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1. INTRODUCTION 

The mod61 Hamiltonian most frequently used in literature 
for description of the chemisorption phenomenon is the Hamil-
tonian introduced by Anderson 

Edwards and Newns {3]. the 

[1) and used by Newns {2] or 

so-called Newns-Anderson (NA) 

Hamiltonian., The Anderson model has first been introduced to 
describe a magnetic impurity in a metal but also is very use­
ful to formulate fundamental microscopic foundations of the 

chemisorption theory. However. the NA model does not take 
into account many important effects-which maY lead to consi­

derable qualitative differences.in some chemisorption charac­
teristics [4). The model considered by us in this paper is a 

direct generalization of the Newns-Anderson model to the case 

of final coverages of randomlY arranged adatoms (5]. The pro­
blem of constructing a more realistic model of chemisorption 

has thoroughly bee~ studied by us for the case of one admix­
t~re in Ref. [6]. At present. the microscopic theory of chemi-. 

sorption systems can be roughly divided into three classes 
depending on methods used in calculations of various chemi­

sorption characteristics. ApparentlY. the description of the 
coverage dependence of the properties of the chemisorbed 

over layers was for the first time realized within the local 

density functional method (LDF) [71. In the framework of this 
scheme the adsorbate ion cores were modeled bY a thin jellium 

slab adsorbed on a jellium surface. 

At the next step there appeared extensions of: this 
approach. see for example Refs.[B. 91. where an approximate 

description of the metallic substrate by either a semi­
infinite jellium system or by including the substrate struc­
ture within first-order perturbation theory for jellium plus 
adatom system was used. In Refs.{10-13]. the alkali-metal ad­

sorption on metal surfaces (the 'alkali-metal-overlayer­
jellium system ) was investigated and a fully self-consistent 
electronic structure was obtained. In Ref. [141 a further 

improvement was achieved. i.e. a coverage dependence of the 
electronic structure of alkali-metal adatoms on a metal sur-
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face was studied treating both the adatom and substrate as 

discrete atoms. Although the "ab· initio" method gives very 

useful information. it involves a large amount of computer 

calculations and all the calculations must be repeated for 

new sets of input data (for example, for a value of the 

coverage rate). In addition, these calculations rather repro­

duce the experimentally observed features and dq not explain 

them. The second class of methods consists essentially of the 

quantum chemistry approaches (see, e.g. cluster methods [151) 

and the third class comprises the model Hami 1 toni an methods 

(see e.g. [4]). EspeciallY. the method of model Hamiltonians 

can we well suited for better understanding and not only for 

reproducing the experimental results. 

It is to be noted that the model approach is wide open 

to. criticism. However, in comparison with the "ab initio" 

calculations it is an indispensable tool for explanation of 

basic mechanism of physical processes which essentially 

promotes their understanding. 

In the present paper we consider the Problem of many ad­

atoms simultaneously existing on the metal surface within the 

model Hamiltonian method. The model Hamiltonian used here has 

recently been obtained by us and generalizes the Newns­

Anderson Hamiltonian. The electron correlation effects are 

included within the second-order self-energy matrix formalism 

of Brenig and Schonhammer [16]. We also discuss here general 

solutions obtained within the equation of motion method for a 

case of submonolayer coverages. 

The paper is organized as follows. In section 2. we give 

the approximate model Hami 1 toni an intended to describe the 

chemisorbed hydrogen overlayer on a model transition metal 

surface and compare this model with others known from the 

literature. In sectio.n 3, we Present shortly some methods 

which incorporate the electron-electron interaction (on the 

adsorbate atom) and generalize the Hartree-Fock solutions. 

2. THE BASIC MODEL HAMILTONIAN. ONE ADATOM CASE 
Recently.we have obtained from the microscopic conside-
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rations the Hami 1 toni an intended to describe the system of 

adatoms located on the metal surface [5]. The system adatom 

plus metal surface is described by the Hamiltonian (we consi­

der the hydrogen adatom in the ls ground state): 

N+1 p2 N+1 

H~\ -' +~ \v(~- ~) L zm z L t J 

N+< 

Lv(~A- ~) f 1 I 

i =.t. i ;:<! j i = 1 \. = :l 

Here the potential V(~-Y). describes the Coulomb interaction 

between electrons placed at the positions ~ and Y. P(~) is 

the electrostatic interaction of electrons with the electric 

fields of the metallic substrate. The constant U repres.ents 
0 

the energy of the electrostatic interaction between ions of 

the metal substrate and between these ions and the proton of 

the adatom. After performing the second quantization proce­

dure (for details see Ref.f5}) we obtain 

H•LEAnAa+UnA~nA~+Lctnt.a-LVtt· (A)a-+k a7, +~(v ta+ a-+ +h.c)+ .a K a ~ A~ AO kO 

a ka kk• kO' 

0' 

+LVAtt•AnAaaia•at,o·+~ 
kk' 

~V4 ~ 4-+ a! at ,a4 ,a4 -
~ k k k k k 0' k 0' k 0 k 0' 
k k k 1 2 3 4 1 2 3 4 

0'0'' ' z 3 
k oo• 
• 

(2) 

-\ (v -+ n a+ a.-+ +h . c) + \ V + -+ a+ a-+ a a-+ + L AAAk A-o·Ao kO' ~ AkAk' AO ko' AO' k'a 

ko kk' 

0'0'' 

+ L[ V Ak~· ;:- .. a:aala• af, a' df·•o+h. c)-Lp AnAO' + 

=' a 
kk' k" 

+f-L(vAAf.k·a!aa:_o•af_aat.'•o+h.c) + Uo 
k k. 0' 

Here, the functions Vt. k t k . 
:l 2 3 4 

VAt. k k, are the matrix ele-­
' z 3 

ments calculated for the Coulomb interact 10n V(~-Y) between 

states described by the substrate electron wave functions ¢t 
' 'i>t.· and ada tom e 1 ectron function ¢>A and ¢k . 'i>t.· z ' z 
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¢t , respectively. Other abbreviations have their usual mean-

• 
ing (see, also (5]). A very similar model Hamiltonian. 

although without some terms present in (2) was obtained by 

Doyen [17] and Doyen and Ertl [18, 19]. Starting with the 

Newns~Anderson Hamiltonian and adding additional self~ 

consistent fields arising from electron-electron interactions 

they obtained parameterized mode 1 Hami 1 toni an which treats 

the interaction between adsorbate and metal electrons in some 

details. In our case. we have started from very general phy­

sical description -Eq.(l). and as a result, we have obtained 

the Newns-Anderson Hamiltonian plus many other terms descri­

bing in detail the chemisorPtion Process. To some extent, we 

can give a very rough physical interpretation for terms in 

the Hamiltonian- Eq (2) (for comparison, see Ref. [17}). For 

example, the fourth term describes repulsion between elec­

trons localized on adatom and substrate electrons, the next 

term corresponds to the attraction of metal electrons by the 

positive ion core of the adatom and so on. Very important for 

our further considerations is the seventh term which can be 

interpreted as an interaction of overlap charge with elec­

trons on the adatom. In other words, this term describes the 

influence of the fractional occupation of the surface impuri­

ty resonance on the electron transfer between the adatom and 

substrate metal. It is also important to note that for a con­

sistent treatment of the Polarization properties of the metal 

substrate it is insufficient to characterize its electronic 

properties by the parameter £t_ (the energy spectrum of the 

substrate electron band), but it is necessary to introduce a 

long range part of the Coulomb interaction between substrate 

e 1 ectrons Vt. it t_ it [ 20 J , or introduce p 1 asmons [ 21] . The cor-
~ 2 3 4 

responding term is present in our Hamiltonian. 

In the following, we· confine ourselves to the model in 

which tOgether with the standard interactions present in the 

NA model we include only effects connected with the influence 

of the adatom orbital occupation on the charge transfer 

between an adatom and a metal substrate. In this case, the 

5 



Hamiltonian reads as [5, 6] 

H-\E n +Un n +\e_.n~ +\{(v ~-v ~kn )"-+ ar>k +h.c.} t3J L A AO' A1' A+ L k kO' L Ak AAA A-0' AO' 0' • 

0' kO' kO' 

The last term can be simplified as for ~~AI » 0.5A we have 

VAAAt ~ 
between 

eN-> Ak 
where the· parameter C( depends on the distance 

the adatom and the metal surface (0 ::; a :$ 1) . We have 

checked in Ref. [6J that this approximation works relatively 

good. In Ref. (5J we have performed the self-consistent calcu­

lations of the adatom electron charge and chem1sorption ener­

gy in the framework of the Hartree-Fock approx1mation, i.e. 

for the Hamiltonian 

H•\c+n-> +\{En +U<n >--<>\(v .. <.,_+ a.->k >+h.c)}n -U<n >x 
~ k kO ~ A AO A-0' ~ Ak A-0' -0' AO' A~ 

kO' 0' k (4) 

x<n >+~{v -+(1-a<n >)a+ a4> +h.c}+a\{v ~<n ><a+ a~ >+h.c}. 
A~ ~ Ak A-0' AO' kO' ~ Ak A-0' AO' kO 

ko ko 

The calculations were performed for parameters modeling the 

hydrogen chemisorption on transit ion metal surfaces. The 

results indicate that the charge t"ransfer to the ada tom is 

considerably damped with increasing value of the parameter a. 

This means that the additional term -VAAA~nA_0a:0at0 in NA 

Hamiltonian, which in a Hartree-Fock approximation leads to 

spin dependent effective hopping matrix element and renorma­

lizes in a special way the energy of an electron moving in 

the field of the adparticle ion core, plays an essential role 

in the description of the adsorption system. Note, that the 

semiempirical Hamiltonian obtained for the description of the 

chemisorption process in Ref_ [19] leads to some difficulties 

arising when the one-particle approximation is applied. In 

this paper Doyen and Ertl checked that reasonable agreement 

with experiment could be only achieved if the hopping matr1x 

element for different spins were allowed tc-; differ. In this 

case it becomes obvious that the corresponding Hamiltonian is 

not the Hartree-Fock operator of a proper many-particle 

Hamiltonian. In order to 1mprove this situation one has to 
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add to the Hamiltonian the term like n <a+ a-+ > + h c AO' A-0' k-G . . ' 

which was absent in the model explored in Ref. [19] In our 

formulation this term is present in the Hartree-Fock Hamilto­

nian from the very beginning. It is contained in the second 

term in Eq. (4) leading to additional spin-dependence of the 

effective adatom energy level position (through the correla­

tion function <a:aaf
0

>). 

In the analysis we have performed above, the electron­

electron interact ion was treated in the framework of the 

Hartree-Fock approximation. It is d iff i cu 1 t to take into 

account the correlation effects because the small parameter 

does not exist in the theory. This means that one has to sum 

an infinite series of the most divergent diagrams or cons­

truct the Green function with the approximate se 1 £-energy 

operator. These solutions should be, of course, identical 

~vith the known ones for some special case. A great number of 

papers have been devoted to the study of the correlation 

effects in the chemisorption theory beyond the Hartree-Fock 

approximation. Here. we mention merely few of them. First of 

all. we have works by Brenig and SchOnhammer (161. Yosida and 

Yamada [22], Anda. Majlis and Grempel [23] Sebastian and 

Rangarajan [241. Bell and Madhukar [251. Lacroix [26] and by 

Munoz et al. [27). Especially two of them are interesting_ 

First. it is the work by Brenig and SchOnhammer (16] in which 

the correlation effects on an adatom are treated within so 

called second order (in V the single particle hopping 

strength between the adatom and the substrate atom) self­

energy matrix formalism. This method was also transferred 

with success by SchOnhammer [28] to considerations of the 

e.lectron correlation effects in the standard many-body Hub­

bard Hami 1 toni an. The second is the work by Munoz et a 1. 

(27]. In this case. the self-energy expression interpolates 

between two opposite cases, i.e. between the second-order 

perturbation formula and formula for strong correlation 

limit. Here. we use the second-order self-energy matrix 

formalism described j_n [16] to consider the electron correla-
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tion effects within our generalized NA Ham1ltonian. 1.e. with 

the term 

-~(v ~n a+ a~ +h.c) L AAAk A-0" AO" kO" 

kO' 

(5) 

included. Using the double-time retarded Green functions [291 

built up from the operators nA_
0

a
40 

and a
40

(1-n
4

_
0

) we can 

try to-solve the Dyson equation for this Green function up to 

second order in powers of VAk (here we used VAAAk ~ aVAt[6J). 
As a result for the self-energy expression we obtain [30] 

where 
2 2 0' 0" 

[

(1-c.) <n >A(E)+(1-c.) <C +ID 
A-0 

11:::. 0' = 

- (1-c.) (<C"' +ID"') 

ID
0
-<n n >AC2E +U-EJ+<1-n -n >RC2E +U-El 

AO' A-Ct A AO' A-0' A 

R(E)- IV ·I /(€•) (E-€•) L 2 -· 
Ak k k 

; A(E)=LIVAki 2 CE-€k)_, 
k k 

<C"'=< n >< 1-n >A (E)+ (<n >-< n >)R(E); 
A-0" A-0" A-0" AO" 

"' L 2{ 2 IB = IV •I (1-<>) <n 
~~ . Ak A-0" 

k 
c ... -E -U 

k A 

and /(E) is a Fermi function. 

(6) 

In Ref. [30}, we have performed the self-consistent nume­

rical calculations of the adatom charge for a- chemisorption 

system modeling the case of hydrogen on titanium surface for 

different values of the parameter a. The parameters for cal­

culations were taken from Ref. [2]. The effect obtained after 
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introduction of the self-energy corrections can be described 

as follows. For small values of a we have much smaller values 

of the adatom electronic charge comparing with the results 

obtained for the standard NA model. For moderate values of a, 

i.e. for a~O. 5 (we remember that a and distance between the 

ada tom and substrate's surface depend on each other) the 

results obtained in the Hartree-Fock approximation, as well 

as beyond this approximation (but for smaller values of 01., 

a~0.3) are comparable. For greater values of a, a~0.5,in the 

treatment beyond the HF approximation the charge transfer 

"stabilizes" around the neutral ada tom case. On the other 

hand in the HF approximation such neutralization can be 

achieved for greater values of a but. as we feel, this values 

of a are too large for the system under consideration. 

As we expect on physical grounds. the hydrogen adatom 

should be in a nearly neutral state. Thus, we can say that 

the generalized NA Hamiltonian (i.e., NA Hamiltonian plus 

correction expressed by Eq. (5)) describes this chemisorption 

system better .This description is sufficiently good for 

moderate values of 01. even in the Hartree-Fock approximation. 

From the comparison with the results obtained for the whole 

range of paramet0rs 01. it appears that the generalized NA 

model combined with the self-energy corrections obtained 

within the method of Brenig and SchOnhammer can be helpful in 

understanding the chemisorption process. 

3. CHEMISORPTION AT FINITE SUBMONOLAYER COVERAGES 

The extension of the one-adatom chemisorption case to 

the submonolayer coverage can analogously be described as 

follows [31 J : 

""'11 
xNa+~Vak~k·N~N~~:o~~o·a~a·~k•o 

«{1kk' 

oo' 

9 
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The Hami 1 toni an :in the form presented here contains the con­

tributions which play the most· important role in descr1b1ng 

the electronic properties of adlayers. Other terms not writ~ 

ten explicitly here are contained in R and involve processes 

which are not usually considered in simple chemisorption 

models. These terms describe the interaction of the valence 

adatom electrons with the redistributed charge cloud 1n the 

substrate metal induced bY the ada tom electrons themselves. 

effects describing the correlations between adatom charge 

fluctuations and the redistributed substrate charge density 

and other effects of much high order (for details see Refs 

[5. 31)). Having in mind such complicated system as a chemi­

sorbed layer on the metal surface we restrict ourselves in 

the first step to the simplest case. i.e. we consider the 

model described by the Hamiltonian: 

H-L&tn~O' + L EcPor.nctO' + ~ LNctnctO'n0.-0" + L vokNaa..:oa.ko +h. c. (8) 
ko or.o or.o ctko 

Model (8) is a generalization of the well-known NA Hamilto­

nian to the case of a stochastic arrangement of adatoms on 

the metal surface. The sum over a is carried out over all the 

adsorption centres. The operator N =C+ C has eigenvalu<:>s 
ot ot ot 

equal to 0 or 1. and the operators c+ and c are the Fermi 
C< C< 

amplitudes of the creation and annihilation of an adsorbed 

ion (action) at the adsorption center a. We consider only the 

case when there: is no more than one adatom ion in each adsor­

ption center. At a complete monolayer coverage the ada toms 

form a two-dimensional lattice with the periodicity commensu-­

rate with that of the substrate surface. For the coverage 

less than unity the two-dimensional chemisorbed layer is con­

sidered as a substitutional alloy composed of t.wo types of 

species, i.e. adatoms and vacancies. 

In the following, we are going to co:ls)der the electron­

electron correlation effects withln the rw·thod of Brenig and 

SchOnhammer [16] and the adat.om propArtjes related with its 

position on the substrate surfa~e are involved in correlators 
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of the Ising type <N.~N(3na.-an(3-a>. At this stage of our calcu­

lations, in order to introduce simplifications in handling 

highe}~-order Green functions composed of ion and electron 

operators we can use de coup 1 i ng approximations. One of them 

concerns the Ising type correlators and here we proceed by 

the formula: 
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Fig.l.-The adatom local 

density of states for 

different coverages 

(first curve 1n each 

panel corresponds to 

8=0, second for 8=0. 5 

and last for 8=1.0) 1n 

the symmetr.ic case for 

u;w~0.15 (left panel) 

and u;w~o. 3 Cr1ght pa­

nel). Energy 1n units 

of the substrate half 

bandwidth. 

The second approximation can be understood as neglecting the 

correlations between electrons located on different adsorp-

tion sites. Only the first approximation is more serious 

because it means we have neglected the possible correlated 

distribution of the adatoms on the substrate surface. In this 

way, our calculations can be comparable with those for 

example. within the single-site coherent potential approxima­

tion [35.37]. The second approximation is fully justified for 

our system. as it corresponds to neglecting the interatomic 

electron correlations in the Hubbard type Hamiltonian. Tho 

numBrical calculations have been performed for the electron 
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charge of the hydrogen chemisorbed on the model substrates 

intended to describe nickel and titanium metals (for details 

see Ref.[34]). For all coverages the value of q=<n
4

t>+<nA+> 
is significantly lower than the results of the Hartree-Fock 

calculation£; for the same set of ·parameters. The neutraliza­

tion of the adatoms with increasing coverage was obtained in 

agreement with the experimental results. The adatom local 

density of states depends on the coverage, too. For monolayer 

coverages the indirect interact ion between ad atoms through 

1.5 

-1 0 " 
ENERGY 

1.5 
l 

Ql 

v 
1/ f'vv 

j' r-
"'- / 

/B) 

Fig.2.-The adatom local 

density of states for 

nickel substrate for V 

equal 2eV, 3eV. 5eV and 

6eV for panels A. B, C 

and D, respectively. 

The first curve in each 

panel corresponds to 

coverage e~o, second 

tor e~o.5 and the last 

for 8=1, respectivelY. 

the substrate electrons is so large that can lead to two 

nearly separated energy bands. In Figs. 1-3 we have presented 

the adatom local density of states for three cases. Fig. 1 

presents the results for the symmetric case. Fig. 2 for the 

nickel substrate case and Fig. 3 for the titanium substrate 

case, respectively. In all cases a similar situation appears. 

i.e., for large coverages (8=1 corresponds to one monolayer 
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coverage) and for greater ·v one can observe the ap)?earance of 

two electron sub-bands, an effect very visible in Fig .1. It 

can be understood from the indirect interaction between ada­

toms through the substrate electrons which for large V and $ 

is extremely strong. 
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4. GENERALIZED HARTREE-FOCK SOLUTIONS 

Fig.3.-:The same as in 

Fig .1 except for ti ta­

nium substrate for V 

equal 2eV. 4eV. 7eV and 

8eV, respectively. 

The model Hamiltonians considered in the preceding sec­

tions have an unusual structure. They have the form of the 

Ising model with respect to ion variables Not but with the 

operator coefficients consisting of Fermi amplitudes [31]. It 

seems that the ionic properties described by correlators like 

<Not>.<NotNf">. ··· can be computed simultaneously within the same 

Green function "machinery" within the equation of motion 

method. In the equation of motion method one obtains. in suc­

cessive steps. the sequence of coupled equations for higher 

and higher order Green functions, and the decoupling process 

usually applied in such situations is an approximation. which 
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meaning is not immediately transparent. For that reason. if 
the decouplings of the higher order Green functions into 

lower ones are made on a sufficiently high level of the 

hierarchy of equations or we take into consideration infinite 
series of the Green functions belonging to some classes, then 
we may believe that these approximations can be justified. 

Here, we are going to calculate the Green funct1on 
<<N a JN,..a~ » within the -equation of motion method. Let us ct 0.0' I"' 1.,0' 

write the equation of motion for this function 

(E-E ) <<N a. INna.: >> ~ 6_n<N Nn> + U<<N a. n I--->>+ a ~ ~o r~ r~a ~~ o. r., ct o.a a-a 
( 10) 

+ \ v ~<<N a.~ I --- >> L o.k a kO' • 
k 

where I ---» on the right-hand side of the Green functions de­

notes 1Ncta~0». Writing the equations for the Green functions 
appeared in (10) and for the new Green functions in the next 
equations we obtain 

<E-c~ l <<N a.~ I --- >>~Iv• ~<<N N a. I --- >> k ct kO' ' C( k 01. ct 0.. 0' • • • 
( 11) 

"' • 
(E-i:: )«N N a. I ---»~6 n<N N Nn> + U <<N N a. n I --» + e< 01. ex ex o e< 1J ex a 1 ~ a et C:l "o· ()( -o :t ii i i ~~ ~ 

+ \v ~«N N a.~ 1 ---» L a k a ()( ko 
k 1 • 

"" » 

( 121 

( 13) 

(14) 

->> +~V ~<<N N N a.~ I ·-· >> 01 k C:l a 01. ka 
k 2 t 2 

(E-E )<<N N 
Dl. Of. ot 

---N a. I ---»~6 n<N 
ct. a. o ct. 1 J a 

' 1 

U«N 
01 

' ' ' 

l4 

( 15) 

nNot "'kol -->> 
n=~ n 



Hav1ng in hand Eqs. (10-15) we can obtain exact equation for 

the Green function « N a IN~a: » in terms of ionic 
()( 1;-J.O' (' I >0' 

tors <N N 
C( C( 

··· N > and 
(1 

the Green function belonging to 

' cific class of higher order Green functions, 

class of functions « N N 
C( C( 

1 

· N a n I 
C(, a. Cl a -CI 

' ' ' 

00 p (E) ... p (E) 

IL C(C( 

+ ' 
(E-E"' ) 

n= 1 or. .•• 01. 1 
1 n 

00 
Pctot(E) ... p 

IL + 
1 

[E-Ec, ) 
n"' 1 C( ... ct 1 

1 n 

where P (£) =.:_ 
o.("J N 

LV~t_Vt~~-
k k 

C( C( 
n-' n 

(E~Ee< ) 
.n 

ot ot(El 
n- 1 n 

(E-Eot ) 
n 

<<N 
C( 

. >> : 

namely 

correla-

the spe-

to the 

(16) 

... » 

Before we 1-1roceed the considerations concerning the 

general equation {16} let us consider the Hamiltonian (Bl in 

the mean field approximation (38] 

L L <N n > L + H- c~n~ + (E -u ~Na;o )N n + (v ~N ~ ak~ +h.c)-
k k 0' 01. 01. AO Olk 01. 01.0' 0' 

• ko ao Ot aka 

<N n > 
-U a a-o 

<N > 
C< 

<N n > 
C( = 

<N > 
C< 

(17) 

In this case one can obtain the required Green function 

(in Hartree-Fock approximation) on a relatively simple way 

(3~]. Namely the Green function <<N' N a INt?a: » which appe-
or. a cto I' 1,o 

1 

ars in the equation of motion for <<N a INt?a: » should be a ao 1 , 1,a 

decoupled in the following way: 

<N N > 
C( C( 

<<N N a. !Nt?a.: »~ --,--'1-«N a IN a+ » 
0. Ot ctO I' 1'0 8 0! <-~ 0 0 (JO • 

1 1 1 

(18) 

I-'1nally, for q Four1er transform of <<N a. IN,?a: >> one obtainS 
C( OlC/ I' 1'0' 
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G"'q ( E l ~ ----7,;8~.::-~--<N n > ,, 
E~E -U Dl a-cr -P \E) 

u <Ncx> q 

where Pq{E) is the Fourier transform of PCI.{3(E) 

<N N > 
P (E)~P (E) 0 0 

oF o0 e 

( 19) 

(20) 

Approximating <NaNr> according to the formula (9) v.re get 

the known Hartree-Fock result [38] Note that using the sin­

gle-particle approximation of the general Hamiltonian (8) we 

have to decouple the Green function (18) and the decoupled 

correlation function describes the correlations among the 

possible positions of the adatoms. 

The same solution can be obtained starting from the ge­

neral many body Hami l_tonian (8) by making some decoupl ings in 

the corresponding Green functions.Writing the equation of mo­

tion for the function <<Na.a.aaiN,Ga.~a», Eq. ( 10). and approxima­

ting the higher-order functions <<N a. n IN(!"'(!+ »as follows 
01. OlO' ct-0' 0' 

<N n > 
<<N "- n I N(!"'(!+ » "' 01. ctO' Ol.-0' 0' 

01. Ol.-0' 

e (21) 

and using similar approximations for all higher order Green 

functions <<N"'Not ···N a. n IN a..+ » 
'"" Ol._ 01., 0' 01.. -0' (3 (30' 

1 1.. 1.. 1.. 

which appear in the equations for <<N N 
0< "' < 

<<N N 
"' "' < 

···N a, IN a,+ » 
a. a. o- /9 (Jo-

' ' 
one can obtain (E ~E -U<N n >/&) 

0' C( or. ct-0' 

+ 
(E-E )«-N "- iN(!"'(! >>~o_,.,<N N(!> + 

0' or. 01.0' 0' '-"';~ C( 
------+ 

n=1 01. ···01. 
< n 

(22) 

and 

(23) 

This equation can serve us as a generalization of the 
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Hartree-Fock solution. Approximating the higher order Ising­

type correlation functions in the spirit of the Kirkwood sup­

erposition formula (rather than using the cyclic invariance 

version of this approximation) which was first used by Bethe 

[321 and Peierls [33] in the theory of lattices [38] 

<NaN a ······Nee. >-:::::<Ncc.Na ><Na Not > ...... <Ncc. (24) 

1 n 1 1 2 n-1 

one can immediately obtain the solution in the form. (11). 

Note that independently of the approximation which can be 

used in evaluation of the higher order correlation functions 

in (23), the resulting solution , Eq. (11) has the struct·ure 

of the Hartree-Fock solution. 

Let us return to the general equation for the Green fun­

ction «N a.. INn.a·~ ». eq. (16). The first term in the right-
a o.a 1 .. 1Ja 

hand side can be summed up exactly (as in previous cases) and 

read as 

where Pq(E) is a Fourier transform of the Pc<(l(E) 

P c<(l (E) <N"'N~> 

p (E)-------

c<(l (E-E"')<N"'> 

(25) 

(26) 

It should be remarked that in our notation q-vectors are two-

dimensional vectors corresponding to the array of the adsorp-

tion centres in the adlayer and ~-vectors are three-

dimensional. At the second step we neglect the last term of 

Eq.(16) containing the higher order Green functions and deco­

uple the third term within a usual scheme. Note that neglect­

ing the last term does not mean that we do not work with the 

infinite system of equations for higher-and-higher order 

Green functions. This denotes simply that we removed from our 

consideration onlY special kind of higher order Green funct-

ions, namely, such as <<N N ---N a. n IN ._• » and all 
01. 01.1 Ol.n Cll.n-a Cll.n-q (1 (10' ' 

others in Eqs. (10-15) UP to infinite degree of hierarchy of 

these equations are present in our calculations. To this end, 
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for the single-site Green function (Ot=(J} we obtain 

«N a. Ia.• >> L <N n > ]-i 01 
"'"' "'"' ~.2__ [E-E- U "'<>-a -(1-e)A' IE)-eP' I ~El 127) e N 0t e a o q 

q 

where we have used approximation (9) 

are as follows: 

Here. A' (E) and P' (q .f:J 
0' "' 

<N n > 
( 

ct a-a ) A~(E)~A(E) 1-U $(E E ) . 
0! 

The Green function in the form represented in Eq. (27J 
similar to the Hartree-Fock result in which A' (EJ and 

0' 
are replaced by A(E) and Pq(El [38) 

obtained by rejecting 

Because this modified HF' 
solution was infinite class of some 
higher-order Green functions the resulting spectral density 
of states reveals some unphysi.cal behaviour. Namely, for 
energies between EOt and EOt+V<Nana-a>/8 it becomes negative. 

As another treatment of the system of equations (10-llJ. 
we take into consideration all the higher order Green func­
tions w'hich were omitted in our previous calculations. Un.for­
tunately, we are not able to obtain an exact solution, of 
course. For that reason we have to do some additional approx­
imations. We decouple the higher order Green funct.ions c.s 
follows (it jg generalization of usual used decouplings/: 

<N N ···N > 0! 0! "' <<N 
"'N"' 

···N -0'1 
i n 

«N -0'1 "' 
a. ""n" 

... ))~ ·--------- a. n )> 

"' 0< e " 0 a "' • n n n n n n 

<N N > <N, N ><NOt > 128) n 0! 0< C< " -0' 0 
i "'---- n- i n n n 

G IE) 
e e e " (l 

n 
Using Eq. (21J we can rewrite the two last terms of Eq. (16) 1n 
the form 

U<N n > 
0t 01.-U 

e 
1 I iq (;;.-(~) - e 
N 

q 

0' 

GqiEJ 

1 - P-~(E) 
q 

After straightforward calculations we obtain as a result 

18 
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+ 
U<N n > 

Ot Cl.-0 

e 
X 

(30) 
e iq (cx-('J 

f I ---·~--::-2 ------

q U(N n > 
0. Ct-0 

[1- PqiE)] 
e 

1 ] 
1 - Pq(EJ 

which is equivalent to Eq. (19) 

All the higher-order Green functions appearing 111 the 

equation of motion for «N a I N(la(l+ » enter 
Ct C(O ,a 

1 

through the 

higher order correlation functions of the Ising type opera-

tors and are decoupled along the Kirkwood superposition for­

mula. All Green funcl1ons belonging to the class of functions 

of the type «N N ···N a n IN a+ »are decoupled 
Ot a ex o.-;-a o.. -a (9 (?a 

within 
c c c 

the same method. i.e .. Kirkwood superposition formula com-

bined with the Hartree-Fock-type decouplings. Assuming the 

Bragg-Williams approximation for <NaN('> we obtain the known 

HFresult [38]. 

5. CONCLUSIONS AND REMARKS 

We have investigated the generalized Newns~Anderson 

Hamiltonian intended to describe the hydrogen atom or hydro~ 

gen overlayer chemisorbed on the metal surface. This Hamilto~ 

nian was obtained from a more general one derived from micro­

scopic considerations and can serve as "ab initio" derivation 

of the chemisorption model Hamiltonian. We have retained only 

those terms which are 1mportant for our spec1fic systems. In 

th.i.s case. we have obtained the standard Newns~Anderson i"-iaml­

ltonlan supplemented by the additional ,terms describing the 

influence of the fractional occupation of the adatom induced 

resonances on the charge transfer betHeen the adatom and sub­

strate surface. The electron correlation effects have been 

considered beyond the Hartree-Fock approximation along the 

second-order self--energy matrix formalism of Ret. (16]. We 
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have used a model in wh1ch the nonorthogonality ot the adatom 

and substrate wave functions is not taken 1nto account. but 

in Ref. [4] has been shown that overlap effects nearly do not 

influence the adatom charge. On the other hand. the overlap 

effects may be essential for the calculation of the b1nding 

energy. For that reason we do not calculate the binding ener­

gy. The Hartree-Fock calculations performed for the standard 

Hamiltonian predict the charge transfer to the adatom not 

compatible with experimental evidence. In our case. the 

results for the generalized Hamiltonian are much better. Even 

in the Hartree-Fock description the calculated adatom elec­

tron charge 1s more realistic and after introduction of the 

correlation effects. the results are much better. At the next 

step we have considered submonolayer coverages within another 

variant of a general Hamiltonian. Now. having in mind such 

complicated systems we restricted ourselves to the NA model 

with possibility of simultaneous occupation of the adsorption 

centres by the adatoms. Using the equation of motion for 

appropriate Green functions and Bragg-Williams approximatJon 

for the Ising type correlators we were able to take Into 

account the stochastic arrangement of the adatoms within the 

overlayer. The nature of an approximation like that (in the 

treatment of the overlayer) should be comparable with the 

coherent potential approximation but is much simpler in prac­

tical calculations. The variation of the electron charge 

localized on the hydrOgen adatom with increasing coverage is 

rather sma 11. a l thoug:t-1 1 eads to progressive neutra 1 i zat ion. 

This electron charge is too large,of course. irrespective of 

the improved method along which the correlation effects were 

introduced. But this fact is rather a result of the simple 

model Hami I toni an (without the additional term 

\N V n a a+ + h.c.) which was used. Taking into 
~ a aaak a-a aa ~a 
cxok 

con-

sideration this term we should obtain improved results simi-

larly as in the one-adatom case [30]. On the other hand, 

these relatively small changes of the adatom electron charge 
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vs. coverage are 1n good agreement with the recently publi­

shed results of the "ab initio" calculations (14}. Addition­

allY. we have also analyzed the adatom density of states for 

val:'lous coverages of random! y arranged ada toms. Generally, 

one r:an say, that w1th increasing coverage some sort of 

metallization of the overlayer can occur. In the last sec­

tion. we derived the general expression for the one-particle 

Green function <<N01aa0 IN/?a~0» for final coverages of the metal 

surfaces. The analysis of the presented results calculated on 

the basis of the generalized Hamiltonian and the results 

given in Refs. (5.30.34] show that there is a satisfacto.ry 

description of the chemisorption process. Thus,this Hamilto­

nian can serve as a model more efficient in describing the 

chemisorption process. 
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