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1. Introduction 

The physi'cal processes arising in chemisorption systems 

are of g1:eat interest both from theoretical and practical 

points o:E view. Especially, the properties of chemisorbed 

surfaces at submonolayer coverages are important, for 

example, in heterogeneous catalysis or phase transition (in 

the adsorbate component) theories. The chaotic distribution 

of adatoms in the chemisorbed overlayer can be treated 

within the coherent potential approximation (CPA) /1/ as it 

was done in papers /2,3,4/ (see also /5,6/), but it is well 

known that CPA requires great numerical efforts for solving 

the corresponding nonlinear equations. On the other hand, 

similar information about the chemisorbed system can be 

obtairied by using the equation of motion method for the cor­

responding Green Function. In order to break up the infinite 

system of higher-and-higher order Green Functions on_e can 

use, for example, the assumption of uncorrelated distribu­

tion of chemisorbed atoms. Thus, the results of such calcu­

lations should be comparable, with those obtained within the 

single site CPA although the numerical efforts are much 

smaller. The aim of this paper is to compare the results 

obtained within these two approaches. The paper is organized 

as follows. In section 2, we describe the model Hamiltonian 

intended to represent the chemisorbed overlayer. In section 

3, we present the derivation of the required Green Function 

within the appropriate approximation concerning the stochas­

tic distribution of adatoms and the last section is devoted 

to presentation of the numerical results. 

2. The' ntodel Hamiltonian 

Recently, the Hamiltonian intended to describe the sys-
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tern of adatoms chemisorbed on the metal surface has been 

derived from microscopic considerations ;7,8/. Here, we pre~ 

sent the most important, for our cosideration. parts of th1s 

Hami 1 toni an 

- £ n + N E n +- n - v n -V a a +h.. c L L { unl L[( ) + J} H k lea ot a ACt 2 010' ot-0' 0101.01.k 01-et otk cw· ka 
ket 010' k 

+) N01N~a:0a~0 [E~+V~~01 (n01 _ 0+n~-a)] + 
Ol>'/1 

"' 
+ 1 ~N N V a+ a+ a a + H 

2 ~ 01 (1 a[3~ 010' (1a' (1o' oo rest · 
«>'(1 

""'' 

I 1! 

All symbols have their usual meaning as for the Newns­

Anderson model /18/ and here we only remind ·that the func­

tions VotoQk' V~~ot and V
01

(1op are the matrix elements of the 

Coulomb interaction between electrons calculated with the 

appropriate wave functions- see /7,9/ for details.The sum 

over ot is carried out over all the adsorption centers. The 

operator N
01

=c:c
01 

has eigenvalues equal to 0 or 1 and the 

+ operators cot , cot are the creation and annihilation opera-

tors of the adsorbed atom at the adsorption center with the 
. ~ 

coordinate R
01 

. We consider only the case when there 1s no 

more than one adatom in each adsorpti.on center. At comple,te 

monolayer coverage the adatoms form a two-dimensional I at-

tice commensurate with that of the substrate surface but for 

the coverage less than unity the chemisorbed layer can be 

considered .as a substitutional alloy composed of two types 

of species, adatoms and vacancies. The parameter £01~ can be 

treated as an electron hopping integral between the adatoms 

located at the o-th and ~-th chemisorption centers. The 

third term describes the metallization of the chemisorbed 

layer caused by enveloping the valence orbitals of the ada-

toms'. It leads to the dispersion of the virtual 

arising of a vjrtual surface band. 
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The' Hamiltonlan (1) (but w1thout the last three terms) 

was investigated by us 1n several approximations. Some 

approximations have been introduced into this Hamiltonian 

and (or) the many-body terms were treated within (beyond I 

the mean-field approx1mat1ons /10-15/. This Hamiltonian has 

an interesting structure. W1th respect to ion 

1t has the form of the Ising model but with 

variables Net 

the operator 

coeffic1ents consisting of Ferr,li operators. With respect to 

the electron operators it is a generalization of the Ander­

son model. 

All the propert1es of the system can be calculated from 

the one-particle retarded double time Green Function (GF) 

<<N (t)a.· (t) IN(l(t)a(l+ (t)>::-. For example. the actatom electron 
01 01.0' 0' 

charge can be calculated as follows: 

and the magnetic moment as 

Here, we Use the 

m==<N n )/8-<N n >/8 . 
OL Ol"t 01. C(,J.. 

form <N n >18 rather than 
0< CW' 

<n > 
"'" 

for the 

mean adatom occupation number. It is a consequence of the 

composite structure of the Hamilton1an. Namely, the correla­

tion function <Nctnaa>/8 should be interpreted as the condl­

tional probability of findin-g an electron at the adsorP'tion 

center 01. when this center is already occupied by the adatom. 

Working vntll the Green Function mentioned above within the 

equation of motion method one obtains the higher GF built up 

from many adatom and electron operators. Because of the 

unclosed system of coupled equations for higher-and-higher 

GFs, one has to accept some decoupling scheme tor termina­

ting these equations. Note, however, that in the case of the 

one adatom chemisorbed on the substrate surface this infi-

nite set of equations is present only for the Hamiltonian 

with the many-body terms included. On the contrary, in the 

submonolayer chemisorption case. even the one-electron 

Hamiltonian is able to Produce the infinite system of equa-

3 



tibns for higher-and-higher order (Wlth respect to the ad~ 

atom operators N~) Green Functions. Fortunately, th1s 1nf1-

nite set of equations can be exactly solved for the one­

particle GF <<N 01a.ot0 IN(3a.~0» (but only for the one-electron 

Hamiltonian). although the result can be wr1tten down only 

in terms of the infinite sum of correlation functions 

<N
01

N
01 

••• Not > of increasing order /12/. If we start with the . " 
many-body Hamiltonian. obtaining a similar result is not 

possible. Now we have many new higher--order GF' s ;for which 

new functions appear. In such a case. in our recent work 

/12/ we have used the approximation which can be compared 

with the Bogolubov-Tyablikov decoupling (see, for example 

/16/) 

<N n > 
01. 01 -0' 

«Na.Nq. ... N
01

_ a..ot. 
0

n
01 

__ 
0 

I Nf1a..;3a>~ --''--''-- <<N
01

Na ... N
01

. o..
01 

a I Nf?a..;
0
» 

1 1,.1,. 1,. 8 1 li. 

( 2) 

Also. a similar decoupling scheme was used in our investiga­

tions of the chemisorption phenomena within the matrix self­

energy formalism exact to second order in the hybridization 

matrix·· elements VCtk /13,15/. In all the cases mentioned 

above the Ising type correlators were calculat,ed by the 

Kirkwood superposition formula (see. for example /11.17/) 

<N N 
"' "' 1 

····- N" )>:( N"'N"' ><N,. N,. > 
n :1. 1 2 

.. <Not Na )/Bn-1 (3) 
n-1 n 

and, as-a next step, the B~agg-Williams /17/ approximation 

tor the correlator <N
01

N(3> was used 

(4) 

This approximation implies that we have neglected the 

possible correlated distribution of the adatoms on the subs­

trate surface. In ,this way, our calcula_tions should be com­

parable with those done within the single-site CPA /2,3,4/. 

As it is well known. CPA gives us self-consistent equations 
' for the self-energy (this function describes the effect of 
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disorder in the adatom distribution on the electron motion). 

The solution of these equations guarantees that any electron 

scattering 1n the assumed average medium does not take 

place. Unfortunately, CPA theory, especially when one is 

trying to include the electron correlation effects. is 

complica.ted and requires relatively great numerical efforts 

to find their solutions. On the other hand, our treatment of 

the adatom disorder looks very simple and can serve as an 

efficient method for that kind of investigations. 

The purpose of this work is not to present the formal 

proof of equivalency between the method described above 

which takes into consideration the adatom chaotic distribu­

tion On the substrate surface and the coherent potential 

approximation adopted to the chemisorption problems. Instead 

of this we are going to compare the numerical results 

obtained. within these two approaches. 
' There are only a few papers to be quoted as closely 

related to the problem we are going to disc~ss. Here, we 

wi 11 compare our results with those presenteci in papers of 

Tsukada /2/ and Kudrnovsky and Velicky /3/ (ct. /4/). We 

adopt more simple version of the model Hamiltonian than pre­

sented in Eq. (1). namely 

H• ).---.ek nka + LN01 { ECI:nAO' +~na.O'nOL-0' +LV OLk a.!a~a +h. c} + 
kO' 01.0' - k 

+~~NOLN~a.:aa.~O'E~ 
ct;Jt(3 
0 

( 5) 

We have decided to work with that Hamiltonian mainly to 

make our results most compatible with the results of papers 

/2.3/. em the other hand. all parameters present in the 

Hami1tonian (5) can be seen as some effective one and may 

represent in the mean-field approximation, to some extent, 

the rejected terms of the model (1). For example, the elec­

tron correlations on the adatcm can be included in the 
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Hartree-Fock approximation through the 

parameter E
0 

/9.14/ 

E ~E +U<N n >IS-( \[v <N ,: <> ;/S+h. c] 
a et 01 Ct-0' L ak a o.a kG 

k ' 

dependent 

t6l 

and in this case E
0 

should be self-consi~tentlv adJusted 

during the calculations. The parameter (. 0~(~1. appears in 

Eq.(6) because of the approximation of the matrlx element 

Vor.aotk in the form V0101otk~Vak (for details. see Rets./7,8/J. 

The so-called dynamical hopping in-the second term of (lJ 

can be taken into consideration by replacing Vor.k 1n {5) by 

the eXpression /14/ 

V"'k~(l-(<N n. >;e)v k 
et or. et-a a 

Ih th1s case V0 should be found in a self-consistent way, 
O<k 

too. 

We consider the mOdel in which the term de~cribing the 

metallization of the adatorn layer is represented by the last 

term in Eq.(2). The general form of the matrix element 

is given in Ref./7/ and here we identify it simply with 

hopping integral between the a-th and ~-th 

E C<{l 
the 

sites. Thus, our model allows tor the so-called Indirect 

interaction between the chemisorbed adatorns {through the 

substrate electron subsystem), as well as for a direct inte-. 

ra.ction. For hydrogen chemisorption on the transit1on metal 

substrates, in our opinion, the role of this direct Interac­

tion is rather small (see. e.g./19/), and here we consider 

this additional interaction in the Hamil-tonian only for the 

sake of comparison ~ith Ref./3/. 

3. The one-particle adatom Green Function 

Writing down the equation of motion for the Green Func-

+ 
tions <<NOLa..ota I N~a..~a» .... , <<N N ···N (L I···>>. 

ex. ex. ct. ct. a . ' 
<<N a I ····>>. 

' Q( kO' 

<<N
01
N"' ··· N a I ··· >> 

ex. ka 
• 
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E <<N N 
0! 0! 

'· 

I E «NNa I 
Olet ot 01. 01. a • • • 

····» + 

0! 
• 

+LV Otk .::<N ex aka I ··· » · 
k 

- >> 

a I ... )) 
"' 0 '+1 

+\V «N N . L 01_ k 01 01 

k ' • 

+IE X 
"' 01 --' i. i. +:I. 

"' '+< 

( E-£ ) «N a I ... »=L:v* -+<<N N a. I ... » 
k CtkO' Olk 01.01. 010' 

• • • 
"' • 

··· >> =Iv* -+«N N 
otk OlOl • • 

... )) N a I 
"' 0! 0 

i.+:l L.+i 
0! 

i. + 1 

( 7) 

one can find the solution for the requir8d one-particle 

Green Function «N a. I N(Ja(J+ » in the form 
01. a.a a 

n=:l a. ····01 
1 n 

where 

------+ 
E 

I 
...... N N > 

"'n (J 

(8) 

I 9J 

Formula (8) represents the exact expression for the required 

Green Function ((N (l IN a+ )) but contains the higher-order 
ot ota (3 (ja 

correlation functions which cannot be calculated exactly. 

The series can be surruned up if the higher-order Ising-type 

correla..tors are approximated in the spirit of the Kirkwood 
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superposition formula (3). One then obtains 

<<N "'. Ia.+ »=~ \etq(o.-(i) 
aaa eta NL 

e 
(lUJ 

q 

where 

I llJ 

and q denotes ~ two-dimensional wave vector lying 1n the 
first Brillouin zone of the reciprocal lattice corresponding 
~o the adsorption centers. Finally, using the B~agg-W1lliams 
approximation (4) for the correlator <NaN(1> we ,get 

<<N "- 1"-+ >>= Nl \e<qi<>-(J)e[E-E -(1-S)AIE)-S(P .IE)+E )]-
1 

112) 
01 OICT CXO' L 01 q q' 

q 

where o>#(J 
1 \ -l.q (a-(l) 
N Le Ea(J. 

a(J 

The function is a Fourier transform of p~(E) 

form of GF should be compared with 

and 

the 
Hartree-Fock result for the Hamiltonian (5) (without the 

direct interaction term but with lnclusion of _the Coulomb 
repulsion between two electrons of opposite spins located on 
the same adatom) which differs from (12) only by the func­
tlon Eq (but with the convention that E

01 
in (12) denotes an 

effective level E
0 

-see Eq. (6)) /10,11/. Based on the above 
considerations, we can say that the results obtained uSing 
the Hamiltonian (5) with the terms corresponding to the 
direct interactions between adatoms included can be restored 
using a model without these interact1ons but with an energy­
dependent renormalization of the matrix elements V

01
k 

4. Numerical results 

To compare the results obtained in our approach with 
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------------
the results of Rets./2,3/ we have taken the same numerical 

values for the parameters present in the model. Thus, as a 

fir_..st step we have used a following ansatz for the substrate 

elec~ronic structure 

and 

z 

as it w'as done ,ln Ref./2/. 

• 
n 

{ A:2 

r 

i' + r• 

for lEI 5 A 
(13) 

for lEI > A 

, "\-E 11 (q)+E_c(kz) (14) 

In the following, we have computed the adatom local 

density of states. the adatom electron charge and the chemi­

sorption energy. All the results were calculated for a 

vanish:ing value of the direct .interact1on (as in /2/). Our 

result!3 confirm those given in Ref./2/ fo1~ the adatom local 

density of states curves, even with all details. Once we 

have shown the equivalence between CPA and our treatments of 

the1 chemisorbed layer problem (but with vanishing direct 

interactions among adatoms), it should be interesting to 

check whether all the properties of the solutions obtained 

for art-ificial band structure, see Eqs.(12,13). can be again 

confirmed for realistic situations. For that rea~on, we cal­

culated PqlE) as follows: 

v v -i,q t <>-rn 1L C<kkf'e 
p (E)--

q N E ' &k 

OI(Jk 

(15) 

z 

and rq(E) is :i.ts Hi1bert transform. Assuming a chemisorption 

on a simple cubic substrate lattice we have taken e in 
qk 

z 

the form 

e ~ cos{q a) + cos{~ a) + cos(k a) 
qk% X y Z 

and, similarl-Y as.in the Newns paper /18/ 
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v a.qk 
z 

In this way, we have obtained the surface (substrate) den-

sity of states in a more realistic form (as in Ref./4/) than 

a rectangular shape assumed in /3/, Eq.(l5). 

Our results are presented in Figs. {1-5) 

should be compared with those in Ref./2/ and 

with the results of Ref. /3/. As 1n Ret. /2/. 

Figures (1-3) 

Figs. (4,5) 

the calcula-

tions were done for zero values of the direct 1nteract1on so 

in order to compare our results Wlth results g1ven 1n 

Ref./2/ we also have taken E ~o 
"'!9 

for O.¢(? >n Fig. I 11 we 

have shown the ada tom density of states calculated for 

increasing values ot v for three values of the coverage. The 

parameter values to be taken on units of the half-width of 

the substrate energy band. The main conclus1ons resulting 

from these Figure are as follows (compare with /3/). For a 

weak coupling between the ,adatom and the substrate metal 

there appears a single peak of the adatom denslty of ~tates 

for small values of the coverage. As the coverage Increases, 

this single peak splits into two peaks and this splittin~ IS 

more and more pronounced with increasing coveraging. For a 

case of larger values of the couplin~ V there are two peaks 

of the adatom density of states at every coverage a'nd the 

influence of increasing coverage IS clearly visible. The 

peaks shift inwards and the minimuro of the ada tom densi tv ot 

states between these peaks deepens. The peak heights become 

larger (with increasing coverage) for high-energy peaks and 

smaller for low-energy peaks. OnlY in this point these 

results differ from the corresponding one calculated by 

using Eqs.(13,14); namely, in a latter case the peak heights 

become larger for both peaks. In general. we can say that 

the considered approximations of the· substrate electronic 

structure influence the results only ln minor details. The 

same can be said about other characteristics, i.e. about the 

ada tom e 1 ectron charge and chemisorption energy. In fj g. l2) 

we present the adatom electron charge vs. coverage for the 

10 
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fig.l_-· The adatom denslty ot states calculated by using 

the cub1um t100) surface density of states for 

v~-ro--:9. 1 and 4 (in un1ts of half band width) 

respectively, -for differents rates of the 

coverage. 

0.53 
0.70 
~) 

b) 

c. ) 0.58 

~ 0.65 

0.60 
0.56 

0.52 

~ 0.55 ---------~ 
---- 0.54 ---·------ ---------- ---

--- 0.50 0.52 ' 
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' 

0.35 
0.48 

0.50 - 0.0 0.5 

0.0 0.5 1.0 0.0 0.5 1.0 

e () 

fig.2.-The coverage dependence of the adatom occupation 

number for diferent values of the Fermi 1 eve 1 . 

The parameter values correspond to those of Fig. 

( 1) -
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parameters corresponding to Figs. 11), for three values ot 
the Fermi level position. In Fig. (3) we shown the chemi-
sorption energy vs. coverage for the parameters values 
corresponding to Figs. (la and lbJ, respectively. 

In Fig.(4) we depict the adatom dens1ty ot. states 
calculated for the parameters taken from Ref./3/ for 
vanishing and nonvanlshing values of the direct 1nteract1on. 
respectively. The adatom density of states has a double­
peaked structure due to strong adatom-substrate coupl1ng. 
These bonding and antibond1ng peaks are broadened and 
shifted inwards. We should like to note a very small value 
of the densi~ty of states between two peaks for the monolayer 
coverage, as well as, the double-peaked structure ot each ot 
the main high- and low-energy lying peaks. Even these 
details of the density o~ states are in agreement with the 
calculations of Ret./3/. Fig. (4b) shows the adatom density 
of states for the same parameters as in Fig. (4a) 
the direct interaction between adatoms included. 

but with 

One can 
observ.e, in compar1son with Fig. (4a). a significant 
broadening of the main peaks. This effect is most pronounced 
for the case of monolayer coverage. Note that for a coverage 
equal to 0.5 there are rather small differences between 
curves displayed in Fig. (4a) and Fig. (4bl 
{Eo.(3'1!!Q) . For that reason, it is justified to ignore the 
direct interacti,ons for coverages smaller than approximately 
equal to 0.7, even for sufficiently large values of these 
interactions. Comparing our results, Figs. (4a,4b). with the 
results of Ref./3/-case A, one can observe only small 
differences in a shape of the adatom density of states for 
the monolayer coverage for the case of a nonvanishing direct 
interaction. These differences ot minor importance can arise 
because in our calculations we have simulated a finite life­
time for the metal electron states- see e.g. /20/. 

In conclusion, the electronic structure of the chemi­
sorbed submonolayer and the chemisorption energy calculated 
within the composite Hamiltonian method with the Bragg-
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Fig,3.-The coverage dependence of the chemisorption 

energy (in half band width units} for parameters 

corresponding to Fig. 

2.----------, 
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-1 0 

E 
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Fig.4.- The adatom density of states calculated using the 

cubium (100) surface density of states without 

• 

(left panel) and with (right panel) direct 

interactions between adatoms. The 

values are taken from Ref./3/ . 
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Williams approximation for the Ising type correlation func­
tions are in very good agreement with those obtained w1thin 
the coherent potential approxima.tion. Our method can be 
ve~y useful especially when one is trYing to include the 
electron correlation effects /15/ and seems to be 
sufficiently simple to include also spatial correlatlons 1n 
the adatom distribution on the substrate surface. 
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