.;l:: 

where F (t-t') is a new. higher-order Green Function defined 

as foll~ws161 : 

(4) 

For this new GF one has (after the differentiation over the 

right-hand side time argument) 

<( ilt L (. <Lt'. (. ) L+)+'l. \. ( 6 l no lt-t'):::-C$(t-t') 
1
e cU-f:.)Ll", e ' 1-Ft JJ· 

Now let us calculate GF fl
0

(t-t').Using the operator identity 

,·L+ ,·(1-Po)Li= 
e :::e + 

r:_,· L Ci-t'\ P.Le c' (1-Po )L t
1d.t1 

(7) 
0 

one can obtain 
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where 

Introducing the new 8igher-order GF 

and similarly ~ 

_,: Lt . . _- s-& M, (-t') fo ( +'-t) , 
e .:(1-R,)L-fo=.f, (-t)- L = < { f>, ftl'> d1: 

where we have used 'the relation<{\,(!-), -\o'")j=O 151 _ 

(9) 

(12) 

Having 

in hands this formula we can 1 as a next stePr represent GF 

IT
0 

(t) .Eq _ (6). as follows 161 , 

no(~) =-<8(+)z{.: (H~) L-to, (e' L\·( 1-l>o) L to }1- )> = _ 

=:_ <G(t)( { -) 1
, -f1+(-t)~) ~ ,·e(-1:) j'<{{,f/(+'-tl)'>M:(-t'),):{f>, ~~-1} 

0 

+·= 
M, (-1:-)+' f H 1 (-I::')P..(-t--t•);t{~.f.-

4 )} c:Lt', -t)O. 
(13) 

-'-><> 

Taking the time-Fourier transforms of Eqs. (3.5,13) Ichivonagj 

get for GF (1) the following equations161 , 

<14) 
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from which the Dyson equation can be easilY obtained 

G-IE)-= G-oCE)+G.-~C~) H, (E)G-(EI/<{fc,f,+)Y­

C..-o (E) ::: z { -\<>. to+)'>/ ( E: + w,) 

(15) 

(16) 

and GlE) ,0
0

(E) and M~ (E) are the Fourier transforms of 

corresponding Green Functions (4), (6) and (10). The 

(17) 

the 

result 

(16) is exact but the evaluation of the self-energy requires 

co"nsiderable efforts. Approximations are possible. of course, 
but here we want to obtain formally exaCt representation for 

the self-energy. We proceed formally following the method 

described above, Eqs. (2-17). 

Let us consider the equation of motion 

higher-order GF M~lt-t' l . Eq. (lOl. One obtains 

for the 

where we have introduced the higher-order GF F
1
(t-t') defined 

as follows: 

( 19) 

r (.) ( - .· . f () <(1-Po)Lt. · 
T1 t .,_ 1- P,)f, (t):' w, ' t- +e t.t .r 20 I 

Here, we have used the projection operator p 

' projects onto the operator subspace spanned by f
1 

Performing the differentiation of F
1
(t-t') over the 

time argument. we get 

5 
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(22) 

where 

(23) 

Using the operator identity similar to (7J but for the 

operator (1-P
0

)L rather than for L one obtains analogously 

to (8) 

e~lH'o)l~.2. ={z_ Ct\+ s: <(He )L(-H'~. P, (1- P,)L f.2. (t') cU:' 
0 (24) 

where 
(25) 

Introducing the Green Function M
2
(t-t') 

(26) 

and performing similar calculations as in Eqs_ (12-1,6) 0!1e 

obt,ains the Dyson-type equation for the Fourier transform of 

M (t J 
' 
M1 (E)=M1"'(E)+ M~CE) M2.CEJ M,Cn/< { .fv .f,'Tf, 

(27) 

(28) 

Cont1nu1ng the procedure described above one can obtain in 

the i-th step the Dyson-type equation for GF 

(29) 

with a· "free--like" GF M
0

(EJ in the form 
c • 
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(30) 

The operators f are constructed according to Mori 
' 

algorithm151 . Taking into account Eqs. (16), (27) and the next 

corresponding to greater values of index "i" one obtains the 

Green Function G(E) in the form .of the finite continued 

fTa..ct ion 

G(£\=<{j;,,.j.;+}> < {kf/}>~ {-~o. J.n> ... <H ... .r:}>~£f,.-.. + ... ~1>(31) 
t+W"o- E +w-,- E +~ .. -1'1,..,/.q~.,,-f:}) 

or infinite continued fraction 

(32) 

2.2. 

In this subsection, we present the evaluation of the 

Green Function (1) within similar method as in a previous 

subsection but.usjng the differentiation over. the left-hand 

side time argument, only. This method was used in 171 in 

considerations concerning the moment relaxation and related 

problems. Here, we adopt this technique for the calculation 

of the retarded double-time GF defined in Eq. (1). 

Firstly, let us calculate the time derivative of the 

operator f (t) 15 · 71 using the operator identity (7) 
0 • 

(33) 

where f,(t) is given in Eq.(9). 

Using this formula in the equation for the time derivative of• 

the Green Function G(t) , we get 
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Taking into account the equality 

one obtains 

dG-(t) 
cU: 

where M
1 

(T) is given by Eq.(l0). 

The Fourier transform of Eq. (36) leads to the result 

which is equivalent to formula (16). 

1351 

1361 

(37) 

In comparison With the method presented in the previous 

subsection, here we use the operator identity (8) in the. 

equation for G(t) (right in the function corresponding to 

F
0

(t) and not in the function 0
0

(tl which can be obtained 

writing down a next equation of motion for F
0

(t) .. only. The 

method presented now can be extended and. for example, in the 

n-th step one obtains 
\ 

d.{,(t)_ ... r (t) c· (1-l'~)L .... +r + 
. cJj; . - L {,j,. jM ~ € j"t;.< 

)
t ·L (-io-'t) c(1-P~)l,;1:t. 

• ~ ·" L d'l' + e \.. r>"n ""-e . M.+-1 (38) 

where L is defined as. in /S/. 
~ 

Transforming the last term in Eq. (38) in a similar way as in 

Eq. (33). we get 
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where M (t) is defined by Eq. (29). 
n 

FinallY. for the Fourier transform of GF (1) one obtains the 

identical equation with Eq. (31). Thus, the Green Function 

G(E) obtained within the methods described in this and 

previous subsections are equivalent to one another even at 

each step of the continued fraction expansion. 

Let us apply formula (31) for the calculation of the 

one-particle Green Function 

· <t a," ( t.J I o.J<O (-i.') ~ 
(40) 

for the Hubbard Hamiltonian (1). Using the follo~ing form for 

the general express1on for the space- and time-Fourier 

transforms of GF (40) 

G-Ct):::: <{.f:>, .(:,+ }> 
E+Oo 

< {kttJ>/< {.{c, -J:,+}> 
E +CJ1 - M2.(E)/<{.t,,f,+)') 

(41) 

one obtains 

(42) 

-'> 
The higher-order GF M

2
(k.a;E) represents all the remaining 

terms of the infinite continued fraction expansion (32). If 

we reject M
2 

, i.e. we keep only two first steps of the 

continued fraction expansion, then th'e resulting GF 

(( a,.,.. i ak: >> is equ~ivalent to the solution obtained by 
"'/15/ 

0 

Roth . The function B~,-a contains the higher-order 
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equal-time correlation functions lsee. tor /15/ example l 

and s.k is 

Similar 

For example. 

a Fourier transform of the hopping 1ntegral. 

approaches has been developed 1n papers 18- 121 . 

Fedro, and Wilson 1131 'also obtained the Dyson 

equation for the one-particle GF. They considered the time 

differential equation for GF and also applied the projection' 

operator P
0 

which projects out of the equation of motion of 

f
0

(t) the needed GF and relates the complementary part to 

GF at another time After formal solving ot the 

corresponding differential equation. they obtained exactly 

the same equation as was obtained above. Kishore 141 also 

studied the quasiparticle spectrum of the Hubbard model us1ng 

the projection Operator formalism. He used another form ot 

the operator identity (9) 

_L 
E-L E-(1-P)l 

+ 1 i>L--'-1-
E-(1-P)L E-L 

Chao et a1. 1101 derived also the same Dyson equation for GF 

(2) .and proposed a differential equation approach for the 

calculation of the higher-order GF enter1ng into the 

corresponding mass operator. Also. a perturbation scheme was 

developed for calculation of this mass operator 18 · 9 · 131 . 

It is not surprising that all these methods (and the one 

presented in the subsec-tion (2.1)J give the same exPression 

for the self-energy operator. A 11 the methods are 

constructed, in fact, on the same operator identity (7J. 

although this identity is used in different places of the 

theory or in various representations (in the Laplace or 

Fourier form. ~n the t1me-differential equation form). 

Let us compare the self-energy M l~)/<{f .f+}>2 calcula-
' 0 0 

ted from Eq. (10) (for operators satisfying <{f ,f+}>=l) with 
/9/0 0 

the self-energy exPression given by Kishore We have in 

the sucGessive steps 
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-•'8(-l:) < { Le'(1,-f'o)L*c1- Po)L.j:o,.j:o+~>---;> 

-< { l E- ~1-Po)L ( 1-Po)l{o, J:t\) 
The last expression coincides with tfle results of Ret. 191. 

2.3. 

In this subsection, another method is suggested for cal­

culations of the Green Function. We are going t-o obtain GF 

defined in Eq.(l) applying the algorithm of differentiation 

over the left-hand time argument of the corresponding higher­

and higher-order GF which appear in successive equations for 

lower-order GF. But opposite to 

e.g. 111 • where the higher-order. GF 

the 

are 

usual scheme, see 

constructed simply 

from the operators which are obtained from the equati-on of 

motion of lower-order operators, her~ we will work with GF 

built from the operators forming a special operator 

Using the Projection operatOr technique developed by 
/16/ 

and a modified Lanczos algorighm of Sherman one 

the basis ~perator set {fn} as follows (ct. 171 ): 

cf,== ~{o + f1 > 

L~1 =(:,~to +b~f~ + f.1. 1 

l i::::: ~~ f, + "~f.~. + +~ ' 
. - . 

basiS. 

Mori 151 

obtains 

(43) 

Here,f
0 

is an operator which is used in the definition of 

the required GF, Eq.(2). The coefficient~ bn ,bn are 
1"1 1"1-:t 

given by the formulas -( 117 • 161) 

(,~=<{ l{,,H] ,.f,;:Y>I<' {t .. ,-\.~1), 

~ .. ~ = < { +"', +:1'> I< ~"'-'' ~--~· Y> 

10-0 
-tJ_1 - ) 

Using formulas (43) one can write the equation for GF 

.q;, l.f:~= G,._o(E) 

11 

(44) 



or in the matrix form 

r 
G-coCE) 1 -bo 

G-,o (E) -D., 1 

0 -D.,_ 

where 

0 a -1 

·- -~o, 0 

1 -h 

(E-bgr' 

Q 

Q 

(45) 

(,_ ,_o,-11 
Ll--u- I 

I 0 ~ I 

cA' ' j 

(~ (;) 

In order to obtain G
00

(E) is is sufficient to calculate only 

the (1.1) -element of the matrix A-~ . Defining 

'1 -b· 
' 

.D·=olet -a.· .. , 1 
• 

0 

one can obtain (ct./7 /) 

( -1) ( D.. y1 A = 1-bo01 -J) ) 
11 I ·1 ) 

0 0. 

- b~·+1 0 

J) . '\t 
~) 
D~..·+1 

Finally, for the Green Function G
00

(E) we obtain 

1 ~ 
~-.t~- E- bj 

(47) 

(48) 

149) 

Similar calculations have also been performed by Lado et 

a1. 118/ (see also 1191 ) for the Laplace transform of the 

time-autocorrelation function. 

Taking as an example the Hubbard model and identifying 

the operators £
0 

with ala (now the coefficients (44) will be 
-'> 

matrices), we i~mediately obtain for k-transform of the 

12 



Green Function 14.9) the expression given by Eq. l42l but in 

the form of the infinite continued fraction (without the 

"mass" operator present in (42)). The Fourier transforms of 
1 . 1 ' . . 

the coefficients b
0

(I.J) and J::
1

(I.J) are as folows: 

I 1 ( -~) 2< ( '\ "'o k. =o U "'-•'> 1- <. "'--•" 1 

hi ( k")-= _bk'-s t- U ( 1-< '>1._;)) _ 
' 

Note that this variant of the method for calculations of GF 

can be comparable with the methods described in the previous 

s1Jbsect1ons only in the limit of the infinite continued 

fraction expansion. In the case of finite number of levels of 

the corresponding continued fraction one cannot describe the 

effect of the omitted equations for higher-order GF in the 

form of the mass-like operator. In this case we have 

where 

0 

(E- "~r\,~ 
0 

-1 
:::: (l-J')) . 

(f-lo;)"' 
0 

u;-(,if'b~ 

0 

(E- b~ 'f' 
0 

and finally, for the Gi--een Function « t If+ » we get 
. 0 0 

13 
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"'-

,g f> 1-1<>+ ~ = n 
c;O 

' Jo ~·-1 
E- b'-

' 
(51 I 

Although, in principle, Eq. (49) 1s a complete solut1on. 

but 1n Practice one must remember that only a few 

coefficients (for a many-body Hamiltonian) can be calculated. 

So, ~n some points approximations are 1nevitable. In this 

respect, expressions (31) or (41) are more useful for 

construction of approximations. In this case, after abrupt1ng 

a corresponding continued fraction at some level. one can use 

various approximation for a mass-like operator. In this way, 

some information about the rejected higher-order GF can be 

saved. ExPression (51) does not give such a possibility. 

2 .4. 

'Another way of constructing the infinite set of coupled 

Dyson-type equations for the Green Functions of increasing 

order has been given by Tsercovnikov1141 . For the sake of 

completeness we shaJl here briefly outline the main idea of 

this approach. 

Let A
0 

be an operator or vector built up from operators 

depending on the problem under consideration. For example, 

for the Hubbard Hamiltonian we can identity the operator 

vector with the annihilation operators a of the electron 
'" with spin described by a Wannier state centered on a site 

"i" of the crystal lattice. Next, one constructs the sequence 

of the vector operators according to the Prescription 

(52) 

Note that such definition of the operator sequence is 

different from the definition used in the previous 

subsections and the set A does not create an orthogonal 
n 

operator basis of the corresponding superoperator space. The 

Fourier tranfor.m of the equation of motion fo~ the Green 

14 



Funct1on << A (t) I A+ (t) >>after the differentiation over 
0 0 

the first and second time argum·ents) can be transformed so 

that as a final- result we get the Dyson equation 

(53) 

where 

E. ~A~ \A;~ \o) = .( {Ao,A:)) + l r.;r(o) +W(o)j~Ao \A~~ol 
' 

(56) 

W(o)= U(o,1)•qA,,A ~))/z {Ao,A~)) 

and 

Such a construction of the Dyson equation was possible only 

because 

Function 

of introducing the sO-called irreducible 

<< A \A+ >> according to- the formula 
i i t ' 

Green 

The irreducible GF <<AI B >>
1 

is defined so that any linear 

in A
0 

operator part of A and B does not give any contribution 

to it. This procedure can be repeated and it results in an 

infinite set of the Dyson-type equations for still higher­

order irreducible Green Functions1141 . This set of equations 

can be written in the form of the continued fraction 

expansion 

(4,A.._IAi~2o))!_ 

(58) 

which is nearly the same as that in Eq. (32}. Note howewer. 

that now the effect of the no_northogonality o~ the basis 

operator set is recompensated by introduction of the 

irreducible GF approach. Taking into consideration only the 

15 
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first two steps of the continued 

immediately obtains the Roth result 

fraction 
/15/ 

It 

(58) one 

should be 

stressed that this approach is very elastic with respect to 

the decomposition (52). It can be easy checked that it 1s a 

rather difficult task to obtain an operator A
2 

and matrix 

U(l,2) for the Hubbard model using this formula. FortunatelY. 

we can work within this approach taking simply 

or even 
i A,.._ =- A,.~, -

In every case 'the general formula (58) remains the same and 

the subsequent steps of the continued fraction are unchanged. 

2.5. 

It shoudl be emphasized that such a choice of a basis 

operator set as in the previous subsections was performed is 

not in every case the best choice which can be found. In this 

context, we mention the work by Elk 1171 . Performing similar 

operations as in the previous subsections, 1.e. after the 

differentiation of the GF « ACtJ I A+(t') » over both 

time arguments and using the decomposition 

(59) 

one can obtain the Dyson equation with the self-energy 

defined as follows 1171 , 

where 

c/"\EI== < { A,A+)) I ( E- <.u) 

n (EI=<{-"B,A+)> + <LB\Bt~ (61) 

The form of the decomposition (59) is still sufficiently 

arbitrary, although the term B contains operators which 

cannot be expressed by operators A. On the other hand, as was 

16 



I!/ I mentioned by Elk . this decomposition is essential becquse 

it influences the mean-field solution of the problem under 

cons1deration (61). From the general po1nt of view (compare. 

for example. the coherent potential approximation in the 

theory or the electron propagation in alloys) this 

decomposition should be performed so that the expression 

162) 

' could reach the smallest value as possible.Only in this case 

one can say that almost all information about the system 

which can be put in the zero·-order (mean-field) GreBn 

Function is indeed contained 1n it. In other words. the 

se l f-enerqy contribution reaches the minima 1 values. It means 

that one should minimize expression (62l 1171 . Generally. it 

is very difficult to say anything about the higher-order GF 

<< BIB• >>and usually one accepts the cond1tion of vanishing 

value of the correlat1on function < {B.A+J > Note that 

this is exactly the same condition which we met during the 

derivation of the Dyson equation in the previous subsections 

2.1. 2.2 and 2.3. It 1s equivalent, speaking 1n the language 

of those methods, to the orthogonalization procedure of the 

operator elements of some superoperator space. As was 

mentioned by Elk. the spin systems may be examples of such 

systems for which a vanishing value of <{B.A""] >does not 

denote the best choice of the mean-field Green Function. 

3. CONCLUSIONS AND REMARKS 

In this paper we have investigated one of the existing 

technique used in a solid state theory for calculations 

of the many-body effects, namely, a technique of the 

retarded, double-time Green Functions calcula~ed within the 

equation of motion method. As the standard equation of motion 

method for Green Functions leads to a very complicated system 

of many equat1ons for many higher-order Green Functions. we 

have considered another method within which the corresponding 

17 



equations for higher-order functions were obtained in rather 

a regular way, i.e. within the method constructed on the 

basis of the projection operator formalism of ZwanzJg and 

Mori. It is well known that this formalism has been 

succesfully applied to a large var1ety of problems concern:ng 

relaxation phenomena in physical systems. Here. as has 

already been mentioned. we used the idea of this approach to 

the calculations of the r-etarded, double-time Green 

Functions. We have shown that "different" methods, e.g·. •the 

methods using a concept of differentiation over both (or onel 

time arguments or method using the operator bas1s set 1n a 

tridiagonal form, lead to the same, even at each stage of the 

calculations, continued fraction expansion for calculated GF. 

The continued fraction expansion for GF is, in fact. only a~ 

formal ex.act solution because only a few of the coefficients 

can be calculated. So at some place of the theory, the 

approximations are inevitable. In this respect the methods 

uSing the idea of the differentiation over both time 

arguments are more appropriate as in this case one can obtain 

GF .in the form of the finite continued fraction ·with a 

mass-like operator (in the last stage of this fraction) 

the form more useful for further approximations (see .. 
e_g/14,19/) _ 

One can check in a relatively easy way that the success1ve 

parts of the continued fraction expansion of GF lead to known 

solutions. For example, for Hubbard model and the Green 

Function constructed ~rom the annihilation and creation 

electron operators one obtains the Hartree-F'ock solL~:tion 

taking only the first part of the infinite continued fraction 

(42), (49) or (58). Taking Jnto consideration the first two 

parts of this fraction one obtains the Roth result. On the 

fraction ' other hand, one can use a finite continued 

representation of the GF. e.g. Eq. (31) In such a case, even 

after abrupting the fraction after the first step and using 

the simplest possible approximation for the self-energy term. 

i.e. approximating the corresponding correlation functions by 

the products of all possible two-point correlators with 

18 



dlfferent time arguments. one obtains results equivalent to 

the self-consistent second-order 

theory114 · 201 . If one calculates the 

from the so-called Hubbard operators 

in U perturbation 

Green ·Function built 

a ( 1-n ) 
~a ~-o 

and 

a n the flr-st step of the infined continued fraction 
tO' ~-Ct 

g1ves the result of Roth. It 1s not surprising that now one 

obta1ns the same result as this in the two-step approximation 

of the corresponding infinite fraction in the former case. 

Now. the Hubbard operators contain also the second basis 

operator f 
1 

which was needed to construct 

solution using the one-particle GF. 

the Roth 1 

Although the projection operator methods discussed above 

allow us tor more systematic, in comparison with a usuallY, 

used version of the equation of motion method, construction· 

of the successlve equations for higher-order GF. they have 

also some shortconungs 1nherent in the equation of motion 

method independently of their modifications. Namely, the 

higher correlatio~ functions appear in the successive steps 

of th1s approach. For example, the function B~.-o 1n 

Eq. (42) contains the spin, double-hop and density correlation 

functions. The problem of this higher-order 

cor-relation function can be, to a certain extent, ·removed 

using the matrix GF << F ~ F+ >> where F=(f
0

,f1.,f
2

, ... ) 

rather than <<f_ l f+ >> . It 1s also worth noticing that 
c c 

the continued fraction expansion of GF can be ident1fied 
/21/ ' with the results of Feenberg's perturbational approach . 

In summary. we have calculated the retarded, double-time 

Green Function us1ng the ideas of the projectio'n operator and 

the equation of motion methods. D1fferent modifications of 

these approaches. as well as the results known from the 

literature cari be represented by the continued fraction 

expansion with exactly the same steps of the fraction. 

19 



References 

1. J.Hubbard. Proc.Roy.Soc. A276 (1963) 238. 

2. N.N.Bogo!ubov. C.W.Tyablikov. DAN USSR 126 11959) 53 (HI 

Russian). 

3. D.N.Zubarev, Usp.Fiz.Nauk 11 (1960) 71 lin Russian). 

4. R.Zwanzig, Lectures in Theore-tical Physics 3 (1960) 106. 

5. H.Mori, Progr.Theor.Phys. 34 11965) 399; 33 11965) 423. 

6. M.Ichiyanagi, J.Phys.Soc.Jap. 32 (19721 604. 

7. G.Grosso, G.P.Parravicini. in "Hemory Function Approaches 

to Stochastic Problems in Condensed Matter", ed. 

M.W.Evoms, P.Grigolini, G.P.Parrav1cini, John Wiley, N.Y. 

1985. 

P.Grigolini. G.Grosso. G.P.Parravicini. M.Sparpaglione. 

Phys.Rev. B27 (1983) 7342. 

8. R.Kishore. Phys.Rev. B19 (1979) 3822. 

9. R.Kishore. Phys.Rev. B35 (19871 6854. 

10. K.A.Chao. R.K1shore. !.C. de Cunha Lima. J.Phvs .. C11 

(1978) L953. 

11. K.K1m. R.S.Wilson, Phys.Rev. A7 11973) 1396. 

12. R.Micnas. R.Kishore. Physica 108A (19811 219. 

13. A.J.Fedro. R.S.Wilson, Phys.Rev.B11 (1975) 2148. 

14. Yu.A.Tsercovnikov. Theor.Math.Phys. 36 (19781 208 lin 

Russian). 

15. L.M.Roth. Phys.Rev. 184 (1969) 451. 

16. A.V.Sherman. J.Phys. A20 (1987) 569. 

17. K.Eik. phys.status solidi (b) 64 11974) 489. 

18. F.Lado, J.D.Memory, G.W.Parker. Phys.Rev. B4 (1971) 1406. 

19. M.DUPOlS, Progr.Theor.Phys. 37 (1967) 502. 

20. R.Taranko. E.Taranko. Physica B153 (1988) 232. 

21. S.P.Boven. C.D_.Will1ams. J.D.Mancini Phys.Rev. B 30 

(1984) 932. 

Received by Publishing Department 

on January 15, 1991. 

20 


