


1 Introduction .

It is a well known experimental result [1]'that when strong elliptically pola.rized light propaéates
through an 1sotroplc nonlinear medium the medium becomes birefringent, which results in the self-
induced rotation of the polarization ellipse. Nowadays, propagation of light in a nonlinear Kerr
medium is a standard subject of textbooks on nonlinear optics [2, 3]. To understand phenomena
like optically induced birefringence there is no need for field quantization. If, however, the‘qliantiim
properties of light propagating through a Kerr medium are taken into account, some new'effeet‘s
like photon antibunching [4]— [6].and squeezing [7] can occur. Quantum description of elliptically
polarized light propagating in a nonlinear Kerr medium requires, in general, a two-mode description
of the field. ‘When the light is’ cirelila.rly polarized, the problem ¢an be reduced to ‘the one-mode
problem that equivalent to the anharmonic oscillator model. This model, due to its simplicity
allowmg exact solutions, became very popular for studymg various aspects of nonlmear quantum-
field evolution "[8]— [27]. To discuss effects associated with elliptical polarization the two- mode
description is needed. Such description has already been used in the early studies [4]— [7] of the
quantum field effects that appear during the propagation. In those studies the Heisenberg equatlons ’
of motion for the field operators were solved and their solutions were used to calculate the degree of
photon antxbunchmg or squeezing. Recently, Agarwal and Puri [28] have re-examined the problem of
propagation of elliptically polarized light through a Kerr medium discussing not only the Hexsenberg
equations of motion for the field operators but also the evolution of the field states themselves.
The polarization state of the field propagating in a Kerr medium can be described by the Stokes
parameters which are the expectation values of the corresponding Stokes operators in the quantum
description of the field. Quantum fluctuations in the Stokes parameters have recently been discussed
by Tana$ and Kielich [29]. ' ,
~ The effect of dissipation on the dynamics of the anharmonic oscillator, i.. e., the one-mode
propagation problem, has a.lready been considered by Milburn and Holmes [10], and recently the
exact solutions of the master equation for t}ie system have been discussed [17, 20, 23, 24]. For the
two-mode case, the effect of losses and noise has been discussed by Horik and Pefina . [30] whose
approximate approach was based on the Heisenberg-Langevin equations of motion for the operators
of the two coupled nonlinear oscillators.: Quite recently, using the thermofield dynamics notation
Chaturvedi and Srinivasan {31, 32] have found an elegant, exact solution of the master equation for
a single nonlinear oscillator (31] as well as for coupled nonlinear oscillators  [32].

In this paper we discuss phase properties of elliptically polarized light propagatinrg through a

Kerr medium with dissipation. -To describe the phase properties of the field we use the Hermitian
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phase formalism introduced by Pegg and Barnett [33]— [35] which enables direct calculations of the

expectation values and variances of the Hermitian phase operators for the two modes of the field

as well as the correlations between the two phases. To include the dissipation into the system we

adopt the master equation solution obtained by Chaturvedi and Srinivasan [32] to the propagation

problem. Exact analytical formulas describing quantum phase fluctuations and correlations of the '

two-mode field propagating in a Kerr medium with dissipation are derived and illustrated graphically
for different values of the mean initial numbers of photons to show explicitly the intensity-dependence

of the phase properties of the field.

2 Quantum description of elliptically polarized light

In the quantum description of the electromagnetic field it is convenient to write the field as a sum

of the positive and negative frequency parts
E(rt)= EN() + EDr), ‘ (1)

where ¢ denotes a polarization component of the field. Next, a mode démmposition of the field can
be performed which for the plane-wave decomposition of the free field propagating in a medium with

(linear) refractive index n(w) gives

(+) [ 2rhan 112 ;
E(r,t) = Z‘ w)V| Ok tkaexp [—i(wt —k-r)] | (2)
kA :
where e{(':.) is the i-th component of the polarization vector associated with the polarization state A

and the propagation vector k, and V is the quantization volume. The operators ey, and aL\ are
the annihilation and creation operators of photons with the propagation vector k and polarization A

satisfying the commutation relations

[aka, afoy] = Bicirba v ®3)
The polarization vectors satisfy the orthogonality conditions

e = 5.,

3

4)
Yiek =o0.

For a monochromatic field of frequency w propagating along the z—axis of the laboratory reference

frame, we can drop the index k in our notation and write

exp[—i(wt — kz)] Z e_('\)a,\ (5)

A=1,2

1/2
E.'(+)(Z, t) =i [ 27 hw ]

n(w)V

e

with k = n(w)w/c. Since the summation over the two mutually orthogonal polarizations still remains
in equation ( 5), we have a two-mode description of the field. If the field is a superposition of these

two modes, the two-mode description can be replaced by one mode of the elliptically polarized field
eia = eV + ey, (6)

where' efl) and e?) are the i—th components of the orthogonal unit polarization vectors &) and
&® of the modes a; and aj, and e; is the i—th component of the polarization vector & of the
mode a. Relation ( 6) can also be considered in the reverse sense as a decomposition of initially
elliptically polarized light into two orth(;gona.l modes. Applying the orthogonality condition ( 4) for

the polarization vectors, we obtain thé formula
a=c¢eja; +e3a3, . M

where

= __ a=a(l « _ axa(2)
el—ee(), €, =€ e

So far the decomposition ( 6) (or, equivalently, ( 7)) is quite general and can be further specified
either for two modes with mutually perpendicular linear polarizations or for right- and left-circularly
polarized modes.

If a Cartesian basis is chosen, the unit polarization vectors are e =% &®=¢, whereasina
circular basis we have 81 = &) = (X +i9)/Vv2, & =& = (% - i§)/V2, with % and ¥ being
the unit vectors along the £ and y axes, respectively. The unit vector & of the elliptically polarized

light can be written in either a Cartesian or a circular basis as
=X+ e,y =e e e g (8)

with e, and e, given by [36]

e, =cos1ncosf —isinnsind, ©)

ey = cos1)sinf + isinn cosd,

“and

1 . 1
er = %(er Fie) = "\'/_2—

The parameters § and 7 define the polarization ellipse of the field — 6 is the azimuth of the ellipse -

(cosn & sinp)e¥. (10)

denoting the angle between the major axis of the ellipse arid the z—axis measured positive from

the 4z-axis towards the +y-axis, and 7 is the ellipticity parameter, —7r/4 < n < w/4, where tany



describes the ratio of the minor and major axes of the ellipse with the sign defining its handedness
(plus means right-handed polarization in the helicity convention).

According to equation { 7) the annihilation operator of the elliptically polarized field can be

written as
a=eza;+e,a, =ejay +ela, (1)
where e, e, and ey are given by equations ( 9) and { 10), and the operators ay. are
1, .
ay = E(az Fia,). (12)

‘Hence, the annihilation operator a of the elliptically polarized light is a superposition of two orthog-

onal modes in either a Cartesian or a circular basis.

On defining a coherent state of the field with respect to the operator a by the relation
ale) = ala), (13)
we have simultaneously .
o) = loly) = fodlo), (14)

where |a;),|a,) and |a;),|a-) are the coherent states defined with respect to the annihilation op-

erators a.,a; and ay,a_, respectively. According to (711), ( 13) and ( 14) the following relations
hold

a=ea:+ea, =ejay +ela, . (18)

and, due to the normalizations

e;e; +eje, =ejey +ele. =1,
one obtains
a, = ea
(16)
a, = ey
ay = exa, (17

where e, e, and es are given by eqs. ( 9) and ( 10), and Ja.|? + o, |* = |ey 2 + la—|? = |of%. So
the Cartesian or circular bases can be used alternatively to describe the propagation of elliptically
polarized light in a nonlinear Kerr medium. In isotropic media, however, the circular basis is much

more advantageous over the Cartesian one.

-

Relations ( 15)-( 17) together with ( 8)-( 10) allow for the decomposition of a coherent state of
clliptically polarized light, with the polarization ellipse described by the azimuth 8 and the ellipticity
7, into two orthogonal modes being also in a coherent states, and vice versa. However, if the nonlinear-
interaction between the field and the medium takes place, the resulting state may no longer be a
coherent state, even if it was initially. In this case relations ( 13)-( 17) are valid only for the initial
coherent states. Quantum evolution of the field propagating through a nonlinear Kerr medium will

change these initial states, and the equations of motion will be the subject of the next Section.

3 Quantum evolution of elliptically polarized light propa-
gating in a Kerr medium

Before writing down quantum equations’of motion, we remind the main points of the classical de-
scription of light propagéting through a nonlinear Kerr medium. The classical approach involves the
third-order nonlinear polarization of the medium and can be sketched as follows: A monochromatic
light field of frequency w propagating in the medium induces the third-order polariza.tion of this
medium at frequency w which can be written as (2, 3] '
PR(W) = 3 xiul—w, ~w,,0) By (@) B (@) B (@), (13)
skl
where Yiju(—w, —w,w,w) is the third-order nonlinear susceptibility tensor of the medium, and the
decomposition of the ficld into the positive- and negative-frequency parts as in eq. (1) has been
used; albeit, in the classical description, the field amplitudes E,‘i)(u) are classical quantities.
For an isotropic medium _with a center of inversion, the nonlincar susceptibility tensor Yijki(w) =

Xijui(—w, —w,w,w) can be written as follows {2, 3]
Xijkt (@) = Xeoyy(@)8ii6kt + Xzyey(W)ikbit + Xayyz(w)bubjx (19)
with the additional relation
Xzeze(@) = x.,m(t?) = Xezyy(W) + Xoyzp(@) + Xeyye(w)- (20)

Taking into account the permutation symmetry of the tensor xiju(w) with respect to its first and
second pairs of indices, we have, moreover, Xeyey(W) = Xazyye(w). The light beamris assumed to
propagate along the z axis of the laboratory reference frame.

On insertion of the polarization ( 18) into the Maxwell equations and applying the slowly varying

amplitude approximation, one obtains the following equation for the amplitudes of the field (3]

dE‘i)(w) 21w (4)
paimml ER W A A 2
dz n(w)cp' (), @)



where the slowly-varying amplitudes Ef*) (w) are assumed to be dependent on z. If the circular basis

is introduced, which is the natural basis for isotropic media, with the circular components of the ficld

E‘;’(wF%[Ei*’(w):FiEr’(w)], @

the nonlinear polarization takes the form

P0) = 2y @) P @) EH W)

+2 [Xeayy (@) + Xeyey (@)} [ES ()P ESD (), (23)

which after insertion into ( 21) gives

dE(+) w 4w
Tiz( ) = nA(lw)c{X””(w)lE )(w)l’
+ [Xersn ) + Xeyey (@) |E;+’(w)12}Ei+’(w). (24)

One easily checks that (d/dz)|ESY (w)|? = 0, i. e., the intensities JES(w))? of both circular com-
ponents are constants of motion. This is a clear advantage of the circular basis over the Cartesian

basis, which allows for the following simple exponential solution of equation ( 24) [37):

EP (w;2) = exp[i®4(2)] ESP (w; 2 = 0), (25)

where
m(z)=ﬂ"—z{x (I @) + [Xoryy () + Xepay(@)] S ) (@
n(w)c :yaw + i Xz:w X:y:v w ¥ w)l } ( )

determines the light-intensity-dependent phase of the field (self-phase-modulation or intensity-dependent

refractive index). These are well known classical nonlinear effects [2, 3], that are not the subject of
our interest here.

In this paper we are interested in quantum phase properties of the field propagating in a Kerr
medium; so we need quantum equations of motion for the field. Equations of that type, the Heisénberg
equations of motion for the field operators, can be obtained from the following effective interaction

Hamiltonian (7]:
1 22 . 122
H1=§fm{a+a++a a‘ +4da+a a— a.,,} (27)
where the nonlinear coupling constant & is real and is given by

o= g (2 senete) (29)

with V being the quantization volume. We have int;oduced in ( 27) a nonlinear asymmetry parameter
d defined as '

20 =14 Xeml¥) | (29)
. X:vrv(w)
If the nonlinear susceptibility tensor x is symmetric with respect to all its indicés, the asymmetry
parameter d is equal to unity. Otherwise d 94 1 and deséribés the asymmetry of the nonlinear
properties of the medium. When the medium is an assexﬁb]y of independent, identical molecules
the asymmetry parameter d is related to the hyperpolérizability of individual molecules [7] Ritze
[6] has calculated this asymmetry parameter for atoms with a degenerate one-photon transition and

obtained the results

(2J —1)(2J +3)/[2(2J% +2J +1)] for J e+ J transitions
(272 +3)/[2(6J%— 1)]

(30)
for J «+» J — 1 transitions .
The operators ay in the Hamiltonian ( 27) are the annihilation operators for the circularly right-
and left-polarized modes. '

Using the interaction Hamiltonian ( 27) and the commutation rules (' 3), one can easily write
down the Heisenberg equations of motion describing the time evolution of the field operators. Here,
we consider the travelling wave case instead of the field in a cavity; so we replace the time ¢ by

~n{w)z/c, and we obtain the following equation:

da;z(z) n(w) x [al(z)as() + 2da¥(z)a;(z)] as(z). (1)
When the relation, obtained from ( 5),
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is applied, equation ( 31) takes the form ( 24), that makes the quantum-classical correspondence

ay (32)

quite transparent, but now we deal with the quahtum field.

Our approach i‘s based on the discrete-mode approach, and the transition from the cavity modes
to the travelling waves suffers from the cavity-size dependence of the results. Recently, the quantum
theory of optical wave propagation without recourse to cavity qua.ntiza‘tibn.has been formulated
[38], and the exact solution for quantum self-phase modulation within this new approach has been
obtained [39].

Since the numbers of photons ala in the two modes are constants of motion, equation ( 31) has

the simple exponential solution {6, 7]

ay(t) = exp {ir [a;(O)ai(O) + 2da;:(0)aq:(0)] } a+(0), (33)



where we have introduced the notation

n(w)sz

T =

The solutions ( 33) are exact operator solutions for the field operators of light propagating through ';

a nonlinear isotropic Kerr medium without dissipation. These equations were used for calculations
of such quantum effects as photon antxbunchmg [6] and squeezing [7].
To describe the evolution of the field states we can use the evolution opera.tor U(r) whlch

according to ( 27) and ( 34) and after replacement t = —n(w)z/c, has the form

U(r):exp{i%[ﬁ,,(ﬁ,,—1)+ﬁ_(ﬁ_—l)+4dﬁ+ﬁ_]}, (39

where we have introduced the number operators #4 = akay for the two circularl polarized modes.
+0+ Y

The resulting state of the field is thus given by

[¥(7)) = U(7)[4(0)), (36)

where |15(0)) is the initial state of the field. If the initial state of the field is a coherent state of

elliptically polarized light, one obtains {28]

U(T)|‘1+a;)

(r))
= a0 exp{i(mw +n_p.)
T [ne(ng = 1) +no(ns — 1) + 4dn+n_1}|n+,n->, (37)
where
B = exp(—fasf/pyl2es (3)

Vni!
and the state [ny,n_) = [n,)|n_) is the Fock state. We have used here as = [ax|exp(ipy).

If the dissipation is present in the system the pure state description of the field is no loﬁger valid,
the mean numbers of photons (a;ai) are no longer constants of motion, and the above formulas
do not properly describe the field evolution. Nevertheless, even including damping, the master
equation for two coupled nonlinear oscillators has the exact solution {32] which, on assumption
of zero temperature reservoir and initially coherent state of the field, can be easily adopted to the
travelling wave situation with linear losses. In the presence of damping we have, instead of the

solution ( 37) for the field state, tile following solution for the matrix elements of the field density

operator:

Prym_inyn_(T) = (my,m_ IP(T)IA’H, n_)

(34)°

D

R

= b(+)b(+)b( bt >exp{ [(<,a+ - -) (my —ny) + (<,o_
x ("'++"+)/2_“ (T)f(m +n-)/2 ()

ST

X exp {N+/\ 1; f'f'* “namz=n- (7) } exp {N_/\ 1/\— f'."__"';m*_"* () } (39)

— WMmy~ny,m_o—n_ —WMm_—nomyp—ny

where 7 is given by ( 34), and we have introduced the following notation
A=y /e =]k, : (40)
with 7, and 7_ being the damping constants for the two modes,

Mam =N + 2dm7 . ! (41)

fm'n(T) = exP - - m,n)7] 5 _ (42)

bs.* are given by ( 38), a.nd (p4 are the phases of the initial coherent states a.mplltudes oy whlle
Nz = |ay[? are the mean number of photons. The dxssxpatxon is assumed to be equal for both 1110(!;‘5
and its value (re]aiive with respect to the coupling constant ) is described by A.

The solution (v39) is exact, and it enables calculations of all one-time expectation values of the

field operators. In this paper it is used to calculate quantum phase properties of the field propagating

_in a Kerr medium with dissipation.

4 Quantum phase fluctuations and correlations

To S£udy phase properties of ellipticaily polarized light propagating in a Kerr medium we usc the
new ﬁerrﬁiﬁaﬁ phase formalism introduced by Pegg and Barnett [33]- [35] Their idea is based
on introducing, for one mode of the field, a finite (s + l)-dimensiondl space ¥ spanned by the
number states IO),'I), ..ols). The Hermitian phase operator operates on this finite space, and after

all necessary expectation values have been calculated in ¥, the value of s is allowed to tend to infinity.

A complete orthonormal basis of (s + 1) sfates is defined on ¥ as

0, = exp(inf,)[n), (-13)
o) = A §n_oj (im0
where
2rm
= —_ = veey 8). 44
Hm = 00+s+11 (m 011’ 13) ( )

The value of 0o is arbitrary and defines a particular basis set of (s + 1) mutually orthogonal phase

states. The Hermitian phase operator is defined as

Z amlom)(omlv (‘15)

m=0



where the subscript 8 indicates the dependence on the choice of 6. The phase states ( 43) are

eigenstates of the phase operator ( 45) with the eigenvalues 0,, restricted to lie within a phase window

between g and 8 + 2x. The unitary phase operator exp(i &9) is defined as the exponential function of

the Hermitian operator ¢¢. This operator acting on the eigenstate |0,,) gives the eigenvalue exp(i0.), :

and it can be written as [33] - [35]

-1

> In)(n + 1] + exp [i(s + 1)60] |s) (0] (46)

n=0

exp(i&a) )

This is the last-term in ( 46) that assures the unitarity of this operator. The first sum reproduces

the Susskind-Glogower [40, 41] phase operator in the limit s — oo.

If the field is described by the density operator p, the expectation value of the phase operator %

( 45) is given by

where (0 |p]0m) gives a probability of kbeing found in the phase state |0,,). The density of phase
states is (s + 1)/2x; so in the continuum limit as s tends to infinity we can write (47) as

fo+2x
/ 0P(0)do, (48)

()

(o) =

where the continuum phase distribution P(#) is introduced by

(90) =Tr {pdo} = 3" On(Onlpl0n), (47)

1
P(O) = lim 21 (0.0pl6m). ~ (49)
—»o0 21 . .

where 0,, has been replaced by the continuous phase variable 0. As the phase distribution function
P(0) is known, all the quantum- mechanical phase expectation values can be calculated with this
function in a classical-like manner by performing integrations over 6.
Taking into account the definition ( 43), we have
l 3 E ] .
= lim — —i(n — k)0,]p.i- 30
PO)= Jim 522 3 expl=iln = Kol (50)

If we symmetrize the phase distribution with respect to a phase ¢ by taking

. '
00:¢_s+1 : (51

and introducing a new phase label u = m — s/2, which goes in integer steps from —s/2 to s/2, the

phase distribution becomes symmetric in p, and we get

PO) = 303 expl-i(m = n)p+ Olpmn. - (52)
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Now, all integrals over 8 are taken in the symmetric range between —7 and 7, and the phase

distribution P(0) is normalized so that
/ P(O)d0 =1. (53)

All the above formulas defining phase properties of the field can be easily extended into the two-
mode case we are interested in. Proceeding along the same lines, we arrive at the following formula
for the joint phase probability distribution P(8,.,0_) which is symmetrized with respéct to the phases
¥y and @_ ‘

1 . :
P(04,0-) = @7 Z exp{—i(m4 — "+)(‘P_+ +64)

mi.ng

+(m- —n_)(p- + 0-)]}Pm+-m-:n+,"—(7')' . (54)

On inserting into ( 54) the solution.( 39) for the density matrix, we finally obtain the joint phase
probability distribution for the continuous phase variables 0, and 6. describing phases of the two

modes. This gives us the following formula:

1

P(9+79—) = (21I’)2

YR AT
5 M e {20+ o)+ (61,6 )

mi N

x cos{5+9+ +6.0_ - %[MW +2do_ = 1) +6_(o + 2do, —1)]
—A(E+,5-)}, (55)

where, for brevity, we have comprised the summation indices into the following combinations:

Oy =My + ny (56)
by =my —ny ’
and we have defined the quantities
T(m,n) = A[ARL(T) + ALUT)] + 2mn BEAT) + 10mBEA(7), (57)
A(m,n) = ﬂm.nAs:,z.(T) + WN.MAS;,-:Z.(T) -2 [Br(rtv)n(r) + B.‘.T.?.(T)] ) ‘ (58)
where 7, is given by ( 41), and
Nid ,
Af,ﬁ,(‘r) = m[l — exp(—A7) cos(fm,n7)], (59)
Ngd .
B,(,f,)_(r) = m exp(—A7) sin(fm n 7)) (60)

11



Fofmula ('55) is thé exact analytical expression describing the :ioint probabiiity distributién P(0,4,0-),
and it allows calculations of all pﬁase expectation values by simpie integrations over 6, and 0_
the symmetrical range between — and =. '

Despite the complexity of T(64,6-) and A(84,6.), the structure of formula ( 55) is quite transpar-
ent. If there is no dissipation in the system, A =0 and both thess quantities are also equal to zero. In

this case, formula (.55) goes over into our earlier result [42]. Another limit is the case of no coupling

between the two modes, i. e., the case d = 0, when the expressions for I'(6;,5-) and A(64,6-) split -

into sums of separate terms for the ”plus” and "minus” modes and- the phase distribution P(0,, 0.)
can be factorized into the individual mode distributions. However, cither of them still includes the
dissipation. The one-mode case with dissipation has been studied by us elsewhere [43).

On integrating the distribution function P(04,6.) over.one of ‘the phases 04 or 0_ one obtains

the marginal distributions P(8_) or P(6,) for the individual phases. The result is

, R
P,) = 5;{1 +2) ) bHbH
n>m E

exp{=N_ [~ Relfomn( =+ m)+ T (1)}
xcos{ (n —m)0 = Z[n(n = 1) = m(m — )} + NoIm{fon-m(7)] - A‘:.’m(r)}}, (6
where .

I, () = I(n — m,0), } (62

AD, (1) = A(n — m,0).

The distribution P(_) can be obtained from ( 61) by interchanging the indices plus and minus and
taking into account that A ’

) (r) = '
) (r) =T(0,n — m), } (63)

A2 (1) = AO,n —m).

Knowing the phase distribution ( 61) allows calculations of the expectation values and variances

of the Hermitian phase operators by performing appropriate integrations. We have, for example,

(+) = Tripds) =1+ / 0, P(0,)do,
=4 +(04), (64)

where

(8) = / 9, P(6,)do,

12

- e T
=2 b ——

n>m
x exp{ N_ {1 = Relfon-m()l] = 32 (3 4 m) + TS (r)}

x sin {_5[n(n —1) = m(m - 1)] + N_Im[fon-m()] — Af,t’m(r)} , (63)
and the variance is given by
((D4)) = (63) — (64)? (66)

with
(02) = / 62 P(0,)d0,

2
- (+)(+)( "
3 +4) B —

n>m

)2
x exp{ N {1~ Relfomen ()] — S+ ) + r‘:.’mm}

X cos{ % nn—1)~mm-1)] + N_Im[fo aem(T)] — A(+)m(‘r)} ] (67)

Formulas ( 65) and ( 67) are generalizations of our earlier results [42].

Equation ( 65) is the quantum formula describing the intensity-dependent phase shift, and for the
medium without losses it can be compared with the classical expression ( 26). This shift depends, in
general, on the intensities of both modes and on the asymmetry parameter d. For d = 0 there is no
coupling between the two modes and then the phase shift for the "plus” mode does not depend on
the other mode intensity (N-). Classically, as it is evident from ( 26), the intensity-dependent phase
shift is linear in z (or in 7). Quantum mechanical formula ( 65), even for A = 0, involves nonlinear 7

dependence. In fact, for 2d being integer the mean phase is periodic in 7 in case A = 0. lHowever, for

© 1 <« 1 the phase shift is practically lincar in 7. The range of small 7 values is most easily accessible

from the experimental point of view. In Fig. 1 we illustrate the evolution of the mean phase for
different values of the mean number of photons (intensity) and for A =0 (a}, A = 10 (b). For r « 1
the linear dependence on 7 is clearly visible, and the rate of increase is proportional to the intensity.
For larger T some oscillations appear in the mean phase evolution which are washed out by damping.

Evolution of the phase variance given by ( 67) is plotted in Fig. 2. For 7 < 1 without damping
the variance is growing as 72, and the higher is the mcan number of photons the faster is the growth.
This means that for strong fields the phase is rapidly randomized, i. e. the phase variance approaches
the value x?/3, which is the value for uniformly distributed phase. The presence of dissipation in

the system causes that the randomization proceeds more smoothly.
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FIG. 1. Evolution of the mean phase (4,), for (a) A =0, and (b) A = 10. Other parameters are
N_ = 4,d = 1, and the curves are plotted for Ny = 0.25 (short-dash), Ny = 4 (long.~da.s}‘1), and

Ny = 16 (solid). These values and curve descriptions are used in all the figures.
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FIG. 2. Evolution of the phase variance ((Ad4)?), for (a) A =0, and (b) A=10.
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FIG. 4. Evolution of the phase-difference variance ([A(¢4 — _)]2), for (a) A = 0, and (b) A = 10.
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When the two modes are coupled (d # 1), some degree of correlation between them can arise V

during the evolution. The phase correlations can, for example, manifest themselves in the variance
of the phase-difference (or phase-sum) operator of the two modes. In the Pegg—Barnétt formaliAsm
the phase-difference (phase-sum) operator is simply the difference (silm) of the phase operators for
the two modes. Thus, to calculate the variance of the phase-difference (phase sum) operator we can

use the following relation .
(18, £ 01) = (A7) + (A4 £2{(8:6) — (B} }. (63)

The variances {(Ad4)2) and ((Ad-)?) can be calculated according to ( 66) and ( 67) and their
counterparts for the minus” mode obtained by interchanging "+” and ”~". The last term describing

the correlation between the phases of the two modes can be written as

Coo(7) = ($+8-) — ($4)($-)
= (040-) — (6+)(6-), - (69

where (0;) and (0_) are given by ( 65), and

(0,0_) = / / 0,0_P(6,,0_)d0,do_

1) (—1)- .
=3 'b(+)b(+)b(—)b('—)ﬂi(_iexp _£(0+ +0.)+T(6,,6.)
D T 2
mi,ni
X cos{§[6+(a'+ +2do- —1) +6_(o- +2doy — 1)] + A(é4, 6_)}, (70)

where the notation is the same as in formula ( 55). The prime over the summation symbol means
that the terms with §, =0 and 6_ = 0do not enter into the sum.

The strength of the correlation depends crucially on the yé,lue of the asymmetry parameter d.
If d = 0, the phase distribution P(f,0_) factorizes and C;_(7) = 0. The highest values of the
correlation are obtained for d = 1/2, which means that the minimum of the phase-difference variahce,
in view of equation ( 68), is obtained for d = 1/2. The evolution of the correlation coefficient Cy_(7)
is shown in Fig. 3, and the corresponding curves for the phase-difference variance are plotted in
Fig. 4. It is seen that the phase correlation can take both positive and negative values depending
(;n the intensity of the field. For high intensities the evolution has oscillatory character. Damping,
as expected, makes the evolution smoother. From Fig. 4 it is evidént that also the phase difference
is rapidly randomized when the field intensity is high. The higher is the intensity the faster is the
randomization process despite the fact that the correlation can have opposite signs. Generally, a
competition between the purely quantum effect of phase randomization and the linear losses of the

medium is observed during the propagation of strong light through the medium.

5 Conclusion

In this paper we have studied the quantum phase fluctuations and correlations of the elliptically -
polarized light propagating in a nonlinear Kerr medium with dissipation. The new Hermitian phase
formalism of Pegg and Barnett [33]~ [35] has been used to describe the phase properties of the field.
The exact solution of the master equation for two coupled nonlinear oscillators obtained recently by
Chaturvedi and Srinivasan [31, 32] has been adopted to describe the propagation of light in a Kerr
medium with dissipation. The exact analytical formulas describing the quantum phase fluctuations
and correlations of the propagating field have heen obtained. The evolution of the méan phase,
the phase variance, the inter-mode phase correlagion, and the phase-difference variance has been
illustrated graphically for various intensities of the initial field, and for the medium without and
with losses. The purely quantum effect of the phase randomization is shown to appear owing to the
nonlinear coupling. This process becomes very fast for high intensities of light. The dissipation is
shown to slow down this process and make the evolution smoother. There is a sort of competition
between the quantum effects due to the nonlinear coupling of the field in the medium and the li;lear
losses of the medium. Our exact solution to the problem allows us to find the precise answer regarding

the role of dissipation in masking the quantum effects.
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o fKBaHTOBme @nyKTyauuu H Koppenﬂuuu @asm

~ 3JUTUOTHUE CKHY - HOHHpHSOBaHHOPO CBeTa,
IpacnpOCTpaHﬂmmePOCH B KeppOBCKOH cpene

v HCHOHBSOBaHa KBaHTOBaﬂ Teopuﬂ pacnpOCTpaHeHnﬂ CBeTa v
;nnﬂ quncneﬁnﬂ ¢nyKTyauuu H! Koppenﬂunn ¢a3m SHHHHTquCKH—A

BE HOHHpHSOBaHHOPO CBETa,;paCHpOCTpaHHMMEPOCH B HenHHeHHOH
| ‘keppoBckoii cpene ¢ moriomenueM, s omHCcaHHsT basoBBX

" cBOHCTB mons npuMEHeH HOBbIH ‘dopmManusmM BDMHTOBOH taszpr!- Ile r—
,/,ra - BapHeTTa ‘TlonyyeHs! . Toqﬂme aHannanecKne ¢opmynm,,d
vﬁonncmsammne cpenHee 3HayeHHe n nncnepcnw @asm Kamnon or= |
: £HEHBHOH Monm,_MeMMOAOBym'éaSOBym KoppenﬂunoHHym ¢yHKuHm
H nncnepcnw pasHOCTH das. PesyanaTm nponnnmCTpnpOBaHm o
frpa@uqecxn s pasme 3Haqeﬂnn Haqanbﬁmx HHTGHCHBHOCTEH
~T0JIA OJIS1-yKas aHusl HX SaBHCHMOCTH OT’ HHTEHCHBHOCTH CBeTa.
: ;Tquo yanmBaeTCﬂ BIIMAHHE nornomeﬂnﬂ Ha HennHenHmn KBaH— :
TOBMH 3¢¢eKT paSMaSMBaHHH dbassbr, L S ‘
e ; Pa6ora anonHeHa ‘B Ha6opaTopnn TeopeaneCKon @nsnxn
fouad, . N et R :

» : I'Ipénpl;mr OSnemmHo:o m-tc,"mfy;ra‘anepm;ix ncCh‘enba‘aHuﬁ._JIyYSHa'IQQI

eTanas R., Gantsog Ts. BN < E17-91-198
¥Quantum Phase Fluctuat1ons and Correlat1ons s RO
of Ell1pt1cally Polarlzed nghL Propagatlng
"?1n -a Kerr Medlum

The quantum theory of 11ght propagatlon in a nonllnear‘ik
fKerr medium is applied to: calculate quantum phase fluc-.

‘:tuatlons and correlations of elliptically polarlzed 11ght

propagating ‘in the medium with dissipation. The Herm1t1an

‘| phase” formallsm of -Pegg and Barnett:is applied to descr1-
| be the phase propertles ‘of the field. Exact analytical-

1" formulas that ‘describe the mean phase,‘the phase. var1an-*'i
‘|"ce, the 1nter -mode phase correlatlons and’ the phase-dif--
ference variance are derived. The. results are’ illustrated
jgraphlcally for different 1n1t1al 1nten51t1es of the:
“field: to show exp11c1tly their. 1nten51ty dependence The. .
|- effect of d1551pat10n on the nonlinear. quantum effect of
1phase randomlzatlon 1s exactly accounted for._ : :

Preprmt of the Jomt Instxtute for Nuclear Research Dubna 1991




