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!.Introduction 

The rapid developments on _the fields of pumped dye lasers, 

1 ight pulse compression and fast detection technique have 

opened a wide field for the search for phenomena of 

nonequilibrium dynamics in solid state physics at the 

beginning of the eightees (1-3]. 

Because of their outstanding technological applicability 

semiconductors have attracted most attention [4-8], entire in 

the opposite to metals. 

In semiconductors the relaxation. time for excited 

electron-hole pairs due ~o scattering with phonons, for 

instance, has turned out on a ps-timescale [4,5). For metals 

a look at the temperature dependence of .the specific heats 

for the electrons and the lattice (see for instance [9)), 

shows clearly, that, if the electrons can be directly heated 

on a time scale shorter than the electron-phonon energy 

relaxation time, a nonequilibrium temperature difference may 

be possible. This has been the subject of first theoretical 

investigations several years ago on the basis of an electron 

gas model [10-12]. 

Though there had been intense attempts on photoemission 

studies [13,141 and pump-probe technique [15·, 16) • the 

observation of transient nonequi l i br ium processes in metals 

had been not possible in the first instance. This· has been 

caused by two main difficulties: 

(i) Since the high reflectivity of the metals very 

intense laser pulses ( I2::1GW/cm2
) are necessary to 

impart enough energy to the metal electrons. 

(ii) The relaxation processes due to the high carrier 

densities had been turned out much faster than the 

equivalent in semiconductors, so that new sources 

had to be developed' which should be allow a 

sufficient time resolution of the process. 

In 1984 a subsequent extension of photoemissipn studies into 

the femtosecond regime allowed a measurement of electron 

cooling but was restricted to high temperatures and suffered 

from space-charge effect 



In 1986 femtosecond thermomodulatlon transmissivity [18] and 

reflectivity [19) measurements provided the first opportunity 

to investigate nonequilibrium electron temperatures and their 

cooling dynamics in metals. 

In 1987 Schoenlein et.al. [20] reported about the generation 

of nonequilibrium electron temperatures in gold by using 

65-fs intense laser pulses, which cools to the lattice on a 

2-3 ps time scale. 

Because the metals exhibit small changes in optical 

properties, these investigations had only been made possible 

through the development of new high-repetition-rate 

femtosecond sources which provide high sensitivity detection 

with femtosecond time resolution [21-23]. 

Since that time the field of ultrafast electronic processes 

in metals has been moved into the field of view of both 

theoretics [24,25] and experimentalists [26-29] and it should 

be of much interest in the next time. such as for cheking 

theories of superconductivity [24.29]. 

In this work, basing on [25] a theory is developed which 

describe 

electron 

the cooling 

temperature 

process 

in a 

of a transient 

meta 1 via 

nonequilibrium 

electron-phonon 

collisions from the point of view of macroscopic quantum 

statistics by means of a modern version [44,45] of Robertsons 

time dependent projection technique [46]. 

The considerations will be restricted to noble metals, since 

its novel electron band structure allows to treat the 

electron system in a clear and simple way, as it wi 11 be 

discussed in detail in section 2. 

To suppress spatial inhomogenities and therefore heat 

diffusion effects. the theory will be restricted to layer 

material (d~100nm), too. 

The work results in the obtaining of numerical casted time 

dependent sp~ctra of the reflectivity, monitoring the 

transient cooling process and giving a direct comparision to 

recent experimental results [20]. 
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In section 3 the model Hamiltonian is presented and a 

differential equation system is derived describing the energy 

loss rates in the thermalized (hydrodynamical) stage of 

evolution. It is reformulated to a system· for the time 

evolution of the electron and the phonon temperature what is 

casted out over a coarse grained, i.e. macroscopical time 

axis. 

In section 4 a macroscopic dielectric function (MDF) adapted 

to the problem is presented describing the optical response 

of a weak probe pulse testing in time the evolution of the 

cooling process. 

In section 5 numerical calculations for the thermal induced 

transient alterations of the reflectivity, the optical 

conductivity and the loss function are carried out for gold 

with respect to the experiments [20]. A summary and an 

outlook are ~iven in section 6. 

2. Electronic Properties of the Noble Metals and 

Experimental Setup 

2.1. Band Structure of the Noble Metals 

Because of 

Ag: KLMN5s 1 , 

its novel 

Au: KLMN06s 1 ) 

electron 

the noble 

structure (Cu:KLM4s1
, 

metals have a very 

advantageous band structure for studying optical properties 

[30-32]. The Fermi energy lies distant above the flat 

d-electron bands which form in terms of its energy a 

localized area of el•ctrons,in the density of states, like it 

•is shown in fig.2.1 [33]. 

It is clearly recognizable that for d-s-interband transitions 

being investigated chiefly, the basic physics being important 

for the optical properties is acting distant above the 

intricate d-electron part of the density of states. It can be 

considered as a reservoir of electrons for optical interband 

transistions, the concrete electron structure of it but is 

out of importance. 

Therefore a Fermi shifting of the order of kT do not alter 
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fig.2.1: band structure and density of states of Cu [33] 

completely the basic physical situation, what in contrast 

would be the fact if the Fermi energy would be lying in the 

d-band area like in transition metals. Consequently, the 

noble metals enjoy much interest of experimental groups for 

the investigation of nonequilibrium electron temperatures 

[15-20,26-29]. 

2.2 Transient .Thermoreflectance Spectroscopy (TTRS) 

Modulation spectroscopy utilizes a general principle of 

experimental physics in which a small perturbation 

periodically applied to the sample leads to derivative-like 

features in its optical response·. It has been proved as a 

valuable ,,way of precisely locating critical points in the 

interband absorption of solids [34,35). In dependence on the 

type of the applied perturbation electroreflectance, 

photoreflectance, thermo- reflectance and piezomodulation 

spectroscopy are distingueshed. 

In thermomodulation measurements a small (1-l0K) temperature 

wave is applied to the sample and the resultant ac component 

in the reflectivity and/or transmission is measured. 

In equilibrium such experiments have been performed for the 

noble metals in detail by ,Scouler [36] and Rosei and Lynch 

[37]. 
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G.L.Eesley [15,16,20) has extended this method to ~the 

nonequilibrium by using high repetion rate femtosecond laser 

sources [21-23). In this so cal led TTRS-measurements, see. 

fig.2.2, a first high intensity (outputpower several hundred· 

mW) pump pulse 

s 

HEATING LASER: 

fig.2.2: optical schematic of the TTR-arrangement 

brings the electron-phonon system to the nonequilibrium by. 

exci~ing the electron system to a nonequilibrium quasi 

temperature lying above the lattice temperature (we disregard 

here the athermal stage). 

Then weak (average power <2mW) cc;,ntinous probe pulses being 

delayed in time to the pump pulse and acting perpendicular to 

the sample are proving the changes in reflectivity during the 

evolution of the· excited system toward to the equilibration 

of both temperatures. 

F6~ a comprehensive description of the experim~ntal details-I 

refer to [38]. 

Note, that the great advantag~ of the TTRS-measurements in 

.comparison to photoemission experiments [17T is, that only a 
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small effective increase of the electron temperature arises, 

what· justifies more the approximations foi:- the temperature 

dependence of the specific heat .of the metals and for the 

heat transport being necessary to perform in theoretical 

investigations (16,24,25]. 

3. Bogoljubov· s Relaxation Time Hierarchy 

Highly Excited Electron Plasma in Metals 

Application to 

An important phenomenon of nonequilibrium processes is the 

contraction of the number of observables being necessary for 

the description of the system with passing time. 

Due to Bogoljubov [39,40] a succession of 

descriptions of a system are possible if there 

contracted 

exists an 

accompanying succession of relaxation times such that after 

each time one has elapsed correlations· with lifetimes smaller 

than this time leAgl~ are dam~ed out and can be ignored, and 

increasingly simplified statistical operators can be used for 

a proper description of the system macrostate. This 

phenomenon is called relaxation time· hierarchy ar:id recently 

~as been discussed in detail by Vasconcellos et.al. [41] for 

the case of highly photoexcited plasma in semiconductors. The 

main features are in principle the same for highly excited 

metals. Therefore we want to specialize and present a 

relaxation time hierarchy for hihgly photoexc{ted electron 

plasma in metals: 

initial stage: At this point the system c~n only be described 

by the statistical operator for the whole system of electrons 

and ions p(x
1 
•••• ,xN;x~,--·,x~;t), given here in coordinate 

representation or the whole set of reduced statistical 

operators p
8

( x
1

, ••• , x-
8

; x ~, ••• , x~; t l for one, two, •... ,s-fold. 

s~N, particle complexes. All of them vary rapidly in time for 

s~2, and 

involving 

[40]. 

only the 

directly the 

first 

pair 

distribution 

interactions, 

p
1 

( x, x · , t l., not 

will '!.ary slowly 

But the initial stage cannot be completely specified and the 
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nonequilibrium processes are determined by a lot of 

quantities and there is no satisfactory treatment of the 

problem in this stage. 

Furthermore this stage cannot be observed with the time· 

resolution of the existing exciting and detection technique. 

Initial Excitation 

-o 

T ~lfs µ 

T ~10fs 
1 

INITAL STAOE 

No contract,on of description 

KINETIC STAOE 

Desacr,ption of carriers and phononsa 

by one-part,cle statistical operators; 

HYDRODYNAMIC STAOE 

Carrier and phonon qua~i-temperalur, 

quasai-chemi~al potential 

- + Evolution towards equilibrium 

first kinetic stage: We need to consider several subsystems, 

the electron ~luid and the ion-lattice. 

The dynamics of the latter can be described by the branches 

of acoustic phonons and it remain the very weak anharmonic 

[85] and the relatively weak [24] electron-phonon 

interaction. Hence. practically, from the very outset the 

phonon system can be described in terms of one-particle 

statistical operators. 

A different situation arises for. the electron fluid as - a 

result of the presence of the strong Coulomb interaction. 

this case we must look fbr the collision time T, given by 
µ 

7 .... 
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T '\. 
µ 

,,. 
0 

V 
o.v 

r
0 

••• collision length 

v ••• averaoe velo·ci ty of the oarticles av -

(3.1 l 

With the 

Thomas-Fermi 

Fermi velocity v =v =(h/m*l(3nn) 1
/

3 

F av 
screening length [42) 

and thEc> 

A =r =(cc m*v 2 /2ne2 i1/2 

TF O O F 
it follows (41]: 

T 
µ 

... 1 

w 
p 

( 3 .2·) 

where w is the well 
p 

concentration of the 

known plasma 
. * carriers, m 

frequency. Here n is the 

is the carrier effective 

mass and c is the static dielectric background constant. For 

* the noble metals c""l, m ... 1 [43) and then 

1 
T --. 

µ w 
p 

~ 1.Bx10-2 /n 1
/

2 s • (3.4) 

For d-s-band excitations above the Fermi energy the relevant 

noneauilibrium electron density is eaual to that one of the 

s-band, 

follows, 

Because 

namely for noble metals 
-17 that r '\.]•10 s. i.e. T 

µ µ 
of the energy mismatch 

28 -3 
n"-6 · 10 m 

~O.lfs. 

between the 

[44), and it 

photoinjec-ted 

carriers and the unexcited ones, a number of collisions is 

necessary to bring the electron system to local equilibrium. 

Certainly, after a lOfs time scale has elapsed, the metal 

electron system should be in local equilibrium (16). 

This explaining that inspi te of the femt.osecond time 

resolution of the laser spectroscopy devices (20~23], the 

single-particle description of the electron system in metals 

is well justified because of the high electron densities.· 

hydrodynamic stage: As discussed above, a very short time 

being necessary for the internal thermalization of the 
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electron system because of the strong Coulomb interaction and 

a further contraction in the description of the macrostate of 

the carriers subsystem should be possible. 

For the case of a homogenous metal electron plasma one may 

expect that such a description can_ be made in terms of the 

quasiequilibrium distribution functions of the carriers, i.e. 

the number occupation function f(.e,T (t),µ[T (t)],t), where 
e e e . 

& is the energy of the quasi particle state, T 
9

( t) is the 

nonequilibrium quasi-temperatur, kT (t)=~-1 (t), andµ [T (t)] 
e e • e 

is the quasi chemical potential. 

Since the carriers are fermions, we have 

-1 f(c,t) = {l+exp(~ (t)[&-µ (t)J)} 
. e e 

with~ (t) andµ (t) connected to the average density 
e e 

n(t) 

X 

= ; ·I d&·g~&) ·f(&,t) 

0 

where g(c) is the density of states function. 

(4.5) 

(4.6) 

From this point the electron-phonon interaction is the 

dominan.t process drivil'lg the excited system towards 

equilibrium. 

4. Hydrodynamic Stage in Laser Excited Noble Metals 

4.1.Theoretical Model 

to 

We use the model Hamiltonian has been proposed in [25] for a 

highly excited noble metal: 

'\" '\" + '\" -i.wt + 
9e = L. L. &(A.,v)aAvaAv + f(t) L. (,:f,A.e aA.saA.cl + h.c.) + 

A. v=a,d A. 

• }:' l g (4)a: a.+ (b+ +b ) 
µ ...a .,.,, 4S 4µ -4µ 

q,µ A. 
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=H +H +H +H 
e e-field e-L L ( 4 .1 l 

Here, &(k,v=s,d) ar-e the single-particle band energies of 

nonhybr-idized model bands (Chapter 20 in [62)), 

4>A.=(efr/mc)<A.,slfl-lA.,d> is the transfer matr-ix element, e_ is 

the vector potential and f(t) is the envelope function of the 

laser pulse, r-espectively. 

The inter-action term H is treated in the dipole and 
e-fiold 

r-otating wave appr-oximation. The electr-on-phonon coupling 

parameter gµ(4) of the Fr-6hlich7like ~lectron-phonon 

interaction term H is roughly estimated by lg (4) 12 =e1w E 
e-L µ D F, 

wher-e wD is the Debye fr-equency, EF is the Fermi ener-gy and a 

is of an order of unity [24,25). For- a direct comparison with 

experimental results it is desir-able to intr-oduce the 
intensity of the laser pulse into the interaction term 
H [46). 

e-field 
We start from the explicit expression for the laser intensity 

which is given by the time derivative of the Poynting-vector-

as 

I=~& cl'Sl 2 

2 0 (4.2) 

where 'Sis the vector of the electric field. It is expr-essed 

in terms of the vector potential by the wel 1-known Maxwel 1 

equations 

~(t) -1 . 
= -'c o t ACt) (4.3) 

The time dependence of the vector potent~al is given as 

-iwt 
A( t) = A/ t) e + h. c. ( k = 1, 2, 3) , (4.4) 

where Ak(t) is the envelooe function of the amplitude. F-or 

the absolute value of the electr-ic field vector l~I one 
obtains 

l~<t> I= ~ IACt> I + .!.. o IA<t> I C4.5l 
C C t 

in (4.2). The second term in (4.5) is neglected because of 

the slow alteration of the amplitude envelope function in 
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comparison with the fast oscillating car-rier fr-equency. For 

pulse durations of T~l00fs this is a well satisfied 
approximation. For the transfer amplitudes one obtains 

4> = A, -- ~ <A.,slfl-lA.,d> [ 21 r/ 2 

. (4.6) 
c c mw 

0 

The squar-e of the · transfer amplitude can be rewr.i t ten in 

terms of the longitudinal oscillator- strength [47,48] 

to [46): 

/.lu.d 

~ 2 

2 lfl-A.sd I 

m(c · -c,._, l 
A.s ....a 

2 he 2 I. 
14>1 = mwcc /.lu.d 

0 

(4.7) 

(4.8). 

The complex density of states [30-32), obtained in these 

papers· from first-principle band structure calculations for 

r-eal nobel metals, corresponding with the consider-ations in 

sec.2.1 is replaced by a simple so called Friedel model 

[25,49) for the density of states, as suggested in [45) and 

sketched in fig.4.~. 

For_ the broad s-band states free electr-on behaviour- and a 

spherical Fermi surface is assumed. whereas for- the d-band 

states localized behaviour is postulated. The sum over the 
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for- the density of states 



spin projection of _the electrons is included in the band 

indizes (5.1). 

4.2. Evolution Equations 

To obtain evolution equations for a macroscopic description 

the fol lowing observation level is picked up by a set of 

devices for macroscopic measurements [50]: 

0 = { 1,H ,H ,N } 
& L. e 

{D} 

' 
(4.9) 

It corresponds to a set of macroscopic Lagrange multipliers 

A= {A
0

,~ ... ~L.-µ~ .. } = {Ai.} , 

-1 
where ~ =(kT ) .. .. and 

-1 
~ =(kT ) • 

L L 
The 

(4.10) 

corresponding reduced 

statistical operator a
0 

which allows to calculate the 

expectation values of the relevant observables correctly, has 

the analytic form 
A 

ao = exp { Aol-~ .. <H.,-µN.,>-~LHL} (4.11) 

It is a solution of 

equation 

the operator 

( i.«3 -IP ( t l 0... ( t ) ) a C t l = 
l O 

integro-differential 

= -i.lP(t)D...(t) Jds T exp{-i.Jdt'ct'l(s' )O...(s' )©(s' )} ©(s)D...(s)a
0

(s) 

where, in 

Liouvillean 

projector. 

-oo 

superoperator 

to H and 

"\.O 

s 

formalism, 

IP ( ©=1-IP) 

IP = E 
i. . j 

ID. 0 >K .. CD.I 
' 'l J 

with the Kubo transform [51) 

"\.O 

0 0 = 
i. 

1 
f dx ax□ a 1-x 

0 i. 0 
0 

12 

0... 

is 

(4.12) 

is the corresponding 

the time dependent 

(4.13) 

(4.14) 

\ 

f 

and the matrix 

-1 

(K \.m 
"\.O 

Tr O 
0□ 

l m 
(4.15) 

As already discussed in sei.2 we wan~ to describe the 

evolution in the hydrodynamic regime. Therefore we substitute 

the microscopic time axis _by a macroscopic one, delayed in 

time intervals of ll.t~l0fs what is the estimated time being 

the necessary time for establishing the local equilibrium of 

the electron system. 

Now we can perform the short memory approximation (SMA) [25] 

(s' ➔ t,©D...©=D...0+©0... 1 ©::::11...0 ) and (5.12) reduces to a much simpler 

form: 

(i.c:\-IP(t)D...(t) )a
0

(t)= 

0 

Jds 

. i.s(D... ( t)+D... (.t)) · 
-i.lP(t)D...(tl e " L ©(t)O...(s+t)a Ct) ( 4. ll:>l 

-oo 

0... ,0... are the Liovillians 
e L 

respectively. After multiplying 

0 

corresponding to H.,,HL· 

(4.16) with the elements of 

the observation level O (4.9) from the left and trace 

. operation, one obtains after some analytical reformulation 

the equations [25) 

at<H.,la
0

> 

A 

«\<1 la
0
> = O 

,.. 
iJ <N -la > = 0 

l e O 

4n/(t)w(n .. nd) }:I ¢
4 

I 2 6( &( 4, sa)-&( 4, d)-w) * 
4 

*C<nAdla
0

>-<n4ala
0

>) 

13 
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-2n '\' w lg (q,) 12 ns '6(e(.A,+q,,s)-c(A,,s)-w )* L w µ L q,µ 
q,µ .A, 

*«n .. lo><n"-lo><N lo>-<n.._to><n,. to><N to>) ...,+q,,s o ...,,. o q,µ o ..,._ o ...,+q,,s o q,µ o 

i\<HLlo
0

> 

(4.19) 

2n '\" w lg (q,) 1
2ns '\" 6(c(.A,+q,,s)-c(-A.,s)-w )* L q,µ µ L q,µ 

q,µ .A, 

*(<n. to ><n._ lo ><N lo> - <n.__lo ><n. lo ><N lo>) , ..,,+q,,s O ...,., O q,µ O ,a, O ...,+q,,s O q,µ 0 

with <n.A,
9

lo
0

>=1-<nk.lo
0

> and <N lo >=l+<N lo> q,µ 0 , q,µ 0 

As discussed in sec.3, the 

expressed as Fermi and Bose 

hydrodynamic regime. Using 

mean square functions 

distribution functions 

<nk.loo> 
-1 

{l+exp(~ (t)[c-µ (t)J)} .. " 

1 

2 
= - (1-tanh{~ (t)[c-µ (t)]}) 

e e 

1 

(4.20) 

can 

in 

be 

the 

(4.21) 

<N la> q,µ 0 

-1 
= {1-exp(~L(t)[w

0
])} (coth{~ (t)[w(q,)J}-1) 

2 L 

(4.22) 

we get a coupled nonlinear integro-differential equation 

system which decribes the time evolution of the T and the T 
e L 

temperatures (8 denote the Debye-temperature) [25]: 

al 
t t 

3n2 

4 

1 

e:sr a 

2 
w 

D 

E 
F 

[:] T:r:r Fi[ T: T;) 
14 

(4.23) 

. ; 

,;) 
,' 

,, 

) 
1. 

' .I 

1 
8(x+l) 

Jdx(x+l) [cth 4TL -
-1 

8(x+l)] [ 
cth--- ln • 

4T .. 
1-th(0(x+l)/4T,.>] 

l+th( 0( x+l) /4T ) .. 
F = 

1 

1 
8(x+l) 

Jdx(x+1)
4

[cth
2 

4 TL - 1] 
-1 

1 

oT 
t .. 

12 

lln r-
l+w]z·n n 

f<t><lw-.- ~j -

. µ Te 

1 

3 [6:sr 
22(2n) 3 ba•or-i [~f J ( T: 

(4.24) 

:T:] 
(4.25) 

1 1 

, Bx ] 2 
j = fdx (1 + 2(El+w) 

-1 

[ th [ El+w:;:Bu, ] _ th[ El:;:Bv2]] 

J 

1 
0(x+l) 

Jdx ( x+l) [cth ,TL 
-1 

0(x+l)] [ 
cth,---- ln • 

4T .. 
1-th(0(x+l)/4T .. ] 

l+th(0(x+l)/4T .. 

(4.26) 

(4.27) 

Note that the chemical potentialµ in (4.21) depends on the .. 
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electr-on temper-atur-e, it can be obtained fr-om the par-ticle 

number- conser-vation 

"s[ :,rl::[ :·)}d[ 1 T., cosh[(µ-El+8/2)/2T.,]] 

-+-ln-----------

2 B cosh[(µ-El-8/2)/2T.,] 

=n + 
s nd 

(4.28) 

5. Macr-oscopic Dielectr-ic Function (MDF) for- Highly Excited 

Systems 

5.1. Ar-guments for- a Descr-iption in Linear- Response 

The optical r-esponse in the TTRS-measur-ements ( see sec·. 2) 

cr-eated by the second weak intensity pr-obe pulse testing I, 

delayed in time the tr-ansient nonequi 1 ibr-ium stage in the 

e lectr-on-phonon system gener-ated by the high intensity pump 

pulse. 

Cer-tainly, if the pr-obe pulse does not ess.entially distur-b 

the stage of nonequilibr-ium evolution. the pr-oblem can be 

consider-ed in a linear- r-esponse theor-y. But, usually linear-

r-esponse theor-ies [52] does wor-k in the vicinity of 

equilibr-ium. However- in our- pr-oblem there are two well 

seper-ated time scales [53]: 

( i) 

(ii) 

Following 

the inver-se laser- fr-equency of the pr-obe pulse 
-1 -1,s 

(w ~10 s} (fast time scale} 

the r-elaxation time T due to electr-on-electr-on 
C 

collisions (T ~10-14s [16]} (smooth time scale} 
C 

[53) we consider the problem -in·· .:the· fast 

oscillation frame which oscillates with the laser frequency 

w. 

Clearly speaken, the slowly varying transient nonequilibrium 

stage in the electron-phonon system of the noble metal is 

moving in the fast oscillating frame of the probe puls 

inverse frequency inside of which the electron-phonon system 

16 
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can be assumed to be in local equilibr-ium and the optical 

r-esponse can be evaluated by means of common Gr-eens function 

technique in linear- r-esponse. 

For- a mor-e sophisticated and detailed discussion of the 

pr-oblem of linear- r-esponse theor-y far- fr-om equilibr-ium we 

r-efer- to [53). 

5.2. Density-Density-Gr-eens Function in RPA 

Star-ting fr-om the four-ier--tr-ansfor-med Maxwel 1 equations and 

after- using the well known Kubo-for-m,ula for- the linear­

r-esponse of an external per-tur-bed system [52,54), for the 

longitudinal reciproc dielectric t-nsor- ar-ises: 

1 
= 

&( q,, w) 

1 + 
e 

41?& 'Yq,2 
0 

~ i4/I, • 12<( + C •p .)) + L.. l<Avo-(e (A.+q,,v o-> cAvo- A.+q,v·o-'- -q, w 

A.O' 
vv· (5.1) 

Her-e local field cor-rections have been neglected because of 

the lar-ge wave length of the acting light (X~OOnm) in 

compar-ision to the·small lattice constant (a~nm). 

The evaluation _of the Fourier transformed density-density­

Greens functi·on in ( 5 .1) is carried out by its fourier 

transformed equation of motion 

+ + 
W ( (Ca. •. C ._. • ; p > >· + = 

.....,q_ ._q,v O' -q, w 

= ([c~O'CA.+q,v'o-'p-q,]) + 
+ <<[c., .. c.,_ . ,seJ ;p >> + 
.....,q ffhq,1> O' - -q, w 

(5 .2) 

with 
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i. 

' + + SJe = L.. c lwc /woe lwo 2 
' + + L.. ~(q.l clwoc-k'v'o' cA,'+q;v·o· c.4-q.vo 

lwo M' q.co· 
1,)1,) 

( 5.3) 

After a RPA procedure and some algebra 

for the longitudinal MDF arises the 

Ehr'enreich-Cohen formula [47] which is closely connected to 

the well known Lindhard formula [55], but here the carrier 

density is developed into Bloch functions [56] instead of 

plane waves. 

2e 2 

c(q.,wl = 1 -
2 2 I

< ,q,,i. <nlw> - <n 
lwle l-k+q;v'>l2 -k+q.v·> 

+ . 
4rrc0 o/q. lwv' w -(& A,+q.v. -c k.v l 

(5.4) 

Here the expectation values of the particle numbers are 

evaluated by the ti(l1e dependent relevant statistical operator 

o
0
(t), the Ehrenreich-Cohen formula all'ows us to calculate 

the time evolution of the MDF over the macroscopic time axis 

t, as pointed out in sec.3, [60] 

c(q,,w,o
0

[T
0
(t)]) .... s(q.,w,t) (5.5) 

5.3. Optical MDF 

5.3.1. Boundary Transition q.-+0 

For the purpose being pursued here to describe macroscopic 

optical properties of the probe-puls ,light such as 

reflectivity, loss function and optical conductivity, an 

optical limit of the MDF is sufficient. Therefore we consider 

the limit q.-+0 

c(w) 1 i m C ( q,, W) , ( 5.8) 
q.-+0 

what is not an easy task due to the singularity 1/q.2 • But 

utilizing a usuful operator relation it follows 
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'I.' 
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' \ 
l 

1 . 
- 2 I < 1w I e ,4.11., I A,+ q;v. > I 2 ~ 
q. 

n 

1 

n 
2 q. 

h 1-A,vv· 

2m(clw-slw. l 

v=v 

if C 5.9) 

1,);,!1,)" 

where I- .. ~. is the so called longitudinal oscillator strenoth 
ff,L,'1,) -

projected on the unit vector n
4 

[47,48). 

n 
q. 

1-kvv· 

" 12 
2 In q.fl-lwv · 

m(&lw-&lw.) 
C 5.10) 

Now the transition 4 ..... 0 can be performed and the MDF is 

seperated into real and imaginary part. 

Note, that the band structure of the noble_ metal with (5.9) 

is explicitely involved in the theory. 

However, detailed investigations of Uspenski et.al. [57] and 

Fritzsche [58] show the high expense being necessary to 

calculate the optical form factors. Following Liang and Beal 

[ 59] we ci_rcumvent this cumbersome business by setting the 

oscillator strength constant zero, being a good approximat1on 

for calculating optic.al properties of metals •. 

5.3.2. Intraband-Part · 

From (5.8) follows 

ci.ntra( q., w) 
2e 2 

4rrc o/ 
0 

2 
1w 

<n .. > - <n.. > 
+<,S .,.,_+q.s 

+ (5.11) 
w -Cc -c l k+q.s ks 

After seperating into real,and imaginary part it follows 
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&intra( w) = 1 - [ :· r 
with the plasma frequency in form 

w 
p . [::J 

where n is the electron density in the frees-band. e . 

5.3.3. Interband-Part 

( 5.12) 

(5.13) 

Seperating the inter band part into its 

part and underlying the simplified model 

real and imaginary 

for the density of 

states, (fig.4.1) and after some lengthy analytical 

reformulations,which are performed in 

following integral expressions result [60]: 

Re 
inter 

& <W>: 

1 
- 2 (2m)2·(;] 

& 
0 

(X) 1 

n n 
s d 

( 2Tl) 3 /./u;;.d * 

Appendix A, the 

* p I dy I dx [ G<x,y,+oo) + G(x,y,-oo)] . 

1 

G ( x , y , :!:w) = [Y :!:w] 
2 

0 -1 

th[ ( !x+E1-µ) / 2T ]-th[ ( y ±w-µ) /2T ] 
2 e e 

[y-(!x+E1)J[y-(!x+E1)±w] 
2 2 
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(5.15) 

(5.16) 

:{ 

' l 

·i 
' 

\ 

I 
inter 

m& <W> (;f [.:r n n 
s d 

& w 
0 

f.lu.d * 

1 

* J dx 
[ F(x,+w) + F(x,~w) ] 

-1 

1 

(5.17) 

F(x,:!:w)= -x+E1:!:w th[(-x+E1-µ:!:w)/2T ]-th[(-x+E1-µ)/2T] [ B ]2 { B. B } 
2 2 e. 2...,.... e 

(5;18) 

A short analysis shows, that the Kramers-Kronig relations are 

fulfil led. 

5.3.4. Reflectivity, Loss Furiction aMd Optical Conductivity 

We follow the well known Fresnel formula for the reflectivity 

where 

with 

R(w,t) = 
[1-n(w,t)] 2 + x 2 (w,t) 

[l+n(w,t)] 2 + x 2 (w,t) 

/ &(w,t)
0 

n(w,t) + ix(~,t) 

&(w,t) = &intra + &inter 

The optical conductivity is defined as 

(.o) 

a(w,t) = 
4n 

& ( w, t). 
2 

(5.19) 

(5.20) 

( 5.21) 

(5.22) 

Because the intraband imaginary part of the MDF can be 

dropped (see 5.3.2.), the optical conductivity is very 
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sensitive for excitations near the threshold frequency for 

interband transitions (see sec.2). 

The light field of the laser pulse acting in the layer with 

the metal electrons lose energy due to inelastic scattering. 

The loss probability for this process is proportional to the 

negative imaginary part of the reciprocal MOF (61] and the 

loss function l(w,t) reads 

l ( w, t) 
-1 

[ - Im c ( w, t) ] = 

& 
2 

& 2 + 
1 

2 

& 
2 

6. Numerical Calculations and Discussion -~-

(5.23) 
2 

Passing over to a concrete example the expression for s(w,t) 

obtained in sec. 5 is applied to gold. The parameter set is 

chosen·· from several references (9,31,32,44,45] and is 

gathered in table 1. 

The integrals are cast by a Gaussian procedure for each 

electron temperature which is calculated for a special time t 

by solving the coupled system of differential equations for 

T and T over the macroscopic 
L 

time axis. At the same time 
Q 

the reflectivity, the loss function and the optical 

conductivity are computed. 

In all the investigations the dimensionless oscillator 

strength (5.10) is set equal zero because of detailed 

considerations of Fritzsche [58] have shown that there is a 

good agreement between calculations of the optical properties 

of metals with such an approximation and experiment. For each 

case we have assumed a Gaussian profile of the laser pulse 

with transfer amplitudes ~A in form (4.8). The results can be 

summarized as follows: 
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Table 1: Parameter set for gold, silver and copper 

n: number of s electrons per 
s 

lattice site 

nd: number of d electrons per 

lattice site 

0 

E : 
F 

E : 
1 

8 : 

a 

s 

b 

n 

T 

Oebye temperature (K) [9] 

Fermi energy with respect 

to the bottom of the 

s-band (eV} 

center of the d-band (eV} 

width of the d-band (eV) 

lattice constant (nm) [62] 

averaged sound velocity 

(nm/ps) [63] 

number of phonon branches 

density of conduction 

electrons (10
28

m-3 )[84] 

Gaussian pulse width 

( 10-14s) 

wP: pump frequency (eV) 

I laser intensity (GW/cm-2
) 

TA:.initial-temperature (K) 

Au 

1 

10 

164 

10.18[45] 

5.18[45] 

5.28[45] 

0.4069 

23 

5 

3 

5.9 

6.5 

2.0 

60 

293 

Ag 

1 

10 

225 

7.49(32] 

1.81[32] 

3.40[32] 

0.4079 

5 

3 

. 5.8 

6.5 

3.8 

5 

293 

Cu 

1 

10 

343 

9.44[31] 

5.57(31] 

3.44[31] 

0.3597 

5 

3 

8.4 

6.5 

2.0 

5 

293 



1.To prove the possibility of utilization of the derived 

model the real and imaginary parts of the MDF were calculated 

at T=0.lK and· compared with experimental results from [684] 

which is plotted in fig.6.1. 

I : .. ~ ....... 
·. 

z ... · .... · 
~- 0 ... . . ... 

············ -1 .·•·· 

-4 Ct 

-G 
I I I : I £1 I ' 0 1 z J 4 5 G 

flw r.v) 

fig.6.1: The MDF c(O,w)=[c-i(O,w)J-i for gold at T=0.lK 
' 00 

calculated,······· experimental 

Fig.6.1 shows that the basic features of the MDF are 

described by our model. We note that the model is n6t able to 

describe &
2
(w,t) for energies lower than the threshold energy 

between d- ands-band. 

2. The time evolution of the interband part of the MDF 

for gold after a l00fs pump pulse is casted out. The curves 

in fig. 6. 2 show the alterations of the functions caused by 

the development of the electron temperature from t=0 to that 

time-point where the function reaches its maximum. After this 

point the change relaxes in relation with the cooling o.f the 

hot electrons by the phonons. 

_In the presented region of frequencies near the Fermi energy 

the imaginary 

frequencies. It 

part 

is 

shows a perceived 

an expression, of the 
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shift 

Fermi 

to lower 

smearing 

I 

resulting in a decrease of 

interband transitions. the real 

changes in the presented region. 

the minimum frequency for 

part function does not show 

1 w 

-i 
~as 

0 
ZJO lJZ 234 

1,w(eV) 

fig.6.2: The evolution of the interband part of the MDF. 

(1) t=-200fs, T=50K; (2) t=-40fs, 103K; 

(3) t=BOfs, 270K. 

w =2.5eV, T=l0Ofs, T =50K (the maximum of 
pump A 

the pulse is taken at t=0) 

3. To have a direct compa-ris.on wit:h the experiments in 

[20] the time evolution of changes in reflectivity for gold 

is calculated for two probe p.ulse frequencies represented in 

figs.6.3a and 6.3b. 

The curves show the observed feature of rapid transient 

increase of ref lecti·vi ty for·."-ti:m.e ·del•ay.s.-of· less thal'l lps. 

The relaxation times of about 3 to 4ps are well reproduced. 

The difference with experiments [20] in fig.6.3b is caused by 

the fact, that at w=2.59eV a maximum of the function 

.oR(w)/R(w) has been observed whereas the calculated functioA 

has minima at both points. This references to the problem for 
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reproducing the function AR ( w) /R ( w) with a high degree of 

exactness. 

I 10 

~ 
~as 

o.z 

0 

... .•· ... 
··· ..... . 

1 

figs.6.3a, 6.3b: 

The evolution of 

a) w =2.59eV 
probe 

. . . .. 

2 

·· .. 
·• .. ·•. ··. .. 

3 

a 

.. .. 

I, 0 

. . .. 
...... . 

1 

·•. 
···• ... •, 

•, ... 

Z 3 
t (ps) 

b 

I, 

the transient reflectivity changes. 

and· bl 2.69eV. w =2.OeV, -r=65fs, 
pump 

TA=300K. calculated,······· experimental 

The peak change in reflectivity of the represented curves is 

AR/R::::10-•t'\. This is much lower -than AR/R::::10- 2 in the reported 

exp·eriments'• (20) because in our model with the assumed 

parameter set the effective increase of · the electron 

temperature is very small. The reasons are the low pump 

frequency in t~e course of a high initial temperature and the 

unknown oscillator stre~gth which is set equal to zero in the 

model. At lower initial temperatures of about T::::50K the 

calculated changes of reflectivity are AR/R::::10- 2
• 

4. The alteration of the reflectivity near the Fermi 

level is presented for gold in fig.6.4. The time evolution is 

shown step by step to such a point on the time scale, where 

[AR(w)/R(w)](t) has its maximum. The breakdown of the sign of 

AR/R is obtained at w=2.44eV which is much larger than the 
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fig.6.4: 

Time evolution of AR(w)/R(w) for gold in the vicinity of the 

transition threshold energy. (l)t=-40,(2J0,(3)80fi 

calculated,······· experimental. (t=0 is the time 

when the Gaussian pulse shape has its maximum) 
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fig.6.5: Time evolution of the electron occupation near 

the Fermi level 
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transition threshold of w=2.38eV. This is simple to 

understand. If the electron temperature increases due to the 

pump pulse, the Fermi level smearing takes place in our 

theory. 

However the chemical potential in the model µ[T (t)J is 
e 

shifted to lower energies if T increases in 3D-systems. 
e 

This results in an enhanced decrease of occupied states below 

and even above the Fermi level. This effect has its minimum 

little below the transition threshold energy and leads to a 

negative increase of the reflectivity changes in this 

frequency region as plotted in fig.6.5. 

For higher frequencies the increase of the occupation results 

in a· positive increase of the change of reflectivity. As is 

seen in the measured curve of Schoenlein et al. [20) the same 

features are observed in experiments. Therefore, we can 

conclude that the most important parameter of the theory is 

the transition threshold in connection with the temperature 

dependerit chemical potential µ(T) and the use of the simple 
e 

Friedel model is justified. 

However the positive part of [t.R(w)/R(w)](t) from experiments 

[20) is larger than in our calculation and its maximum lies 

at a higher frequency. This is caused by the fact that the 

temperatures have been enriched in the calculations are lower 

than in experiments, what gives rise to a smaller shift of 

the chemical potential resulting in a smaller region of 

effective incr-ease of the occupation. In the same way the 

magnitude of t.R/R is influenced by this temper-atur-e 

discrepancy what is or-iginated in the ignor-ance of the exa·ct 

oscillator- str-ength as already mentioned. 

Note that the f~nctions in fig.6.4 r-elax on a time scale of 3 

to 4ps. This agrees with the behavior- of the plots in 

figs. 6.3a and 6.3b. 

5. Fig.6.6 shows the time evolution of the functions 

li.o(w)/o(w) and li.l(w)/l(w) in the vicinity of the threshold 

fr-equency for- inter-band tr-ansitions w. for gold, have been 
' calculated in connection with fig.6.4, [66). 
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fig.6.6: Time evolution of. the li.o(w)/o(w) and li.l(w)/l(w) for 

gold 

As cah be seen, the pictures show an incr-ease of the opti~al 

conductivity and the loss function below and above of the 

thr-eshold frequency for inter-band transitions w. with its 
' 

maximum at wi. A change of the signum in Ao and li.l is found 
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at a frequency w±>wi. This is simple to understand with the 

temperature dependent Fermi level shifting and Fermi smearing 

whose lead to an effective decrease of occupied states for 

w<w+ and an increase for w+>w. (see also fig.6.4.). - - ~ 
The positive peaks of Aolo and Al/1 are small because of the 

small effective· increase of occupied states as has been 

discussed in connection with fig.6.5. 

Simply spoken, the optical conductivity has to increase in a 

frequency region where free electron states exist because 

energy quants hw can absorped and optical currents are able 

to flow. This again leads to an increase of the energy loss 

of the incident light which is in our case the 

probe-pulse-ligh_t. For the frequency region where no free 

electron states exist, an analogous consideration explain the 

decrease of Aolo and Al/1 as it is shown in fig.6.5. The 

features are consistent with the calculations of t.R/R in , 
figs.6.3a and 6.3b. 

6.The func~ions [t.R(w)/R(w)](t) have been calculated for 

silver and copper, too. 

For silver (fig.6.7) the breakdown of the polarity is placed 

at w=4.09eV, the minima of the reflectivity alteration at 

w=3.98eV which corresponds to the transiti_on threshold energy 

for silver. The reason is the same as for gold and has been 

discussed already above. The alterations of the reflectivity 

relax in the same way as for gold in figs.7.3a and 7.3b, but 

on a time scale of about 2ps which is lower than for gold. 

The reason is the enhanced absolute value of the 

electron-phonon coupling parameter lg (q) 12
• µ 

It should be mentioned that recently a modified pump-probe-

technique has been used to study the ultrafast relaxation of 

electrons probed by _surface plasmons in silver· films [28]. 

The curves of t.R/R have been observed show the same features 

like these are discussed here. 

For copper (fig.6.8) the breakdown of the polarity is placed 

at w=2.26eV and the minima of the reflectivity changes is 

found at w=2.15eV. 

30 

¥ 
,qg 

I 
2 

C) 

~ 
I\{ 

-2 

<l 
~ -/,, 

~ 
-6 

-8 

-/0 

..1!1.3 .3,.9.9 ,{,;05 ,<,./,' 

F,tp{eJ/J 
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fig.6.8: Time evolution of AR(w)/R(w) for copper 

The significant positive value of [ AR ( w) /R ( w)] ( t) at 

frequencies higher than the transition threshold energy is 
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well recognizable. 

The alterations of the reflectivity are shown iri fig.6.9 for 

three selected frequencies near the transition threshold. 

The relaxation time for copper is' T:::::lps. It is the shortest 

of the considered set of noble metals due to the largest 

electron-phonon coupling parameter. 

~ 
~ 
q 

~ 
~ 

Cu 

2 

, 
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-2 

(J c:?5 tCJ 

t(ps) 

fig.6.9: Breakdown of the sign of f.R/R for copper 

1. Conclusions 

Summarizing, the evolution of laser excited ultrafast 

transient optical properties in the hydrodynamic stage of 

thermalized nonequilibrium in noble metal layers can be 

described with the presented model Hamiltonian, as simple 

Friedel model for the density of states and a special form of 
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the macroscopic dielectric function. 

The expe'rimental data of the relaxation time for the 

alteration of the reflectivity function are wel 1 reproduced 

by the numerical calculations. 

The smearing of particle occupancy near the Fermi level and· 

the shift of the Fermi level in dependence on the electr:-on 

temperature lead to a significant ferquency for a polarity 

reversal of the thermal induced alterations of the 

reflectivity f.R/R. It is the most important parameter for 

comparisions with experiment and it is well reproduced from 

the theory presented. 

A problem remains wit~ the correct reproduction of the 

magnitude of the reflection alterations which are in the 

calculations importantly smaller than in the experiments. The· 

explicit introduction· of the laser intensity in the 

light-matter coupling term allows to gain better results and 

to reduce the p~oblem in the first instance to the oscillator 

strength has been set equal one in all calculaltions in 

agreement 

[57-59]. 

with detailed ·band structure investigations 

However it should be of interest to know the exact value of 

the oscillator strength. With respect to the simplified 

Friedel model for the density of states a !!,_-vector in the 

middle oi the f'-X axis should be taken. But, even with this 

specification the numerical expense for performing would be 

very large. 

Another reason for the too small reflectivity alteration in 

the theory surely lays in the discard of the quasi 

two-dimei:1sio~.e1l e_l1=:·ctrc;,n gas sJructure which is feeled by the 

laser pul'ses.· Because·· of -.the high- -absorption of the metal 

(~Onm penetration depth) the effective electron density and 

therefore the (surface) plasma frequency are lower than the 

bulk ones. Surely a consideration of surface plasmon 

~xcitations should allow to obtain much more better results 

[65]. 

The evaluation of the time evolution of the optical 
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conductivity and the loss function being consistent with the 

reflectivity are a resonable completition of the model. There 

are no experimental curves of these calculated quantities. 

However this could be carried out for 6a/a by using the well 

adapted differential reflectivity measurement techniques of 

Beaglehole et.al. [86] in connection with time resolved 

pump-probe experiments like (15,20] and for 61/1 by using the 

time resoved absorption spectroscopy or the electron energy 

loss spectroscopy (EELS) (67]. 

A exact treatment of the electron-phonon coupling matrix 

elements have been not necessary for the purpuse p~rsued 

here, should al low a checking of the experimental obtained 

superconductivity constants X [29] . by fitting the 

the experimental curves. From that the T -temperatures 
, C 

of 

noble metals can be calculated from optical data. 

Appendix A - Derivation of the integral forms of the real and 

the imaginary part of the MDF 

After seperation of the interband part of c(w) into the real 

and the imaginary part follows 

inter , 
C CW> = L 

I,, 

<n A.a >-<n A.,? 

cA.
9
-cM { P [ =<s~-s,.1 

1 

w-C c A...-c A.d) 
] -

- in [ 6<=«._-s.,.,) 6(-«._-s.,.,,] } ·(All 

From this point real and imaginary part are seperately 

considered. 

a) imaginary part 

After transforming the one-particle energies by means of the 

6-function follows 
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00 00 

lmc(w)= Jdw,Jdw2 f 6(w.1-cA-s)6(w
2
-cM) 

<n ,,,_,.>-<n M> 

* 
c,,,_,,, -cM 

·-oo -oo 

* [ 
6( w-cw -w >) - 6( w+cw -w i)] 

1 2 1 2 
(A2) 

Since the' d-band states have a small dispersion· in the 

A-space we can destore the · so cal led "nesting" of the 

6-functions by assuming the d electrons as A-independent .. 

Then we can tr,insform the k.-sum into an integration about· the 

den~ity bf states. 

l 6(w
1
-cA.a)6(w

2
-cM) ~ 

A, 

-1 
'\' 6(w -cll_)6(w -c ) 

N L. 1 .,... 2 d 
A, 

= Np(w
1 

)p(w
2

) 

(A3) 

Following the simple Friedel-model of the density of states, 

present:e·d in sec.4.1, we get 

p( w2) = {: 
if Ei-B/2 ~ W ~ Ei+B/2 

2 

otherwise 
h=_! 

B 
(A4) 

El is the middle, 8 is the w{dth _and his the height of the 

d-band. The density of states of the iree assumed s electrons 

after introduction of spherical coordinates results in 

3 

p(w )= ~ 4n (2m)2 
1 

N 2(2n)
3 

h
3 

-r:: 
1 

0(w )0(1.ez-w) 
1 1 

(A5) 

After setting (A3-5) into (A2) and integration about all 

e-function~. transforming to a dimensionless integration 

intervall and transformation of the Fermi function into 

tanh-form. the formula (5.15,5.16) known from sec.5.3.3 

result. 

b) real part· 
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Using the assumption in (A3) we get 

Rec( eu)= 

m ci:> 

J deu Nn p( eu ) J deu ndp( eu l 
1 s 1 2 2 

-m 

* [ p 

- m 

1 

(eu+ceu -eu >) 
1 2 

+ 

<nceu >>-<n<eu >> 
1 2 

* 
Cu - Cu 

1 2 

p ( eu+ < eu 

1 

-eu > ) ] 
1 2 

(A6) 

After a transformation of the variables eu+eu -+Y in the first . . i 

part of ( A6) and eu-eut -+Y in the second part we do the same 

steps like in a) and get the formula (5.17,5.18) known from 

sec.5.3.3. 
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BeHwy Y., XaHHE!p 3. 
06 onTw-1ecK1t1X CBOHCTeax ynbTpafiblCTpblX nepexoAOB 
B 6naropOAHblX MeTannax, B036y>t<AeHHblX na3epOM .. 

. . 

E17-91-136 

. B cny<iae, ecm-1 aneKTPOHbt B MeTanne MoryT 6bITb He~ocpeACTBeHHri pa3ci­
rpeTbl 38 npoMe>KyTOK epeMeHlil MeHbWIIIH, 'leM epeMA 3Heprern'leCKOH aneK­
TPOH·QlOHOHHOH' penaKcau111111, TO B03MO>KHO 06pa3oeaH111e cocTOAHIIIA c Hepae~ 
HOBeCHOH TeMnepaTypoH •. OCHOBblBaACb Ha ClilCTeMe AlilcpcpepeHu111anbHblX 

· ypaeHeHIIIH, on111cbIea10i.ueH ason10u11110 :rneKTp0HH0H III cpoHOHHOH TE!Mnepary-
. pbl B cnoAx 6naropoAHbix MeTannoe; eo36y>t<AeHHblX na:iepHb1M111 111Mnynb· 

C8Mlil (r ,,,100 QlMC), a T8K>Ke Ha Teop111111 n111HeHHOro OTKnHKa AnA ClilCTeM, 
H8XOAALUIIIXCA B COCTOAHIIIAX, AaneKo _OT paeHoBeCIIIA, npoeeAeHa oueHKa 38B111· 
CALUeH OT epeMeH111 MaKpocKon1114ecKoH A111anei<rp111<1ecKOH cpyHKUlillil (MA<!>) • 
Pe3ynbT8Tbl MOAenbHblX paC'leTOB HenocpeACTBeHHO lil3MepAeMOH OTpa>Ka- . 

. TE!JlbHO~ cnoco6HOCTIII cpaBHIIIB8IO~CA . C HOBblM epeMeHHblM pa3peweHlileM . 
3KCnep111MeHTOB • 

. Pa6oTa BblnOnHeHa B na6opaTopi1111 T;opern'leCKOH Qllil3111Klil Ov1Av1 • 
. Coo6UletfHe 06-be,D.HHeHHoro HHCTHTyTa 11,D.el)HbIX HCCJie,D.OBaHHH. ny6Ha _ 1991 

Wenschuh U.; Heiner E. 
On the Theory of Ultrafast Transient Optical Properties 
of Laser Excited Noble Metals. 

El 7-91-136 

lf'the electr~ns in a metal can be directly heated on a time scale sho_rter 
than the electron-phonon. energy relax_ation time, a nonequilibriurri temperature 
may be possible. Basing on a differential equation system describing the evolu­
tion of electron and phonon temperatu~e in short puJs ( ". "'100 fs) laser excited 
noble metal layers a~d a linear response theory for systems far from equilibrium 
a time dependent macroscopic dielectric function (MDF) is evaluated. The re-

'. suits of model calculations for the direct mea~urable reflectivity are compared 
with· new time resolved exp.eriments. 

. . 
. The investigation has been performed at the Laboratory of Theoretical 

: _Physics, JIN R. 

Co~munication of the Joint Institute for Nuclear Research. Dubna 1991 


