


1. Introduction ‘

The Anderson model /1/ given in the context. of the
local moment formation on impurities in a bulk metallic hoet
was used with success by Edwards and Newns /2/, Grimley 73/
and by Newns /4/ to the deseription of the chemisorption
process. Despite a remarkable success in obtaining a
relatively good description of this phenomena it is now well
known that so-called Newnsz-Anderson (NA} Hamiltonian does
not take into account many important effects /5/. Recently,
a generalized approach was suggested to be applied to a
self-consistent microscopic description of +the electronic
and thermodynamic properties of atomic - submenolayers
adsorbed orr solid state substrates /8/. The generalized
Hamiltonian describing the chemisorption process was
constructed based on the microscopic considerations. This
model was carefully investigated in our recent wofks ST-12/
in the context of the mean-field (Hartree-Fock (HF))
approximation, as well as beyond HF approximation for the
one-adatem case, and for submonclayer coverages. Even in the
aimplest version this model showe that along the usual term
deacribing the electron adatom-substrate transfer as in N-A
Hamiltonian, essentlal may be so-called dynamic hopping
terms (see also /13,14/). In Ref./9/ we have gshown that by
including of this additional interactions to N-A model (in
the one-adatom case) one may improve the description of the
chemisorption characteristics.

At present considerabIE‘efforts are mede to describe
the propertiecs of atomlc submonolayer coverages of solid
crystal surfaces. These investigations have a great
practical importance as they deepen our understanding of
proceases taking place in catalyeis, cqrrosion and other

practical domains of surface acience (see, for example

/18/).



In this paper we are going to investigate the N-A model
with dynamic hopping = terms included generalized o
submonolayer coverages. The electron correlation effects
will be included within the second-order with respect to the
electron adatom-substrate coupling perturbaticn appreach of
Brenig and Schonhammer /15/. The adatom distribution over
the substrate surface 1= agsumed to be completely
uncorrelated and will be'freated within a methed equivalent
to the coherent potential approximation-

The description of the model is given in Sec. 2 and the
results 6f its numerical investigations with remarks and

conclusions are presented in Sec. 3.

2. Hamiltonian ‘

The Hamiltonian which may describe the chemisorbed
hydrogen—-like overlayer on metal surfaces cén be written as
foliows /6.7/
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All symbols have usual meaning like in the N-A model and

others, not present in N-A model, were explained in Ref. /6/
and in our recent papers /T-12/. Model (1) can he viewed a8
a generalization of the N—A.Hamiltonian to the case of a
stochastic arrangement of adatoms on the metal surface. The
operator Na has eigenvalues equal to 1 or 0 depending on the
adatom is present or not in the corresponding adsorpticn
site «. For that reason the sum oVer o is carried out: over,
all adsorption centers (not only over filled up with
adatoms). The electronic properties of ‘the chemisorption

system are described b& the correlation functions of -the
' type <n..> <Ndnda>, I<N o’ P e and the ionic
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{adatoms) properties by the functions like <Na>56 (number of
chemisorbed adatomz/number of adsorption sites) - the
= F & face, < >, < >y P
coverage of the substrate surface NaNﬁ NaNB »

The correlation functions describing the electronic

properties can be calculated through the corresponding Green

: ~ - + +*
Functlon? (GE) ot the type «ﬂkolako»‘ «Naa%ala}a»‘
«Naaaalaka”‘ --- .+ (the retarded. double-time GF introduced

by Zubarev /17/). The correlation functions desecribing the
ioni¢ correlators are obtainable from the knowledge of the
GF «cd|c;», «NaINﬁ»‘ ... . where Na:c;ca.

The first four terms of the Hamiltonian (1) form the
usual N-A meodel but generalized to the stochastic
arrangement of adatoms on the‘substrate surface. The fifth
term is absent in N-A model and describes so-called dynamic
hopping (compare /13,1/). This additional term results from
very general treatment of the microscopic Hamiltonian within
the second guantization procedure described in Ref./68/. The
sixth term in.(1l) represents in a very concise” form that
part of the general Hamiltonian and describes the
metallization of the chemisorbed layer caused by enveloping
the adatom valence orbitals at the neighboring adsorption
centres. Phem contains others; of less importance terms -
see Ref. /6/. In the following we adopt for the matrix
elements Vamak a rather good approximation (for details see
AT.87)
=&V . 0=r =1 (2
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and reject the two last terms in the Hamiltonian (1). The
term describing the direct interaction between the hydrogen
adatoms should not introduce a qualitative changes in the
chemisorption characteristics. The atomic radius of these
adatomg is sufficiently small in comparison with the subs-
trate lattice constant and, as a first approximation, the
direct adatom-adatom interaction can be neglected. Finamlly,
the following Hamiltonian will be taken for further conside-

rations
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5. Numerical resulte and discussion

The electron correlation effects will be jneluded into
conaiderations within the matrix self-energy approach of
Brenig and Schonhammeér /15/. Recently we have used this
fopmalism in the case of oné adatom chemisorbed on the metal
surface /9/. From the other hand., the model described by
Hamiltonian 1ike (1) but without dynamic hopping was
investigated by us in Ref./10/. 1n this case the Green
Functions involving the electron and ignic operators were
decoupled 0 yield results which treat the adatom
distribution on the adsorption centres in a perfectly random
way. This paper can be viewed a3 & generalization nf that
from Ref./15/ o general coverageg or of that from Ref./lO/
‘generalized to a model described by Hamiltonian (3). Here we
do not repeat the calgulations given in the mentioned papers
but give only final expressions for the reguired GF

+ - ‘ - .
«Ndaaolaaa». This Green Functicn ig given by the formula
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and A(E), Pq(E) are given below,

In following, in order to study the quantitative fea-
tures of the chemisorption characteristics, we shall use as
a substrate the (100) surface of a cubium {a crystal with
simple cubic lattice described in the s-tight-binding appro-
ximation). The adatoms are assumed to lie just on the top of
the surface atoms. The hopping integral between the adatom

and the metal is written as

Vo :' 2 v e®1®u sinkzar (8)
NyN,

i.e. we have assumed the translational symmetry in the plane

of the substrate surface. Similarly as in our previous works
and in Ref./15/ we have added a small breoadening of the sub-
strate density of states curve to simulate the finite 1ife-
time of the substrate electron atatea. The chemisorption

function is calculated as follows

2V ainzakz
A(E)= E: (7)
NyN, & E + (cosakx+coa*y+cosd;)/3 + iT

and
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where the zero energy point is taken as the band center and
the band extends in limits (-1, +1). The g-dependence
enters into formula (8) only through the function
Eg:fcosuk¥+coanky)/3 so we can transform the two-dimensional
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integrals gimply into & one—dimensional one using the
twb—dimensional density of gtates pzu(E)‘ i.e. (compare with

/18/)

Zf{gl — IdE pyo(E) F(E).
a (2}

Wote, that the chemisorption function (7Y is expressed
through the first layer density of states for cubium subs-
trate, i.e. for assumed symmetry of the substrate metal 1t
represents the best approximation far AE).

As a first atep we are going to consider the influence
of the dynamic hppping on the problem of breaking and
restoring of the symmetry of the N-A model. It‘ i8 cCclear.
especially in the HF approximation. that the dynamic hoppipg
'renormalizeé the values of the adatoms energy level and the

hopping strength- One has

- +
E0=E0+U<Nana_a)/a—EE:[Vak<Naaaaaka>/e+h.c]
k . (10)
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To study the general trends in breaking and restoring
of the gymmetry in N-A model we intfoduce a frequently used
parameter n=2£Ea—E9+U which characterizes the position of
the adatom level Ea and the energy level Ea+U with reapect
to the Fermi level. The case with n=0 corresponds to the S0-
called symmetrical Anderson model with poth level at eaqual
distance on different aides of Ef. The two remaining cases
correspond to a broken gymmetry - In general. peyond the HF
approximation, one should also observe a sSome xind of “tran-
gition” from 2 negative agymmetric case through n=0 ~symme-
tric case to’'a positive asymmetric cage with jncreasing
value of the parameter r-this parameter “measures’ the
atrength of the dynamic hopping in our model (3)-

In Figs. 1-3 we have shown the adatom density of states
for'increasing values of the hopping strength V. v=0.15,
0.60 and 0.90 (in units of the half bwand width).,
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Fig.1l.-The adatom density of states ecalculated for the sym-
metric case with V=0.15, U=1.0, Ea:—0.5, for £=0.0,
0.3 and 0.5 (panels a), b) and ¢) respectively).
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Fig.2.-The adatom density of states calculated for the sym-
metric case with V=0. go, U=1.0, E =-0.5, for {=0.0,
| 0.3 and 0.5 {panels a). Db) and ¢) respectively.

7



Fig.3.-The adatom density of states calculated for the sym-
metric case with V=0.80, U=1.0, EG=—0.5, for (=0.0.
0.3 and 0.5 (panels a), b) and ¢) reapectively).

10'| G) b) C)

Fig.4.-The adatom density of states calculated for the asym-
metric case with vV=0.15, 0=1.0, Edz—O-B, for (=0.0,
0.3 and 0.5 (panels a), b) and &) respectively).
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Fig.5.-The adatom density of states calculated for the asym-
metric case with V=0.60, U=1.0, Ea=—0.8, for £=0.0,
0.3 and 0.5 (panels a), b) and ¢) respectively).
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Fig.6.-The adatom density of states calculated for the asym-
metric case with V=0.80, U=1.0, Eaz—O.B, for (=0.0,
0.3 and 0.5 (panels a), b) and c) reapectively.
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Fig.7.-The adatom density of states calculated for the asym—
metric case with v=0.15, U=1.0, Ea:_0'2’ for £=0.0,
0.3 and 0.5 {panels .a}, b) and c) respectively).
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Fig.8.-The adatom density of states calculated for the asym—
metric case with v=0.680, U=1.0, Ea:—O.Z, for £=0.0,

0.3 and 0.5 (panels a}, b) and c)} regpectively).
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Fig.9.-The adatom density of states calculated for the asym-—
metric case with v=0.90, U=1.0. Ea:—O-Z, for [=0.0,
0.3 and 0.5 (panels a). b) and ¢) respectively).

2 . 2

Fig.10-The adatom density of states calculaﬁéd for ©=0 and
different values of [ for the hamiltonian parameters:
a) Ea=—0.5, U=1.0., V=0._.8 (n=0).
bJ,Ed:—O.B, U=1.0, V=0.6 (7<0}.
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respectively. In all figures the left middle and right
panels correspond to C:O, 0.3 and 0.5. respectively. As
could be expected, at emall wvalue of V we see almost
coverage independent adatom density of states curves. With
increasing value of {, the initial symmetry case goes 1into
an asymmetric one with increasing height of the right peak.
At the same time the left peak shifts slightly inwards. For
greater values of V in Figs. 2 and 3 we observe additicnal
peaks outside the suﬁstrate energy band (compare /10,15/).
Now the differences for various values of { are more
visible. With increasing £ the spectrum changes from
four-peaked s&tructure to three-peaked structure with
decreasing of the highesat energy peak. The peak 1ying at the
lower edge of the substrate energy band disappears but at
the same time the peak centered at the upper edge of the
band ihcreases. The increasing of ¢ tends %to reduce the
influence of the increasing value of the coverage and this
suggests decreasing of the effective- adatom-substrate
interaction - see Eg.(B). It is also consistent with our
previoué discussion concerning the parameter { /7.8/. It 1is
important to note, that the dynamic hopping renormalizes not
only the hopping strength, as in this case the aymmetry of
the adatom density of states should remain symmetric also
for nonzero values of L., but also renormalizes the adatom
level position and the correlation strength.

In Figs. 4-6 we have displayed results for the negative
asymmetric case. The behavior is essentially the same and
increasing dynamic hopping tends to restore the symmetry of
the adatom density of states. For the pogitive agymmetric
case shown in Figs. 7-9 we see. that the greater values of ¢{
lead to increasing of the mentioned asymmetry. Thus we can
say that in most cases the role of the dynamic hopping is to
change the adatom density of states sugeesting a transition
from the negative asymmetric case to the positive one.

The adatom density of atates is almost coverage inde-
pendent for small values of V and/or in most cases for grea-

ter values of . It is especially clear seen in Fig.8. With
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jncreasing £ the relative changes of these curves with
increasing coverage are smaller. We can understand thie fact
if'we remsmber that the increasing value of ¢ corresponds to
the increasing distance between adatom and the substrate
surface. In such a case one may expect a decreasing of the
effective coupling between adatoms and substrate.

In crder to better represent this changing of the sym-—
metry with { we show in Fig. 10 the HF results for the sym-
metric and negative asymmetric cases, respectively. The
transition from the symmetry to more and more positive asym-—
metry 1is shown‘in Fig. 10a and in Fig- 10b from the negatiﬁe
asymnetry through "symmetric” case to positive agymmetry
case. 1t should be noted, that despite of the symmetrical
density of states for £=0.565 in Fig. 10k, this case does
not represent the symmetric Anderson model, as the values of
E, - U and E, does not fuifilled the condition of vanishing
1. One can find, however, such renormalized values of these
parameters that the resultiné Hamiltonian (£=0) will possess
desjired symmetry. It can be checked the Hamiltonian (3) with
parameters E =-0.8, v=0.8, U=1.0, 'E=0.0 and (=0.565 is
equivalent to the symmetrical model with parameters
Ea:—0.20841, V:Q.42913, U=0.41682, aﬁo and ¥=0. From mathe-
matical peint of view such a general trend of transition
from negative asymmetry case to positive one can be under-
stood by locking at formula (10). if we take into account
that the sum over % in the last term of this formula is a
negative quantity (a reault of the numerical calculations).

The last problem we want to discuss is the adatom
electron charge. Here we consider the hydrogen chemisorbed_
on chromium substrate. Az the chemisorption function we take
the cubium (100} surface density of states and the other
parameters are chogen from the Newns paper /19/. The
electron correlation effects were included up to gsecond
order in V Wfthin the self-energy matrix formalism of Brenig
and Schonhammer /15/. In Fig.11 'we have depicted the
electron charge lopalized on the hydrogen adatom a3 a
funétion of V, for different coverage rates an for the
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Fig.11~The adatom charge as a function of €, V and § for
parameters values chosen to describe Cr substrate:
E,=-9.05 eV, U=12.9 eV, E;=0.69 eV and '=3.05 eV. All
energies are given with respect to the band center.

following values of {3 {=0.0, 0.3. 0.5, 0.7 -panels a). b),
c) and d) respectively. The neutralization of the
chemisorbed layer is seen only for the N-A model without
additional dynamic hopping interaction. For increasing
values of ¢ the results becomes less sensitive {(within the
range bf numerical errors) to the coverage rate. On the
other hand, the electron charge is depressed when one is

going from 0 +to greater values of . In general, the
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hydrogeh chemisorption on transition metals is in nearly
neutral state, so we can conclude that the generalized N-A
model with dynamic hopping terms included (£%=0.3-0.5) should
hetter describe this chemisorption system. The small or
vanishing dependence of the adatom charge on the coverage
rate is alsc confirmed by first principles calculations
/20/. We lay stress on that neutralization with increasing
coverage rate ia somewhat madel dependent. more exactly it
may depend on the Pq(E) function calculation. I any case,
however, we observe a small or vanishing coverage dependence
of the electron charge localized on adatoms.

Tn summary. we have investigated the influence of the
dynamic hopring on the electronic structure of the hydrogen
adatoms chemisorbed on transition metal substrates. The
additionsl interactions present 1in the éeneralized N-4 '
Hamiltonian change the initial symmetry of the Hamiltonian
and rencrmalize the effective adatom energy level and the
adatom—-substrate coupling strength. The increasing value of
the dynamic hopping leads also to a relatively smaller
coverage dependence of the adatom density of states, as well

as to a more neutral chemisorption.
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