


1. Introduction

The physical processes arising in chemisorption sSystems
are of great interest both from theoretical and practical
points of view. Especially, the properties of chemisorbed
surfaces at submonolayer c¢overages are important, for
ekample, in heteroﬁeneous catalysis or phase transition (in
the adsorbate component) theories. The chaotic distribution
of adatoms in the chemisorbed overlayer can Dbe treated
within the coherent potential approximation (CPA) /1/ as it
was done in papers /2,3,4/ (see also /5,6/), but jt is well
known that CPA requires great numerical efforts for solving
. the corresponding nonlinear equations. On the other hand,
similar information about the chemisorbed system can be
obtained by using.the equation of motion method for the cor—
responding Green Function. In order to break up the infinite
system of higher—and-higher order Green Functions 1one can
use, for example, the assumption of uncorrelated distribu-
tion of chemisorbed atoms. Thus, the results of such calcu-
‘lations should be comparable, with those obtained within the
single site CPA although the numerical efforts are much
smaller. The aim of this paper is to compare the results
obtained within these two approaches. The paper 1s organized
as follows. In section 2., we describe the model Hamiltopian
intended to represent the chemisorbed overlaver. In secticn
3, we present the derivation of the required Green Function
within the appropriate approximation concerning the stochas-
tic distribution of adatoms and the last section is devoted

to presentation of the numerical results. ’

2. The model Hamiltonian
Recently., the Hamiltonian intended to describe the sys-—



tem of adatoms chemisorbed on the metal surface has been
derived from microscopic congiderations /7,8/. Here, we pre-
sent the most important, for our cosideration. parts of this

Hamiltonian
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All symbols have their usual meaning as for the Newns—
Anderson model 718/ and here we only remind that the func—

tions V vaﬁﬁa and Vuﬁaﬁ are the matrix elements of the

ook &
Coulomb interaction between electrons calculated with the
appropriate wave functions — see /7,9/ for details.The sum
over o is carried out over all the adsorption centers. The

operator Na=c;ca has eigenvalues equal to 0 or 1 and the

_operators c; ,*ca are the creation and annihilation opera-—
tors of the adsorbed atom at the adsorption center with the
ceordinate Hd . We consider only the case when there is no
more than one adatom in each adsorption center. At complete
monclayer coverage the adatoms form a two-dimensional lat-
tice commensurate with that of the substrate surface but for

the coverage less than unity the chemisorbed layer can be.

considered az a substitutional alloy composed of two types
o3 can be
treated as an electron hopping integral between the adatoms

of species, adatoms and vacancies. The parameter E

located at the o-th and f#-th chemisorption centers. The
third term describes the metallization of the chemisorhed
layer caused by enveloping the valence orbitals of the ada-
toms. It leads to the dispersion of the wvirtual level and

arising of a virtual surface band.



) The Hamiltonian (1) (but without the last three terms)
was investigated by us in several approximations. Some
approximations have been introduced into this Hamiitonian
and (or) the‘many—body terms were treated within (bevyond)
the meanffieid approximations /10-15/. This Hamiltonian has
an interesting structure. With respect to ion wvariables Ncl
1t has the form of the Ising model but with the operator
coefficients consisting of Fermi operators. With respect to
the electron operators it i1s a generalization of the Ander-
son model.

All the properties of the system can be calculated from
the one-particle retarded double time Gresn Functicn (GF)
«Nu(t)adott)[Nﬁ(t)a;olt)». For example, the adatom electron

charge can be calculated as follows:
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and the magnetic moment as

v

m=<NandT>/8—<Nana¢>/8,

Here, we use the form <Nanmo>/9 rather than <naw> for the
mean adatom occupation number. It is a consequence of the
composite structure of the Hamiltonian. Namely, the correla~
tion function <N Ny >/6 should be interpreted as the condi-
tional prObabllltY of finding an electron at the adsorption
center o when this center is already occupied by the adatom.
Working with the Green Function mentioned above within the
equation of motion method one obtains the higher GF huiit up
from many adatom and electron operators. Because of the
unclosed system of coupled equations for higher-and-higher
GFs. one has to accept some decoupling scheme tor termina-
ting these equations. Note, however, that in the case of the
one adatom chemisorbed on the substrate surface this infi-
nite set of egquations is present only for the Hamiltonian
with the many-body .terms included. On the contrary, in the
submonolaver chemisorption case, even the one—-electron

Hamiltonian is able to produce the infinite system of equa-



tions for higher-—-and-higher order (with respect to the ad-
atom operators Na) Gréen Functions. Fortunately., this infi-—-
nite set of equations can be exactly solved for the oane-~
particle GF «NdaaoiNﬁaéo» (but only ftor the ‘one—electron
Hamiltonian), although the result can be written down only
in terms of the infinite sum of correlation functions

<NaNa ...NOl > of increasing crder /12/. If we start with the
many~;ody é;milfonian. obtaining a similar result 1is not
possible. Now we have many new higher-—-order GF's for which
new functions appear. In such a case. in our recent work
/12/ we have used the approximation which can be compared
with the Bogolubov-Tyablikov decoupling (see, for example

/16/)
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Also, a similar decoupling scheme was used in our investiga-—
tions of the chemiscrption phenomena within the matrix self-
energy formalism exact to second order in the hybridizZation
matrix elements Vak /13,15/. In all the cases mentioned
above the Ising type correlators were calculated by the

Kirkwood superposition formula (gee, for example /11.17/)
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and, as-a next step, the Bragg-Williams /17/ approximation

for the carrelator <NaNﬁ> was used

<N Nﬁ>~ <N >+ ll—éaﬁ)<Na><Nﬁ> . _ (4)

This approximation implies that we have neglected the

possible correlated distribution of the adatoms on the subs-—
trate surface. In this way. our calculations should be com-
parabie with those done within the single-site CPA /2,3,4/.
As ;t ig well known., CPA gives us self-consistent equations

for the self-energy (this function describes the effect of

/4



disorder 1in the adatom distribution on the electron motion).
The solution of these egquations guarantees that any electron
scattering i1n the assumed average medium does not take
piace. Unfortunately, CPA theory, especially when one is
trying to include the electron correlation effects, 1is
complicated and regquires relatively great numerical efforts
to find their golutions. On the other hand, our treatment of
the adatom disorder looks very simple and can serve as an
efficient method for that kind of investigations.

The purpose of this work is not to present the formal
proof of equivalency between the method described above
which takes into consideration the adatom chaotic distribu-
tion on the substrate surface and the coherent potential
approximation adopted to the chemisorption problems. Instead
of this we are going to compare the numerical results
obtained wiEhin these two approaches.

There are only a few papers to be gquoted as closely
related to the problem we are going to discuss. Here, we
will compare our results with those presented in papers of
Tsukada /2/ and Kudfnovsky and Velicky /3/ (cE. /4/). We
adopt more simple version of the model Hamiltonian than pre-
sented in Eq.(l). namely
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We have decided to work with that Hamiltonian mainly to
make our results most compatible with the results of papers
/2,3/. On the other hand, all parameters present in the
Hamiltonian (5) can be seen as some effective one and may
represent in the mean—field approximation, to sSome extent,
the rejected terms of the model (1). For example, the elec—

tron correlations on the adatem can be included 1in the



Hartyree—Fock approximation through the spin dependent
parameter E_ /9.14/

E,=E +UNn, >/6% Z[vak< N a, B, >/0%h . c] (6}

M .
and in this case Ea should be self-consistently adjusted
during the calculations. The parameter £, O=[=l, appears in
Eq. (6) because of the approximation of the matrix element
V°t in the form V 2LV, (for detalls, see Rets./7.8/).

oiolke ootk
The so—called dvnamical hopplng in-the second term . of (L

can be taken into consideration by replacing de in (3) by
the expression /14/
v =[1—E<N L)
ctk o oo ak .
Ih this case V:k should be found in a self;consistent way.,
too. '

We consider the model in which the term describing the
metallization of the adatom lavey is represented by the last
term in Eg.(2). The general form of the matrix element Emﬁ
is given in Ref./7/ and here we identify it simply with the
hopping integral between the o-th and f-th chemisorption
sites. Thus, our model allows for the so—called indirect
interaction between the chemigsorbed adatoms {through the
substrate electron subsystem), as well as for a direct inte—
raction. For hydrogen chemisorption on the fransition metal
substrates, in our opinion, the rolé of this direct 1nterac-—
tion is rather small (see. e.g./19/), and here we consider
this additicnal interaction in the Hamiltonian only for the

sake of comparison with Ref./3/-

3, The one-particle adatom Green Function

Writing down the equation of motion for the Green Func—
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one can find the solution for the required one—particle
. + .
Green Function «NaaaolNﬁaﬁa» in the form
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Formula (B) represents the exact expression for the required
:
Green Function &N i i _
ee £ aaao‘Nﬁaﬁa» but contains the higher—order
correlation functions which cannot be calculated exactly.
The series can be summed up if the higher-order Ising-type

correlators are approximated in the spirit of the Kirkwood



superposition formula (3). Une then obhtains
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‘and 9 denotes a two-dimensional wave vector lving 1n the
first Brillouin zone of the reciprocal lattice corresponding
to the adsorption centers. Finally, using the Bragg-Williams
approxim§tion (4) for the correlator <NaNﬁ> we get
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The function Pq{E) is a Fourier transform of Paﬁ(E) and
A(E)=Paa(E) . This form of GF should be compared with the
~Hartree-Fock result for the Hamiltonian (%) (without the
direct interaction term but with inclusicn of the Coulomb
repulsion between two electrons of opposite spins located on
the same adatom} which differs from (12) only by the func-
tion Eq (but with the convention that E, in (12) denotes an
effective level Ea —-see Eq.(6)) /10,11/. Based on the above
considerations, we can say that the results obtained using
the Hamiitonian (3) with the terms corresponding teo the
direct interactions between adatoms included can be restored
using a model without these interactions but with an energy-—

dependent renormalization of the matrix elements \IOlk

4. Numerical results-

To compare the results obtained in our approach with



the results of Rets. /2.,3/ we have taken the Same numerical
values for the parameters present in the model. Thus, as a
fi{gt step we have used a following ansatz for the gubstrate

elecpronic gtrugture

A2 for |E| < A
Amiy L ={ - , (13)
, 0 I Iy E - E“(qJ 0 for |E| > A
and
r
1 1 1 1
- —Im-— =— £ ‘_‘E“(‘?)"'EJ_(k } {14)
x4 N £ E+_ EJ_“‘Z} w Ez + l_.2 k z

as it was done in Ref./2/.

In the following, we have computed the adatoﬁ local
density of states. the adatom electron charge and the chemi-
gorption energy. All the results were calculated for a
vanishing value of the direct 1nteraction fas in /2/). QOur
results confirm those given in Ref. /2/ for the adatom local
density of states curves. even with all details. Once we
have shown the equivalence between CPA and our treatments of
the chemisorbed lavyer problem (but with vanishing direct
interactions among adatoms) . it should Dbe interesting Lo
check whether all the properties of the solutions obtained
_for artificial band structure, see Egs.{(12,13). can be again
confirmed for realistic situations. For that reason, We cal—-
culated P (E) as follows:
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and r (E) is its Hilbert transform. Aésuming a chemisorption

on a 51mp1e cubic substrate lattice we have taken sqk in
z
the form

= + co a) + k
sqkz cos(qxa) c s(qy ) cos( za)

and, similarly ag.in the Newns paper /18/
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in this way., we have obtained the surface (substrate) den-—
gity of states in a more realistic torm (as in Ref./4/) than
a rectangular shape agzumed in /3/, Ea.(id).

Qur results are presented in Figs. (1-5). Figures (1-3)
shquld be compared with those in Ref./2/ and Figs. (4.9)
with the results of Ref./3/. Rs 1n Ref. /Z/. the calcula-
tions were done for zero Valueé of the direct interaction sSC
in order to compare our results with regults given 1N
Ref./2/ we alsc have taken Eaﬁ=0 for o#3 . n Fig. (L)1 we
have shown the adatom density of states cailculated for
increasing values of V for three values of the coverage. The
parameter values to be taken 1n units of the half-width of
the substrate energsy band. The main conclusions resulting
from these Figure are as follows (compare with /3/). For a
weak coupling petween the adatom and the substrate metal
there appealr's a single peak of the adatom density of states
for small values of the coverage. AS the coverage 1Ncreases,
this single peak splits into two peaks and thas splitting 1s
more and more pronounced with increasing coveraging. For A
case of larger values of the coupling V there are two Ppeaks
of the adatom density of states at every coverage and the
influence of increasing coverage ig clearly visible. The
peaks shift inwards and the minimum of the adatom density of
states between these peaks deepens. The peak heights become
larger (with increasing coverage) for high-energy peaks and
smaller for low-energy peaks. Only in this point these
results differ from the corresponding coné calculated by
using Eqs.(13,14); namely, in a latter case the peak heights
become larger for both peaks. ln general, we can Say that
the considered approximations of the substrate electronic
structure influence the results only in minor details. The
same can be said about other characteristics, 1.é. about the
adatom slectron charge and chemisdrption energy. In Fig. (23

we present the adatom electyon charge VS- coverage . for the

10



Fig.i.- The adatom density of states caiculated by using
the cubium (100) surface density of states for
v=vc.3, 1 and 4 (in units of half band width)
respectively.  for differents rates of the

coverade.
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Fig.2.-The coverage dependence of the adatom occupation
humber for diferent values of the Fermi level.
The parameter values correspond to those of Fig.
(1) .
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parameters corresponding to Figs. (1), for three values of
the Fermi level position. In Fig. (3) we shown the chemi-
sorption energy vs. coverage for the parameters values
corresponding to Figs. (la and lb), respectively.

In Fig.(4) we depict the adatom densaty of. states
calculated for the parameters taken from Ref./3/ for
vanishing and nonvanishing values of the direct interaction.
respectively. The adatom density of states has a double—
peaked structure due to strong adatom-substrate coupiing,
These Dbonding and antibonding peaks are broadened and
shifted inwards. We should like to note a very small value
of the density of states between two peaks for the monolayer
coverage, as well as, the double-peaked structure of each ot
the main high- and low-energy lying peaks. Even these
details of the density of states are in agreement with the
calculations of Ref./3/. Fig. (4b) shows the adatom density
of states for the same parameters as in Fig. (4a) but with
the direct interaction between adatoms included. One carn
observe, in comparison with Fig. (4a). a significant
broadening of the main peaks. This effect is most proncunced
for the case of monclaver coverage. Note that for a coverage
equal to 0.5 there are rather small differences between
curves displavyed ;n Fig. (4a) (Eaﬁ=0} and Fig, (db)
tEaﬁ#O) . For that reason, it is justified to ignore the
direct interactions for coverages smailer than approximately
equal to 0.7, even for sufficiently large values of these
interactions. Comparing our results, Figs. (4a.4b). with the
results of Ref./3/-case A, one can observe only small
differences in a shape of the adatom density of states for
the monolayer coverage for the case of a nonvanighing direct
interaction. These differences of minor importance can arise
because 1n our calculations we have simulated a finite iife-—
time for the metal electron states ~ see e.g. /20/.

In conclusion, the electronic structure of the chemi-
sorbed submonolayer and the chemisorption energy calculated

within the composite Hamiltonian method with the Bragg-
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Fig.4.— The adatom density of states calculated using the
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Williams approximation for the lsing type correlation func-
tions are in very good agreement with those obtained within
the coherent potential approximatﬁon. Our method can be
velry useful especially when one is trying to include the
electron correlation effects ,1i5/ and seems to be
sufficiently simple to include also spatial correlations in

the adatom distribution on the substrate surface.
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