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1 Introduction 

Recently, D 'Ariano [1] has discussed a possibility of amplitude squeezing through 
. . 

the "photon fractioning" procedure. The idea. is to reduce photon n~mber fluctuations_ 

at the exp~nse of increased phas_e fluctuations,· and this aim is achieved by: introduc-

ing multiphoton phase and number operators, which corresponds to the nonunitary 

scaling of the original phas~ and number operators; If th~ scaling tran~forination is 

applied to the field states, instead of operators, it leads to the "statistical fractional 

photon" states (2, 3], and, in particular, fractional coherent states. The most in

teresting a.re the 1/r coherent states for_ which the photon numb_er vari~nce ~cales 

as r-2 and the phase varianc~ as r2 , so the unccrt~inty product remains unchanged. 
. { . . 

However, these r- dependences of the number and phase variances are true for highly 

exited states only. Moreover, to describe pha:sepropertic~ of the field D'Ariano [l] 

uses the Susskind-Glogowcr • (4, 5] nonunitary shift operators E± introducf~g the 

· nonHermitian phase operator ~. which for highly excit~d st~tes and small phase .un

certainty can be considered as approximately Hermitian, and it is used to d~scribe _ 

phase properties of the 1/r coherent states. 

At present there is an alternative way to describe phase properties of such states 

using the Hermitian phase formalism introduced.by Pegg and Barnett [6b,- [SJ; In . . ' . 
this paper we are going to reexamine the phase properties of the 1/r cohe~ent _states 

fr~m the point of vie-iv of the Pegg-Barnett p~asc f~rmalism. 

2 Phase pi;-operties of 1/r coherent states 

To describe phase prop~rties~of the 1/r coherent states we use the new Her• 

mitian phase formalism introduced by Pegg and Barnett [6]~ [8], which is_based 
• • a • , • • • 

on introducing a finite (s + l)~dimensional space W spanned by the number states 

I0},11), .•. ,,s). The Hermitian phase operator operates on this finite space, and' after 

-. : all necessary cxpedation:values hav~ been calculated in _w I the ·value· of s is allowed 
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to tend to infinity. A complete orthonormal basis of (s + 1) states is defined on W as 

where 

IOm} = ____ l _ • . vs+1 L exp(mOm)ln}, 

21rm 
Om = Oo+--

1
, s+ 

n=O 

(m=0,1, ... ,s). 

(1) 

(2) 

The value of 90 is arbitrary and defines a particular basis set of (s + 1) mutually 

orthogonal phase states. The Hermitian phase operator is defined as 

• 
~8 = L BmlOm}{Oml, (3) 

m=O 

where the subscript 9 indicates the dependence on the choice of 90 • The phase states 

( 1) are eigenstates of the phase operator ( 3) with the eigenvalues Om restricted to lie 

within a phase window between 90 and 90 + 21r. The unitary phase operator exp(i~o) 

is defined as the exponential function of the Hermitian operator ~8- This operator 

acting on the eigenstate IBm) gives the eigenvalue exp(iOm), and it can be written as 

[6]- [8] 

•-1 

exp(iJo) = L lnHn + 11 + exp [i(s + l)Oo] js}(OI. (4) 
n=O 

This is the last term in ( 4) that assures the unitarity of this operator. The first sum 

reproduces ,the Susskind-Glogower [4, 5] phase operator in the limits-+ oo. 

If the field is described by the density· operator p, the expectation value of the 

phase operator ( 3) is given by 

' . 
(Jo}= Tr {pJo} = L Om(OmlPIOm}, 

m=O 

(5) 

where (OmlfalOm} gives a probability of being found in the phase state IBm}- The 

density of phase state~ is (s + 1)/21r, so in the continuum limit ass tends to infinity, 

we can introduce the phase distribution function 

s+ 1 -
P(O) = lim -

2
-(BmlPIOm}, 

.9-+00 7r ' 

OtrtiCBii ~'\iii~il Httcn~y, l_ 

ml-!fJ!ii::iI :!-C-C.it1.llOD!llilg I 
6htSflHOTEH.li i 
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where Bm has been replaced by the continuous phase variable 0. As the phase distri

bution function P(0) is known, all the quantum mechanical phase expectation values 

can be calculated with this function in a classical-like manner by simply performing 

integrations over 0. We have, for example, 

0o+2.-

(¢e) = J 0P(0)d0. (7) 
Oo 

The choice of the value of 00 defines the 211" range window of the phase values. Taking 

into account the definition ( 1 ), we can rewrite the phase distribution ( 6) as 

P(0) lim s
2
+ l (BmJpJBm) 

S-+00 '7r 

1 00 00 

= 
2

11" LL exp[-i(n - k)(Bo +B)]Pnk, (8) 
n=O k=O 

where Pnk = (nJpJk) are the matrix elements of the density operator pin the number 

, state basis.· 

At this point we are able to study phase properties of 1/r coherent states the 

density operator of which is given by [1] 

r-1 oo mr+.\ •Ir+.\ 

pr/r) = e-lwl• L L Im) w . w (11, 
•· · ·. , -'=O l,m=O J(mr +,\)!(Ir+ A)! 

(9) 

where w is a complex·number. On introducing the notation 

· ' . ··. . lwln 
bn = exp(-JwJ2 /2) 

0
, w = JwJ~xp(i<p) 

vn: 

,,;; 

(10) 

the density operator matrix elements yan be written as 

r..:1, 

Pml = (mJpr/r)l_l) = L bm,r+;.\blr+.\ exp[ir<p(m - l)] 
, . .\~O . 

(11) 

and the phase distribution for such states is, according to ( s);·given by 

l r-1 oo .. ·· · · · • ' ' 

P(0) = 211" L L exp [-i(m -1)(0 +Bo--:- :<p)] bmr+.\blr+.\· 
.\=Om,1=O 

(12) 
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Assuming 00 = r<p - 11", we symmetrize the phase distribution with respect to the 

phase· r<p and define the 0 values window from -7!" to +11", so the phase distribution 

takes the simpler form 

r-1 I 00 

1

2 

P( 0) = 2~ ~ ~ exp( -im0)bmr.+.\ 

= 2~ { 1 + 2 f L bmr+.\blr+.\ cos[(m - 1)0]} 
.\=Om>I 

(13) 

with the normalization 
,r 

j P(O)dO = I. (14) 

-,r 

Knowing the phase distribution" function ( 13) we are able to derive exact analytical 

formulas for the expectation value and the variance of the Hermitian phase operator 

in the 1/r coherent state. The results are 

,r 

(¢e) = Tr {Pr/rlJe} = r<p + j 0P(O)dO = r<p, (15) 

-,r 

,r 

((L.\¢0)2) = Tr {Pr/rl(L.\¢0)2} = j 02 P(0)d0 
-,r 

11"2 r-1 ( - l )m-1 

= J + 4 LL (m - l)2bmr+.\blr+.\• 
.\=Om>I 

(16) 

The mean phase given by ( 15) is r times the phase of the ordinary coherent state, 

so the scaling law considered by D'Ariano [1] works exactly in this case. As regards 

the phase variance given by ( 16), it is clear that the scaling law does not work 

exactly, and can only be met for highly excited states. However, our formula ( 16) 

obtained within the Pegg-Barnett phase formalism is exact and valid for any value 

of JwJ. The value 11"
2 /3 is the phase variance for a state with uniformly distributed 

phase, e: g., the vacuum state. This is the situation when lwl = 0, or for given lwl 

r -+ oo. To illustrate phase properties·of the 1/r coherent states we plot in Fig. 1 

s· 
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FIG. 1. The phase distribution P(O) for Jwl = 2 and various r. 
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FIG. 2. Plots of the phase variance for various JwJ. 

6 

t 
~ 
1 r 
J 

1 
{ii-

~ ,; 
I 

i, 

1\ 
t .~ 

• I 

:j 

., fl 
t' 
1 
I 

~ 

I 
I 

I 
"~ 

~ : 

the phase distribution function P(0) for JwJ = 2 and various values of r. It is clear 

that as r increases the phase distribution becomes more and more uniform. In Fig. 

2 the phase variance is plotted against r for different values of JwJ. As r increases the 

phase variance asymptotically approaches the value 1r2 /3 characteristic for uniformly 

distributed phase. The scaling law ((~io)2) "' r2 means the parabolic shape ofthe 

curves, which is really seen in the figure for JwJ » 1 and not too large r, so that 

JwJ/r > 1. 

In the bright limit JwJ » 1, the phase probability distribution ( 13) can be ap

proximated by the Gaussian distribution. This can be done replacing the Poissonian 

weighting factor by the Gaussian distribution [7] 

2 lwl2n 1 [ (lwl
2 -n)2

] 
exp(-lwl )-1 .~ ~exp -

21 12 n. V 21rlwl2 w 
(17) 

, 

and performing integrations instead of summations. This gives us 
00 

D = L exp( -imO)bmr+>. 
m=O 

oo JwJmr+>. 
= L exp(-imO) exp(-lwJ2)---;======== 

m=O J(mr+ ,\)! 

1 J [ . (lwJ
2 

- mr - ,\)
2

] 
~ (21rJwl2)1/4 exp -imO - 4lwl2 dm, (18) 

and in effect we have 

l r-1 1 ( 82 
) 

P(O) = 21r .~ IDJ
2 = J 21ru2 exp - 2u2 (19) 

with 

r2 
2 --. 

u = 4Jwl2 (20) 

Thus, in the bright limit the phase variance which is equal to u2 scales as ~ r2 in 

agreement.with the D'Ariano results [1] .. 

The photon-number variance for the 1/r coherent states can be calculated accord

ing to the formula 

((~n)2) = (n2
) - (n)2 
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00 [00 ]2 
= ~n

2
Pnn - ~nPnn 

oo r-1 [ oo r-1 ] 2 

= ~ ~ n2 
b!r+>. - ~ ~ nb!r+>. (21) 

In Fig. 3 we have plotted the photon-number variance, evaluated according to ( 21), 

ag~inst r for different values of lwl. In Fig. 4 the number-phase uncertainty product 

((~n )2){(~¢o )2 ) is plotted against r for various lwl. Of course, in the bright limit the 

Gaussian approximation of the Poissonian weighting factors leads to the D' Ariano · 

scaling results (n) ~ r-1 , and ((~n)2) ~ r-2 , which retain the number-phase uncer

tainty product unchanged. 

To complete the phase properties of the 1/r coherent states, we adduce h~re the 

Tesults for the cosine and sine functions of the Hermitian phase operator ¢0. These 

results can be compared to their counterparts in the Susskind-Glogower approach. 

Taking advantage of the fact that 1/r coherent states are "physical states" [7]- [9], 

we can easily calculate the exponential of the phase operator 

00 7'-1 

(exp(im¢o)) = exp(imrcp) LL b(n+m)r+>.bnr+>. (22) 

n=O >-=O 

From ( 22) one can obtain 

oo r-1 

. (cos¢o) = cos(rcp) LLb(n+t)r+>.bnr+>., (23) 
n=O >.=O 

and 

l l oo r-1 _ 

(cos2 ¢0} = 2 + 2 cos(2rcp) LL b(n+2)r+>.bnr+>-·. 
n=O >.=O 

(24) 

Corresponding formulas for the sine function are obtained by replacing the cosine 

with the sine in ( 23) and changing sign of the second term in ( 24). Of course, we 

have (cos2 ¢0) + (sin2 ¢0) = 1 in the Pegg-Barn~tt approach. 

8 

A 
C\l ,,--.. 

~ 

4 

3 

<] 2 
'-._/ 

V 

1 

0 
0 5 10 15 

r 
20 25 30 

FIG. 3. Plots of the photon-number variance f()r various lwl, The values of luJI for 

the subsequent curves counting from left are: 1, 2, 3, 4. 
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FIG. 4. Plots of the number-phase uncertainty product for various lwl. 
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3 Conclusion 

In this paper we have discussed phase properties of the 1/r coherent states from 

the point of view of the Hermitian phase formalism of Pegg and Barnett [6]- [8]. 

This formalism allows to get exact analytical formulas describing the variance of the 

Hermitian phase operator for any value of the state amplitude jwj. In the bright limit 

(lwl ~ 1) the exact formulas obtained within the Pegg-Barnett formalism reproduce 

the approximate results obtained by D'Ariano [l] who started from the Susskind

Glogower phase formalism. The clear advantage of the Pegg-Barnett approach is the 

possibility to obtain the exact analytical formula for the variance of the Hermitian 

phase operator, which next can be approximated for some special limiting cases. We 

have applied the exact formulas to illustrate some of the phase characteristics of the 

1/r coherent states. Our results may be of special value for such values of lwl and r 

for which the approximate formulas are not applicable, or they can serve as a test of 

validity for the approximate results. 
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fattuor L.l., Tattacb P. E17-91-165 
<l>a30Bble CBOHCTBa AP06HblX KorepeHTHblX COCTORH"1H 

O6cy>l<,ClalOTCR q>a30Bble CBOHCTBa AP06HblX KOrepeHTHblX COCTORH"1H 
-c TO'IK111 3pett1i1R 11oeoro cj:Ja3oeoro cj:JopMa111113Ma nerra-EaptteTTa. no11y'lettb1 

I . . . 

. TO'IHble atta11111rn'lecK111e cj:JopMy11i,1 AilR A111cnepc1,11,1 cj:Ja3oeoro oneparnpa, KOTO· 
pble ~p01i111IllOCTp111poBaHbl rpacj:J1,1'1ecK1,1. nony'leHHble pe3YilbTaTbl MOryT. cny· 
>Kli1Tb TeCTOM cnpaBeAilli1BOCT1,1 np111MeHeHli1R 3aKoHa WKam-1poBaH111R Ali1Cnepc1,11,1 
cj:Ja3bl. 

Pa6oTa Bbmonttetta B na6oparnp1,11,1 Teopern'lecKoH cj:J1,131,1K11 OltlAltl. 
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