


1. INTRODUCTION

The model Hamiltonian most frequently used in literature
for description of the chemisorption.phenomsnon is the Hamil-
tonian introduced by Anderson (11 and used by Newns (2] or
Edwards and Newns [3], the so-called Newns—Anderson (NA)
- Hamiltonian.. The Anderson model has first been introduced to
describe a magnetic impurity in a metal but also is very use-
ful to formulate fundamental microscopic foundations of the
chemisorption theofy. Bowever. the NA model does not take
into account many important effects which may lead to consi-
derable gqualitative differences in some chemisorption charac—
teristics [4]. The model considered by us in this paper is a

direct generalization of the Newns-Anderson modei to the case
'of final coverages of randomiy arranged adatoms [(5]. The pro-
blem of constructing a more realistic model of chemisorption
has thoroughly been. studied by us for the case of one admix-
ture in Ref.[6]. At present, the microscopic¢ theory of chemi-.
"sorption systems can be roughly divided into three classes
depending on methods used in calculations of various chemi-
sorption characteristics. Apparentiy., the description of the
coverage dependence of the properties of the chemisorbed
overiayers was for the first time realized within the local
density functional method (LDF) [7). In the framework of this
acheme the adsorbate ion cores were modeled by a thin jellium
alab adsorbed on a jellium surface. )

At ‘the next step there appeared extensions ‘of this
approach, see for example Refs.([8, 9], where an approximate
description of the metallic substrate by either a semi-
infinite jellium éystem or by including the substrate struc-
ture within first-order perturbation theory for jellium plus
adatom system was used. In Refs.{10-13], the alkali-metal ad-—
sorption on metal surfaces (the ‘'alkali-metal-overlayer-—
jellium system ) was investigated and a fully self-consistent
electronic structure was obtained. In Ref.[14] a further
improvement was achieved, i.e. a coverage dependence of the
electronic structure of alkali-metal adatoms on a metal sur-
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face was studied treating both the adatom and substrate as
discrete atoms. Although the "ab- initio” method gives very
useful information, it involves a large amount ©f computer
calculations and all the calculations must be repeated for
new sets of input data (for example, for a wvalue of the
coverage rate). In addition, these calculations rather repro-
duce the experimentally observed features and do not explain
them. The second cliass of methods consists essentially of the
quantum chemistry approaches (see, e.g. cluster methods [131])
and the third class comprises the model Hamiltonian methods
{see e.g. [4]). Especially, the method of mode] Hamiltonians
can we well suited for better understanding and not only for
reproducing the experimental results.

It is to be noted that the model approach is wide open
to criticism. However, in comparison with the "ab initio"
calculations it is an indispensable tool for explanation of
basic mechanisﬁ of physical processes which eggsentially
promotes their understanding. )

In the present paper we consider the problem of many ad-
atoms simultaneously existing on the metal surface within the
model Hamiltonian method. The model Hamiltonian used here has
recently been obtained by us and generalizes the Newns-—
Anderson Hamiltonian. The electron correlation effects are
included within the second—order self-—-energy matrix formalism
of Brenig and Schonhammer {16]1. We also discuss here general
solutions obtained within the equation of motion method for a
case of submonolavyer coverages.

The paper is ofganized as follows. In section 2, we give
the approximate model Hamiltonian intended to describe the
chemisorbed hydrogen overlaver on a model transition metal
surface and compare this model with others known from the
literature. In section 3, we present shortly some methods
which incorporate the electron-electron interaction (on the

adsorbate atom) and generalize the Hartree—Fock solutions.

2. THE BASIC MODEL HAMILTONIAN. ONE ADATOM CASE
Recently,we have obtained from the microscopic conside—
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rations the Hamiltonilian intended to describe the system of
adatoms located on the metal surface ([5]. The system adatom
plus metal surface is described by the Hamiltonian (we consi-
der the hvdrogen adatom in the 1s ground state):

N+4 N+ 4 N+ 1 Nad
H= Zv(x—x) ZV(R—X] Zp[x)+u <t
i=d i

Here the potential V(§—§)>describes the Coulomb 1interacticn
between electrons placed at the positions % and ?. P(X) is
the electrostatic interaction of electrons with the electric
fields of the metallic substrate. The constant Uo represents
the energy of the electrostatic interaction between ions of
the metai substrate and between these ions and the proton of
the adatom. After performing the second gquantization proce-—
dure (for details see Ref.[51) we obtain
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states described by the substrate electron wave functions ¢¥
1

¢Z* ¢¥ , ¢g and adatom electron function ¢A and ¢; . ¢;.
2 3 4 1 P
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¢z ., respectively. Other abbreviations have their usual mean—
3 .
ing (see, also (5!). A very similar model Hamiltonian,

although without some terms present in (Z2) was obtained by
Doven (171 and Dovyen and Ertl {18, 19]. Starting with the
Newns—Anderson Hamiltonian and adding additional self-
consistent fields arising from electron—electron interactions
they obtained parameterized model Hamiltonian which treats
the interaction between adsorbate and metal electrons in some
defails. In our case, we have started from very general phy-
sical description -Eq.(1). and as a result, we have obtained
the Newns—Anderson Hamiltcnian plus many other terms descri-
bing in detail the chemisorption process. To some extent, we
can give a very rough physical interpretation for terms in
the Hamiltonian — Egq {(2) (for comparison, sea Ref.[17}). For
example, the fourth term describes repulsion between elec-—
trons localized. on adatom and substrate electrons, the next
term corresponds to the attraction of metal electrons by the
positive ion core:of the adatom and so on. Very important for
our further considerations is the seventh term which can be
interpreted as an interaction of overlap charge with elec-—
trons on the adatom. In other words, this term describes the
influence of the fractional occupation of the surface impuri-
ty resonance on the electron transfer between the adatom and
gsubstrate metal. It is also important to note that for a con-
sistent treatment of the polarization properties of the metal
substrate it is insufficient to characterize its electronic
properties by the parameter_sz (the energy spectrum of the
substrate electron band), but it is necessary to introduce a
long range part of the Coulomb interaction between substrate

electrons Vg e [20]1, or introduce plasmons [21]. The cor-
responding t;;;ai; présent in our Hamiltonian.

In the following, we  confine ourselves to the model in
which together with the standard interactions present in the
NA model we include only effects connected with the influence
cf the adatom orbital occupation on the charge transfer

between an adatom and a metal substrate. In this case, the
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Hamiltonian reads as 6]

. ;
H-ZEAnAU+U Zsén» +Z{ A“M‘i:n‘,‘\_cy] aAoaxj»:Oj-h . c} i {3
o

The last term can be simplified as for |§A| » 0.5A we have
V > = oV » , where the parameter o depends on the distance
AAAK Ak
between the adatom and the metal surface (0 £ a < 1). We have
checked in Ref.[6] that this approximation works relatively
good. In Ref. (5] we have performed the self-consistent calcu—
lations of the adatom electron charge and chemisorption ener—
gy in the framework of the Hartree-Fock approximation, i1.e.

for the Hamiltonian

+
H-§:£+n+ +§:{EA AO+UKnA_o>—a§:[VAg<aA_oaz_a>+h.c]}nAa—U<nA¢>x
k _

+ +
x<nA¢>+§:{VAg[1—a<nA_o>]aAaago+h c}+a§:{VAz<nA_a><a a§o>+h c
xor ko

The caiculations were performed for parameters modeling the
hydrogen chemiscrption on transition metal surfaces. The
results indicate that the charge transfer to the adatom is
considerably damped with increasing value of the parameter o.
This means that the additional term —VAAAknA Oa;oaga in NA
Hamiitonian, which in a Hartree-Fock approximation leads to
spin dependent effective hopping matrix element and renorma-
lizes in a sgspecial way the energy of an electron moving in
the field of the adparticle ion core, plays an essential role
in the description of the adscrption system. Note, that the
semiempirical Hamiltonian obtained for the description of the
chemisorption process in Ref.{19] leads to some difficulties
arising when the one-particle approximation is applied. In
thig paper Doven and Ertl checked that reasonable agreement
with experiment could be only achieved if the hopping matrix
element for different spins were allowed to differ. In this
case it becomes obvious that the corresponding Hamiltonian is
not +the Hartree-Fock operator of a proper many-particle

Hamiltonian. In order to improve this situation one has to
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add to the Hamiltonian the term like nAa<a;_Oa:_o> + h.c..
which was absent in the model explored in Ref.[19]. In our
formulation this term is present in the Hartree-Fock Hamilto-
nian from the very beginning. It is contained in the second
term in Eg.(4) leading to additional'spin-dependeﬁce of the
effective adatom energy level position {(through the correla-—
tion function éa;0a§a>).

In the anaivysis we have performed above, the electron-—
- electron inteéraction was treated in the framework of the
Hartree—-Fock approximation. It is difficult to take into
account the correlation effects because the small parameter
does not exist in the theory. This means that one haszs to sum
an infinite series of the most divergent diagrams or cons-—
truct the Green function with the approximate self-energy
operator. These solutions should be, of course, identical
with the known ones for gome special case. A great number of
papers have been devoted to the study of the corretlation
effects in the chemisorption theory bevond the Hartree-Fock
approximation. Here. we mention merely few of them. First of
ail, we have works by Brenig and Schénhammer {16}, Yosida and
Yamada [22}, Anda. Majlis and Grempel [23]. Sebastian and
Rangarajan (241, Bell and Madhukar [25}. Lacroix {[26] and by
Munoz et al. [27]. Especially two of them are interesting.
First, it is the work by Brenig and Schdnhammer (16] in which
the correlation effects on an adatom are treated within so
called second order (in V ~ the single particle hopping
strength between the adatom and the substrate atom) self-
energy matrix formalism. This method was also transferred
with success by Schonhammer [28] to considerations of the
electron correlation effects in the standard many-body Hub-
pard Hamiitonian. The second is the work by Munoz et al.
[27]. In this case, the self-energy expression interpolates
between two opposite cases, 1.e. between the second-order
perturbation formula and formula for strong correlation
1imit. Here, we use the second-order seif-energy matrix

formalism described in [16] to consider the electron correla-—



tion effeéfs within our generalized NA Hamiltonian, i.e. with
the term

+
—Z [VAAAgnA—aaAoaro+h ' C] (9)
ko

included. Using the double—time retarded Green functions [29}

built up from the operators n a and a (1—n ) we can
A—T AC AC AT

try to solve the Dyson equation for this Green function up to

second order in powers of VAz (here we used VAAAZ B aVAz[GI}.

As a result for the self-energy expression we obtain [30]
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and f(E} is a Fermi function.

In Ref.[30}, we have performed the self-consistent nume-
rical calculations of the adatom charge for a chemisorption
system modeling the case of hydrogen on titanium surface for
different values of the parameter o. The parameters for cal-~
culations were taken from Ref.([2}. The effect obtained after
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introduction of the self-enerygy corrections can be described
as follows. For small vaiues of a we have much smaller valuss
of the adatom electronic charge comparing with the results
obtained for the standard NA model. For moderate valuss of «,
i.e. for ax0.5 (we remember that « and distance between the
adatom and substrate's surface depend on each other) the
results obtained in the Hartree-Fock approximation, as well
as bevond this approximation (but for smalier values of «,
ax0.3) are comparable. For greater values of o, ax(.5,in the
treatment beyond the HF approximation the charge transfer
"stabilizes" around the neutral adatom case. On the other
hand in the HF approximation such neutralization can be
achieved for greater values of a but, as we feel, this values
of o are too large for the system under consideration.

As we expect on physical grounds. the hydrogen adatom
should be in a nearly neutral state. Thus, we can say that
the generalized NA Hamiltonian .(i.e.. NA Hamiltonian plus
correction expressed by Eg. (5)) describes this chemisorption
system better .This description is sufficiently good for
moderate values of & even in the Hartree—Fock approximation.
From the comparison with the results obtained for the whole
range of parameters o it appears that the generalized NA
model combined with the self-energy corrections obtained
within the method of Brenig and Schdnhammer can be helpful in

uﬁderstanding the chemisorption process.
3. CHEMISORPTION AT FINITE SUBMONCLAYER COVERAGES

The extension of the one-—adatom chemisorption case to
the submonolayer coverage can analogously be described as
follows [31]:

+
H—E:san+ +§:{ xDaot naona_a“E:[[vaaaﬁnhha_vak] aoa§o+h C]}
k

(7)
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The Hamiltonian in the form presented here contains the con-
tributions which play the mest important role in describing
the electronic properties of adlayers. Cther terms not writ-
ten explicitly here are conteined in R and involve processes
which are not usually considered in simple chemisorption
models. These terms describe the interaction of the valence
adatom electrons with the redistributed charge cloud in the
substrate metal induced by the adatom electrons themselves,
effects describing the correlations between adatom charge
fluctuations and the redistributed-substrate charge density
and other effects of much high order (for details seé Refs
{3. 21)). Having in mind such complicated system as a chemi-—
sorbed laver on the metal surface we restrict ourselves in
the first step to the simplest case., i.e. we consider the
model described by the Hamiltonian:

H-§:£+n+ +§:E Nanda+ E “Nanaana - E:v&kNaa;oaﬁo+h €. (8)
oo ko

Model (8) is a generalization of the well-known NA Hamilto-—
nian to the vase of a stochastic arrangement bf adatoms on
the metal surface. The sum over a is carried out over all the
adsorption centres. The operator Na=C;Ca has eigenvalues
egual to O or 1, and the operators C and C, are the Fermi
amplitudes of the creation and annihilation of an adsorbed
ijon (adion) at the adsorption center a. We consider only the
case when therc is no more than cone adatom ion in each adsor—
ption center. At a complete monolayer coverage the adatoms
form a two-dimensional lattice with the periocdicity commensu-—
rate with that of the substrate surface. For the coverage
less than unity the two-dimensional chemisorbed laver is con—
sidered as a substitutional alloy composed of two types of

species, i.e. adatoms and vacancies.
In the feollowing, we are going to consider the electron—
electron correlation effects within the meihod of Brenig and
Schénhammey [15] and the adatom properties related with its

position on the substrate surfare are involved in correlators
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of the Ising type <N_mNﬁna__onﬁ_o>.' At this stage of our calcu-
lations, in order to introduce simplifications in handling
higher—order Green functions composed of ion and electron
operators we can use decoupling approximations. One of them
concerns the Ising type correlators and here we proceed by

the formula:

<N N > & <N > + {(1-&
ol a

7 o )<Na><N >, (9)

ofi 3

fig.l.—The adatom local
density of states for
different coverages
(first curve 1n cach
panel corresponds to
=0, second for ©=0.35
and last for &=1.0) in

1

wed

L the symmetric case for

U/W=0.15 (left panel}
and U/W=0.3 (right pa-
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of the substrate half
bandwidth.

The second approximation can be understood as neglecting the
correlations between electrons located on different adsorp-
tion gites. Only the first approximation iz more serious
because it means we have neglected the possible correlated
distribution of the adatoms on the substrate surface. In this
way, our calculations can be comparable with those for
example. within the single—site coherent potential approxima-—
tion [35.37]. The second approxXimation is fully justified for
our system. as it corresponds to neglecting the interatomic
electron correlations in the Hubbard tvpe Hamiltonian. The

numarical calculations have been performed for the electron
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charge <©f the hydrogen chemisorbed on the model substrates
intended to describe nickel! and titanium metals (for details
see Ref.[34]). For all coverages the value of q=<n_ 4 >+<n >
is significantly lower than the results of the Hartree-Fock
calculations for the same set of parameters. The neutraliza-—
tion of the adatoms with increasing coverage was obtained in
agreement with the experimental results. The adatom local
density of states depends on the coverage. too. For monclayver

coverages the indirect interaction between adatoms through

QH Fig.2.-The adatom local
ﬁ] density of states for
= 05 nicke! substrate for V
903 equal Z2eV, 3eV, 5eV and
' % 6eV for panels A, B, C
AO ’ B> and D, respectively.
-4 0 4 -k 0 4 ] .
The first curve in each
134 " panel corresponds to
: 15 coverage 6=0, second
o for 8=0.5 and the last
% [ for €6=1, respectively.
054 ./
05 .
CD D)
-4 gy, ‘|-4 0 4 8
ERERGY ENERGY

the substrate electrons 1s s¢0 large that can‘ lead to two
nearly separated energy bands. In Figs. 1-3 we have preseﬁted
the adatom local density of states for three cases. Fig. 1
presents the results for the symmetric case, Fig. 2 for the
nickel substrate case and Fig. 3 for the titanium substrate
case, respectively. In all cases a similar situation appears,

i.e., for large coverages (8=1 corresponds to one monolaver
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coverage) and for greater V one can observe the appearance of
two electron sub-bands, an effect very visible in Fig.l. It
zan be understood from the indirect interaction between ada-
tems through the substrate electrons which for large V and 8

is extremely strong.

Y NN

Fig.3.-The same as in

Fig.1 except for tita-
nium substrate for ¥
equal 2eV, 4eV, 7eV and
8eV, respectively.

s
“h-fo02 ~y 04
ENERGY : ENERGY

4. GENERALIZED HARTREE-FOCK SOLUTIONS

The model Hamiltonians considered in the preceding sec—
tions have an unusual structure. They have the form of the
Ising model with respeqt to ion variables Na but with the
operator coefficients consisting of Fermi amplitudes [31]. It
seems that the ionic properties described by correlatecrs like
(Na>,<NqNﬁ>.-« can be computed simultaneously within the same
Green function “machinery" within the equation of motion
method. In the equation of motion method one obtains, in suc-—
cessive steps, the sequence of coupled equations for higher
and higher order Green functions, and the decourling process
usually applied in such situations is an approximation. which
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meaning is not immediately transparent. For that reason, if
the decouplings of the higher order OGreen functions into
lower ones are made on a sufficiently high level of the
hierarchy ¢f equations or we take into consideration infinite
series of the Green functions belonging to scme classes., then
we may believe that these approximations can be justified.
Here, we are going to calculate the Green function
N a ]N a o> Within the equation of motion method. Let us

o oo
write the equation of motion for this function

+
(E—E ) <<Naa,ao| fs’o’ﬁa» oq?<N Nﬁ)v + U«Naa.ao,na ot -+
(13}
ZV 2GN_aw» | -,
o ko
where | —>» on the right-hand side of the Green functions de—

notes 1Naa;?a>>. Writing the eguations for the Green functions
appeared in (10) and for the new Green functions in the next
equations we obtain

(E—-«s-o)«N a;:a >>=ZV 'f«NaNa a,a oE 3 (11)
(Ewi&)a )«No&Not a, o-l >>=<5a f3<No:Noa Nﬁ'> + U« th a o'na #G! P h
i i 1 1 1 |
(12)
+ZV <<<N N o+ ;---»
[= oL o ko
1 i
(E_f’;“«O‘NataQ >>—Zv »«NQNQ Na adzoj - (13)
(E-E_ )<XNN.N N a fooo=6 <N N N _ N_>+
o, e Vo, e o azﬁ oo Ve 3 (14)
U<<NaNaNa 2 Ny _ol 3 +Z o "«NoaNol Na op [ >
i 2 2 2 x 2
i
(E-E, YN ~N oa |- »=6. 5N, [, N>+
1 1 1 kN 1 =41 iz}

n=4 ™

‘ i
U«N l IN a ot ] at—ol N +§ va,i«.'«Na | jNot O/fol o
- i =
k .
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Having in hand Egs. (10-15) we can obtain exact eguation for

the Green function « VdaxalNﬁ e » in terms of ionic correla-
tors <NaNa v-Nﬂ> and the Green function belonging to the spe—
. 3
cific class of higher order Green functions, namely to the
class of functiong « NN N & n | >
ool [o TN s 3R+ s SR o g
1 t i 1
*
(E“Em]«NaaaalNﬁ&ﬁo»“éaﬁ<NaNﬁ> + U a n | -»+
oo
Poe (D 7P o o P
+ - <N_ ~N_N_»& +
[E—Ea ] ~-[EHEQ ] a o 2 anﬁ
nzti & —~Q 1 T (16)
1 § ™
[e5]
Paa(E)-~P o -;a(E) -
+ : ot «@_~N_a n, |-»
ERECN o g Clnee
o o
n=1 O REEN &3 4 Lal °
1 ™

E - g2

V_ Vo
where P {E)xi _ka—kfg_.
af? N 2

%
Before we proceed the considerations concerning the
general eguation (16) let us consider the Hamiltonian (8) in

the mean field approximation [38]

<N n

o a-o +
H—EZ%*nQ +§: E N—F s <N > }NdnAO E:[VakNaaao ;0+h.c]—

Ok

(17}

<N n, > <N n__>
o2 - oL oo

(N > <N _ >
o ot

-u

In this case one can cbtain the reaguired Green function
(in Hartree—-Fock approximation) on a relatively simple way

(38]. Namely the Green function «N. N a [N, a+ o> which sppe-

ol e Too
ars in the equation of motion for «NdadoiNﬂ B shogld be
decoupled in the following way:
SN N>
. oo .
«NaNalaao!Nﬁaﬁaxh'___7§"“H7«Naiad101Nﬁaﬁo» - (18)

Finally, for g Fourier transform of «NaaaolNﬁ ﬁ » one obtains
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Gq(E)= <Nmnq-o> - (19)
E—EQ—U RS "quE)
o
where Eq(E) is the Fourier transform of Eaﬁ(E)
~ <NdNﬁ>
P (B)=P (B} —ai . 20

Approximating <NaNﬁ> according to the formula (9) we get
the known Hartree-Fock result {38). Note that using the sin-
gle—particle approximation of the general Hamiltonian (8) we
have to decouple the Green function (18) and the decoupled
correlation function describes the correlations among the
possible positions of the adatoms. _

The same solution can be cbtained starting from the ge-—
neral many body Hamiltonian (8) by making some decouplings in
the corresponding Green functions.Writing the equation of mo-

tion for the function «N a, ]N a+ », Eg.{10), and approxima-—

ting the higher—-order functlons «N a |N a » as follows
[a.lag O( log
«N N a. » = <Hn_-——N°‘n°“°> «N N_a’ » (21)
aaaona-ol e ¥ 2] aaaol 3% 30

and using similar approximations for all higher order Green

: +
functions <« _N_ ~ANaaa‘y o o] %60

-
NNy Ny 2y o0 —o[N »~<Na Ny _o NN, '"Na “u alNﬁaﬁa»
(22)
. - . +
which appear in the equations for «NuNdi ‘N az ] ﬁaﬁo» and
«N N |N a .72 one can obtain (E_=E —U<N n >/8)
o a’. a d o o oL o A-or
N Pqﬁ<NdNﬁ)
(E-Ey) Wolog NptpoopNallp? *+ — —m
® v (23}
Paa(E)'"P « ﬁ(E)
+ ! A KN N —=N_N_> .
T+ 1 o <31l1 Qn {?
z-=.)
n=4 O - O o
F3 hal

This equation can serve uUs as a generalization of the

16



Hartree—Fock solution. Approximating the higher order Ising-—
type correlation functions in the spirit of the Kirkwood sup-—
erposition formula {rather than using the cyclic invariance
version of this approximation) which was first used by Bethe
(32] and Peierls (33} in the theory of lattices [38]

. -~ n-4 . .
<NQNQ ------ Na >~.<NaNOt ><NOt Na D <Na Na >/e (24)
1 n 1 E S n-1 N

one can immediately obtain the solution in the form. (11).
Note that independentiy of the approximation which can be
used in evaluation of the higher order correlation functions
ip (23)., the resulting solution , Eg.({(1l) has the structure
of the Hartree—Fock solution. '

Let us return to the general edquation for the Green fun-—

o O
hand side can be summed up exactly (as in previous cases) and

ction « _a lNﬁa;o»' eq.(16). The first term in the right-

read as
=]

%—ZBW(Q_H) —_—— (25)
= 1 - P&(E)

where _?é(E) is a Fourier transform of the '?;ﬁ(E)

Paﬁ(E)<NaNﬁ> -
P (E)= * )
of? _ .
(E Ea)<Na>

It should be remarked that in our notation J-vectors are two—
dimensional vectors corresponding to the array of the adsorpr-—
tion centres in the adlaver and ®—vectors are three—
dimensional. At the second step we neglect the last term of
Eq.(16) containing the higher order Green functions and deco—
uple the third term within a usual scheme. Note that neglect—
ing the last term does not mean that we do not work with the
infinite system of eguations for higher—and-higher order
Green functions. This denotes simply that we removed from our
consideration only special kind of higher order Green funct-
ions, namely, such as <N N "'Nanaah—ano%—aiNﬁQ;a»' and all
others in Egs. (10-15) up to infinite degree of hierarchy of

these equations are present in our calculations. To this end,
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for the single-site Green function (o=} we obtain

«Naaaa[a;o» 1 <Nana_o> R 1
“““?f”“'“‘ﬁ'E:[E"Ea' wawgr———~h(l—e)Aa(E)—GPo(q.L)] {277

q
where we have used approximation (9). Here. Aé(E) and P&(Q.E)
are as follows:
<N n > <N n >

A (E)=A(E) [1—U—9?—Eg;:—:)—]. P, (§.E) =Py (E) [1—U%(—§:%;—)] .
The Green function in the form represented in Eq. (27} is very
similar to the Hartree-Fock result in which AJ(E) and P! (3.E)
are replaced by A(E) and PE(E) [38]. Because this modified HF
solution was obtained by rejecting infinite class of some
higher-order Green functions the resulting spectral density
of states reveals some unphysical behaviour. Namely, for
energies between Ea and Ea+U<Ndﬁm_g>/6 it becomes negative.

As another treatment of the system of equations (10-11).
we take into consideration all the higher order Green func—
tions which were omitted in our previous calculations. Unfor-
tunately, we are not able to obtain an exact solution, of
course. For that reason we have to do some additional aPPYrox—
imations. We decouple the higher order Green functions as
follows (it is genseralization of usual used decouplings):

<Nc(ch ---NOt >

<<NaN N a n [ o= ! i <N

a n P o
o o oo - o oo o -
1 nooon I =] n n n
SNN_ > <N. N_ XN n > (281
o Oll ahﬁi-an C'(n C(n—-O' o
Y i G (E)
e . =] (=] a f?
™

Using FEq.(21) we can rewrite the two last terms of Eg.(16) in
the form

=4
. E)
UKN n s . Gt
aa-or i Z eLq(ot—{ij ) (29)
a 1 - P28
q q

After straightforward calculations we obtain as & result
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RACED USN >

E: + o o-e y
28] (=]
q
. etq(a*ﬂ)
<) - ;
o

U<N n > \
J.A‘P"Q(E)] [E—Ea— o oco 2L
4 & 1 - Pa(E)

which is equivalent to Eq.(19).

LE—EQ)G (E}=

Zl

(30}

All the higher—-order Green functions appearing 1in the

equation of motion for «NaiaaolNﬁ fo enter thrcocugh the

higher corder correlation functions of the Ising type opera-
tors and are decoupled along the Kirkwood superposition for-
mila. All Green functions belonqing to the class of functions

of the tvype «N N ~N_ a | > are decoupled within
oo O(O(OO(D

the same method. i.e.. K1rkwood superposition formula com—
bined with the Hartree-Fock—type decouplings. Assuming the
Bragg-Williams approximation for <NaNﬁ> we obtain the known
HF result {38].

5. CONCLUSIONS AND REMARKS

We have investigated the generalized Newns—Anderson
Hamiltonian intended to describe the hydrogen atom or hydro-—
gen overlaver chemisorbed on the metal surface. This Hamilto-
nian was obtained from a more general one derived from micro—
scopic considerations and can serve as "ab initio" derivation
of the chemisorption model Hamiltonian. We have retained only
those terms which are important for our specific systems. ‘In
this case, we have obtained the standard Newns—-Anderson Hami—
ltonian supplemented by the additional terms describing the
influence of the fractional occupation of the adatom induced
resonances on the charge transfer between the adatom and sub-
strate surface. The electron correlation effects have been
considered bevond the Hartree-Fock approximation along the

second-order self-energy matrix formalism of Ref. [l16}1. We
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have used a model in which the nonorthogonality of the adatom
and substrate wave functions is not ftaken inte account. but
in Ref.[4] has been shown that overlap effects nearly do not
influence the adatom charge. On the other hand, +the overlap
effects may be essential for the calculation of the binding
energy. For that reason we do not calculate the binding ener-—
gy. The Hartree-Fock calculations performed for the standard
Hamiltonian predict the charge transfer to the adatom not
compatible with experimental evidence. In our caze, the
results for the generalized Hamiltonian are much better. Ewven
in the Hartree-Fock description the calculated adatom elec—
tron charge 1s more realistic and after introduction of the
correlation effects, the results are much better. At the next
step we have considered submonclaver coverages within another
vafiant of a general Hamiltenian. Now. having i1in mind such
complicated systems we restricted ourselves to the NA modell
with possibility of simulitaneous occupation of the adscrption
centres by the adatoms. Using the eguation of motion for
appropriate Green functions and Bragg-Williams approximation
for the Ising type correlators we were able to take into
account the stochastic arrangement of the adatoms within the
overlaver. The nature cof an approximation like that (in the
treatment of the overlaver) should be comparable with the
coherent potential approximation but is much simpler in prac—
tical calculations. The wvariation of the electron charge
localized on the hydrodgen adatom with increasing coverage is
rather small, although leads to progressive neutralization.
This electron charge is too large,of course, idrrespective of
the improved method along which the correlation effects were
introduced. But this fact is rather a result of the simple
model Hamiltonian (without the additicnal term

E:N v n a a, + h.c.) which was used. Taking into con—
o ook - ae Fo

ack

sideration this term we should obtain improved results simi-
larly as in the one—adatom case [30]. On the other hand,

these relatively small changes of the adatcm electron charge
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vE. coverage are in good agreement with the recently publi-
shed results of the "ab initio" calculations [14}. Addition-
ally. we have also analyzed the adatom density of states for
various coverages of randomly arranged adatoms. Generally,
one can say, that with - increasing coverage some sort of
metallization of the overlaver can occur. In the last sec-—
tion, we derived the general expression for the one—particle
Green function «NaaaalNﬁaéa» for final coverages of the metal
surfaces. The analysis of the presented results calculated on
the basis of the generalized Hamiltonian and the results
given in Refs.[5.30.34]) show that there is a satisfactory
description of the chemisorption process. Thus,this Hamilto-
nian can serve as a model more efficient in describing the

chemisorption process.
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