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1 Introduction 

The polaron problem describing an interaction between the electron and the phonon 
field is valuable as a nontrivial model in quantum field theory, and therefore, it has 
been studied by many investigators [1-14]. Among the methods applied to the subject 
there is Feynman's path integral approach [l] based on a certain choice of a trial action 
in the polaron partition function. In the strong coupling regime, a variational method 
[2] applied to this problem gives an upper bound of the polaron self-energy. But a 
variational approach does not allow one to know how close is the obtained estimation 
to the true energy and does not give a recipe how to calculate the next contributions. 
The second order corrections to Feynman's variational estimation of the polaron self
energy has been calculated in [3] and the obtained result was not close enough to the 
exact\solution found numerically [4,5]. 

In this paper, we present an improved estimation for the optical polaron ground 
state energy at large coupling constant a , using the general method of representation 
of functional integrals in the strong coupling regime [6]. It is shown that the leading 
term reproduces Feynman's variational solution. We introduce a diagrammatic repre
sentation to calculate the next corrections to the leading term of polaron self-energy. 
This way,we have obtained explicitly corrections due to strong connected graphs. We 
have also found the next contribution to energy from some more complicated graphs 
to be a relatively small. Our estimation of polaron ground state energy in the strong 
coupling limit is in good agreement with the frequently quoted exact solution [4,5]. 

2 Ground State Energy of the Polaron 

The ground state energy E(a) of the Frolich polarons is defined by the expression 

E(a) = - lim -(3
1 

lnZp(a), 
/J-+oo 

(2.1) 

J { 
1 JP •2 a fi exp{-js - tj}} 

Zp(a) = N0 Sr exp - 2 dsr (s) + Js ll dtds lr(t) _ r(s)j • (2.2) 
~=~~ 0 0 

Our aim is to get the behaviour of the function E( a) for a -+ oo. We apply the 
method described in the previous paper [6] to the functional integral (2.2). The integral 



can be written in the form 

T 

ZT(o:) = N
0 
J Sr exp{-½ JJ dt ds r(t) D;;-

1
(t, s) r(s) + o: U[r]}, 

r(-T)=r(T) -T 

where 
T = f!_ 
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a2 
D;;-1(t,s) = - at28(t-s), 
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-T 
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E(o:) = - lim - lnZT(o:). 
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The Green function D
0
(t, s) satisfying the periodic boundary conditions is 

1 ts 
Do(t,s) = -21t - sl - T -T-+oo 

1 
D0 (t-s) = - 21t - s1, 

(2.3) 

(2.4) 

(2.5) 

/

+oo . 1 [ 1 l 1 (2.6) 
[)0 (k) = dx e'kx Do(x) = 2 (k + i0)2 + (k - i0)2 · 

-co 

We want to find the limit in (2.5). Therefore we shall consider that T = {3/2 is· i. 

asymptotically large. In this limit the Green functions are translationally invariant, 

1.e. 
D 0 (t,s) = D 0 (t - s), D(t,s) = D(t-s). 

The interaction function U[b] in equation (2.15) in [6] can be written 

T 

O[h] = :rs!! dtdse-11 -•I J 
2
:;k2exp{ik(b(t) - b(s)) - k

2
F(t-s)}, (2.7) 

-T 

where 
F(t - s) = D(O) - D(t-s). 

Now let us ~onsider equations (2.16) in [6). We choose b(s) = 0 as a solution of 
the first equation because this seems to be natural as it follows from the explicit form 
of the integral _(2.2). Then, we obtain 

I:;;( t - s) 
s2 (J [h] 

8;;•I:(t-s) = 8b;(t)8b1(s)Jb=O 

_8_;;_ [ti(t- s} Joo _dx_e_-l_xl - _e_-1,_-•_l _l 
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(2.8) 
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and 
00 

. 1 /
00 

_ 1 1 - cos(kt) 
E(k) = I ds e'ka. I:(s) = 3.../ii dt e . F3/2(t) . 

0 -oo 

The second constraint equation in (2.16) in [6] has the following form: 

D(k) = Do(k) - Do(k)o:E(k)D(k), 

and - 1 
D(k) = b;1 (k) + 0: E(k). 

Finally, we obtain for the function F(s) the following equation: 

1
00 

dk 1- cos(ks) 
F(s) = -:; . k2 + o: E(k)' 

0 

(2.9) 

(2.10) 

(2.11) 

where E( k) is defined in (2.9). 
The energy Eo(o:) which is defined by W0 in the representation (2.18) in the paper 

[6] becomes 

3 /
00 

) _ ] o: /
00 

dt exp(-t) 
£

0
(0:) = -

2
1r dk [ In (k2 D(k) - k2 D(k) + 1 - ./2ir 

O 

y'Flf) · (2.12) 
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The representation for the polaron functional integral looks as ( T = (3 /2 is asymp

totically large ) 
ZT(o:) = e-2TEo(a)h(o:), (2.13) 

T 

h(o:) = N J Sr exp{-½ ff dtds r(t)D-1 (t - s)r(s) + o:02(rj}, (2.14) 

r(-T)=r(T) -T 

where 

02[r] = 
T 

_1_ ff dtdse-lt-•I 1 ~e-k2F(t-•l 
'18 JJ 21r2 k2 

-T 

: eik(r(t)-r(•l - 1 + k2 [r(t) - r(s))2: . 
6 

(2.15) 

The functions D(t) and F(t) are defineJ by equations (2.7) and (2.11). It should be 
stressed that the representation (2.15) is completely equivalent to the initial represen-

tation (2.2) for asymptotically large T - oo. 
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3 The Strong Coupling Limit 

In the section, we obtain the representation for the ground state energy of an optical 
polaron at asymptotically large o:. Let us consider the functional integral (2.14). In 
formulas (2.14) and (2.15) we introduce new variables 

k=vµp, t = u - µ' 
V 

s = -, 
µ 

r(t) = ro(u) 
fo 

where µ is a parameter depending on a. Then all our formulas become 

A/2 

JA(a) = NJ bro exp{-½ ff du dv r 0 (u) : 3 n-1 ( u; v) r 0 (v) 

-A/2 

A/2 

(3.1) 

..2:.. i1/ d d exp(-lu-vl/µ) 1~ {- 2 F (~)} + lo u v 3/2 2 2 2 exp p µ v8 µ 1r P µ 
. -A/2 

: exp{ip(r0 (u) - ro(v))} - 1 + 6 [ro(u) - ro(v)]2: . p2 } 

where A= 2Tµ. Now let us consider equation (2.11) where we introduce 

00 

( u) 2/dp l-cos(pu) 
µF µ = µ -;- . µ2p2 + a E(µp) ' 

0 

00 

E(pp) = ~jdte-t F-312(t)(I - cos(ppt)). 
3v21r 

0 

(3.2) 

(3.3) 

Our basic assumption to be justified is that the parameter I' increases as o: --+ oo. 
One can see that equations (3.3) have the limit as µ --+ oo if 

Then, we have 

<I>(u) 

E(pp) = 

00 

1 
F(t) = - if>(pt). 

µ 

J dp. l - cos(pu) 

o 7f P2 + (a/p2)E(pp), 

µ3/2 Joo 
3

-./'ii dt e-t <I>-3f2(1d) ( 1 - cos(ppt)) , 
0 

"3/2 µ-+oo 
3v'2°i if>3/2( 00) ' 
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(3.4) 

(3.5) 

t.. 

"' 
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)I 
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and so 

if>(u) = 100 

dp. I - cos(pu) = ! (1 _ e-lul), 
1f p2 + 1 2 

0 

where the parameter Jl is chosen in such way that 

a 1'3/2 1 
------ -1 µ2 3-./'ii if>3/2( 00) - . 

Formula (3.6) leads to <I>( oo) = 1 /2 and 

Thus, we get 

4a2 

µ = 9ir . 

1 
F(t) = 

2
µ (1- cxp(-1,ltl)), 

1 
D(t) = - exp(-µ ltl), 

2p 

n-1
(t-s) = (-:: + µ2 )b(t-s). 

Let us introduce a new operator 

V (u-v = -D -- = -- + l b u-v). -1 ) 1 _1 (u -v) ( a2 
) ( 

p3 
JL 8u2 

Substituting these formulas into (3.2) we obtain 

h(p) = J da exp { U11 [ro)} = < exp U11 [r0 ) > 

where we introduce a Gaussian measure 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

A/2 

da = N br0 exp{-½ J du [ r"a2(u) + r 0
2{u))}, (3.10) 

-A/2 

J da l = 1. 

and an interaction function 

U11 [ro) 

A/2 

3 fir [ [ J dp { P
2 

2 } 2 y2 }} dttdvG11(u-v) 
2

7r 2 p 2 exp - 2 + p V(u-v) ' 
-A/2 

2 
: eip(ro(u)-ro(v)) - 1 + ~ [ro(u) - ro(v)]2 : (3.11) 

G , 
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Here, we introduce the notation 

Gµ(x) = 

V(x) = 

obeying the equation 

00 

exp{-lxl/µ} 
2µ 

exp{-lxl} 
2 

= 100 

dk. exp(-ikx) 
2,r 1 + µ 2 k2 ' 

-oo 
00 

I dq . exp( -iqx) 
2,r 1 + q2 ' 

-00 

f dtv- 1(x - t)V(t- y) = 8(x -y). 

-oo 

(3.12) 

(3.13) 

Let us consider the ground state energy of the optical polaron defined by formula 

(2.1) in the form 
E(a) = E0 (a) - µ · t:(µ) 

where 
c(µ) == lim _Al ln ft...(µ). 

A-+oo 

For asymptotically large a-+ oo , substituting (3.8) into (2.12) we get 

a2 
E0 (a) = -

3
,r + 0(1) 

It is known (1,5] that in the strong coupling limit 

lim c:(µ) = c 
µ-+OO 

where t: is a constant. 
Using the definition (3.7) we finally obtain 

a
2 

( 4 ) E(a)=-- 1+-c +O(l). 
3,r 3 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

Calculating h(µ) in (3.15) as a -+ oo we find the desired parameter t:. We stress here 
that µ enters only in to the function G,, ( x) . 

4 High Order Corrections to E0 ( a) 
The parameter c is expected commonly [1,3-5) to be small. Expanding the exponential 
in (3.15) we get a perturbation series in the general term 

~ u; » = II / l d\ k~ R( k1, ... , kn), 
i=l + µ • 

(4.1) 

6 

'' 1
1l 

J, 

h ,f 
) 

where~ ... » denotes only the connected part proportional to A due to the logarithm 

in (3.15) and 

A/2 

R(k1 , • •• , kn) = ( ~)n fr ff du;dv;exp[-ik;(u; - v;)] j d~;e-PU
2 
S. Q, 

v32,r~ ._
1 

}} P, 
•- -A/2 

(4.2) 
n 

S = IT exp{pJV(u; - v;)} = 1 + ... , 
j=l 

n 

Q = IT exp {-p1Pm (V(u1 - Um)+ V(v1 - Vm) -V(u1 - Vm) -V(um - v,)]} . 
l<m 

In (4.2) we have used the definitions 

< ro;(u)ro;(v) > = 5iiV(u - v), 

<: exp[ipr0 (u)J:: exp[iqr0 (v)]: > = exp{-pqV(u - v)}. (4.3) 

First, we will factorize out these terms of R which give finite nonvanishing contributions 
to (4.1) asµ-+ oo. One can see in (4.1) that these terms must have the next form 

RJinite(k1, .•. ,kn) ~ A8(k1) ... 8(kn)• (4.4) 

Expanding Sin a power series in V(u; - v;) and taking into account (3.12) one finds 

that only the term 
sfinite = 1 {4.5) 

obeys the requirement (4.4). It is a more complicated task to pick out parts in Q 
contributing to (4.4) and we will do this later using diagrammatic representations for 

(4.1). 
Using a symmetry u ...+ v in U,, and taking into account (4.5) we rewrite (3.11) 

where 

V[ro] = 

= 

= 

U,,[ro] = V[ro] + Wlro], 

A/2 ;{i ff dudvG,,(u -v) j dP [2: eipro(u) - 1 + ~\0 2(u) :} 

-A/2 

A/2 

0 / f "(-It 2n 3V 2_ du dP ~ (2,i)! .: (pr0 (u)) : 
-A/2 n~2 

A/2 

Lan f du½n(u), 
n~2 -A/2 
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and 

A/2 

W(ro] ¾Ii ff dudvGµ(u-v) f dP ; (eipro(u)_l)(eipro(v)_l)-pr0 (u)•pr0 (v): 

-A/2 

A/2 
3 0 ff f (-1)(1-m)/2 • I = 2y 2 JJ du dv G,.(u-v) dP LL /! m! : (pr0 (u)) (pr0 (v))m: (4.8) 

-A/2 1'2:2 m'2:1 

A/2 

= LL b1m ff dudv Wim(u,v). 
1'2:2 m'2:1 -A/2 

In ( 4.6)-( 4.8) we have used the notation 

_ dp { 2/ } dP = 
2

71" 2 p2 exp - p 2 . (4.9) 

Substituting (4.7) and (4.8) into (3.9) and expanding the exponential we obtain 
for the parameter c a sum of products of the functions V and W averaged with the 
Gaussian measure defined in (3.10). To each term in the sum here we can associate a 
series of diagrams built by the following rules: 

• A graph consists of two or more vertices ½n( u) and Wim ( u, v). 

• Each one-point vertex ½n(u) emits 2n numbers of r0 lines ,where n 2 2. 

• Each two-point vertex W1m( u, v) has I and m r0 lines entering into points u and 
v. The points are connected by a wavy line Gµ(u-v) defined in (3.12). We stress 
that the dependence Gµ(p) = ( 1 + µ 2 p2 )-1 plays an important role in further 
considerations. Here I 2 2, m 2 1 and I+ m = 2N0 2 4. 

• All the r 0 lines of a vertex in a graph must be connected with r 0 lines of other 
vertices by the solid lines 'D( u, v). A line from a given vertex can not be coupled 
with another from the same vertex due to normal ordering in (4- 7) and (4.8). 

• Only connected graphs arise there according to (3.15). 

Following these rules we get graphs shown in Figs.lb-le . In the case µ -+ oo, 
according to (4.1) and (4.4), a finite contribution to c is given only by the "tree" graphs 
shown in Fig.Id, connected "weakly" relative to wavy Gµ lines. These diagrams, which 
cannot be separated into a pair of disconnected subgraphs by cutting one Gµ line 
(Fig.le), give a vanishing contribution proportional to 0(1/µ). So we deal only with 
"tree" graphs in the strong coupling regime. 

The "tree" structure of graphs as µ -+ oo leads to a requirement: both / and m are 
even for each vertex Wim in a graph. Indeed, let us consider the elementary fragment 
shown in Fig.If with one external Gµ line. All the V vertices in the fragment have even 

8 

!)(x-y} ---

GJJ(x-yl~ 

V20(x l ~ 

W1mlx,y~ 

d} 

~=§+~+•·· 

@=A+@+··· 

® =~ +®+•·· 
bl 

~=~+§-0+ 

~=~ .. ~+-·· 

el 

CI 

' 
fl 

Figure 1: Diagrams giving high order corrections to E0 (a). 

numbers of incoming lines and taking into account the circumstance that each internal 
'D line ends at two vertices, we can conclude that the point with Gµ, line must contain 
an even number of incoming r 0 lines. This means that, for example, m = even at the 
corresponding point of H'im and thus z · = even immediately because of the condition 
m + I = 2N0 • Going to the "trunk" of our "tree" we see that each pair g; m;} is 
even separately for all the vertices iVi,,m,. 

Then, taking into account (4.7) and (4.8) we find that the sign of a "tree" graph 
shown in Fig.le containing N vertices V and L vertices W is 

N L 

sign~ IT IT (-ir•+(l,-m,)/2, 

i=l j=l 

(4.10) 

for fixed n;, lj and mi. It is easy to see that the lowest simple diagrams giving an 
essential contribution to c: has the positive sign + 1 because n = 4, I = m = 2 for 
them. 

So the contribution of the given "tree" graph to c can be rcprcscntecl as a sum of 
the fast-decreasing alternating series with a positive first term. The sum is posit.ivc. 
We have shown the positiveness of "tree" graphs. 
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5 Numerical Results 

The first corrections to c: will be given by diagrams shown in Fig.lb. These are induced 
only by the interaction function V[r0 ]. Using this circumstance, we will show how one 
can exactly summarize these diagrams. Let us come back in V[r0 ] to the ordinary 
operator product. After some transformations one can get 

< ,v > - N0 j S, 0 exp {-l dt [ ½r0 '(t) - 3,/2 l d,cxp(-,',. '(t)) + ! ]}
(5.1) 

It means that solving the Schrodinger equation 

with a potential 

[ 
1 d

2 
] --- + U(x2) · w(x) = -c:2 · w(x) 

2dx 2 

1 

U(x2
) = -3v12 j ds exp[-s2 

• x2
] + ~ 

0 

(5.2) 

(5.3) 

for the lowest eigenvalue, one can exactly find the parameter c:2 • Solving (5.2) numer
ically we have obtained 

€2 = 0.015541(1) (5.4) 

or in other words, taking into account only the corrections caused by V[r0 ] we get 

o2 
E2(0) = -

3
1r ·l.020721(1) = -02 -0.108302(1). (5.5) 

For the next correction to c: we have calculated the diagrams shown in Fig.le. The 
first row of graphs gives 

€3 

A/2 

277!"3/2 J J J2A ··· dtdsdxdyGµ.(x-y) 

-A/2 

3 

II! dk; k2;2 { , ( )} · 
2

1r2k 7e- • exp -k1k3'D(x - t) - k2k3'D y - s 

i=l ' 

(5.6) 

The second series of diagrams after summation gives the contribution 

A/2 
4 

,, 8l1r
2 J J II J .ik; k2/2 c:3 ~ -- ··· dtdsdxdydzG (t-s) --e-, 

8A µ. . 2·ir2kl 
-A/2 •=l 

· exp {-k1k 4'D(x - t) + k2k4'D(y - s) + k3k4'D(s - z) - k2k3'D(z -y)} (5.7) 
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Authors Results 
Feynman, Schultz 0.1061 
Pekar 0.1088 
Miyake (exact) 0.108513 
Luttinger, Lu 0.1066 
Marshall, Mills 0.1078 
Sheng, Dow 0.1065 
Smondyrev ( lower bound ) 0.109206 
Adamowski, Gerlach 0.1085128 
Feranchuk, Komarov 0.1078 
Efimov, Ganbold 0.1080 

Ours 0.10843 

Table 1: Comparison of some results for the polaron ground state energy at large 
coupling ( the coefficient of o 2 ). 

In (5.6) and (5.7) we wrote only the leading first terms corresponding to main expo
nentials in the functions V[r0 ] and W[r0 ] in (4.7) and (4.8), respectively. Taking into 
account the necessary remaining terms and omitting details of calculations we present 
the final numerical result 

€3 = c:; + €~ = 0.0012(1) 

Adding it to E 2 ( o) we finally get 

02 
E3 (o) S - -1.0219(1) = - o2 

• 0.10843(1). 
. 37!" 

(5.8) 

(5.9) 

We propose that higher-order corrections can produce a small contribution to (5.9). 
Our result in (5.9) is in good agreement with the exact solution obtained by Miyake 
[4] and later confirmed in [5]. The relative error in energy is less than 0.07 per cent. 
The comparison of some results obtained by quoted authors [1-14] is shown in Table 1. 
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EqH1MOB r.B., raH60JiA r. . 
3Hepn1R OCHOBHOro COCTORHl1R nonApoHa B npeAene 

Cl1flbHOH CBR311 

E17-91-116 

nciny4eHa yny4W~HHaR oueHKa AflR 3Heprn11 a"cHOBHOro COCTORHl1R ~OnRpo

Ha s · 06nacT11 6onbwoi1 KOHCTaHTbl. B3al1MOAei1cTBl1R. lllcnonbJyeTCR npeAno>1<eH· 

HblH HaM~ paH_ee MeTOA npeAcrnsneH11R cp~HKUl10H,anbHblX 11Hierpan0B B pe>1<11Me 

c11nbHoi1 CBR311. rnaBHb1i1 4neH B HaweM npeAcrnsneH1111 socnpo113BOA11T sap11a; 

U110HHylO oueHKy <l>ei1HMaHa. nocTpoefia 'A11ar paMMHaR TeXHl1Ka A fl A y4eTa cne-
-· ! ' .... 

AYIOIJ.ll1_X nonpaBOK K 31tepn111. 3rnM nyTeM RBHO nony'leH.bl nonpaBKl1, o6y-

cnoBneHHble c11nbHOCBR3!iblMl1 rpacpaM11: nony'leHo xopowee cornac11e c 113-

BeCTHblMl1 TO'IHblMl1 '111CneHHblMl1 pac4eTaMl1 3Hepn111 nonRpOHa. 

. Pa6orn si;monHeHa B na6oparnp1111 Teopern'leCKoi1 cp11311K11 OIIIAl/1. 

Coo6meHue O61,e.nmieimoro HHCTHTyTa RnepHbIX HCCJie.J:lOBaHHn. lly6Ha 1991 . - - . , ·• .. 

Efimov G.V., Ganbold G. 

Polaron Ground State Energy iri the Strong 

Coupling Limit, 

.. E17-91-116 

/. 

Using the general method developed earlier for the representation of functio, 

nal integrais in the strong coupling limit, we obtain an improved estimatio~ for 

· .the polaron grnund state energy at la;ge coupling constant. It is shown, th~t the 

leading -term reproduces the Feynman's variational ,estimation, .A diagrammatic 

representation is· suggested for the next corrections t·o the polaron self-en~rgy. 

This way' we have obtained exp I icitly corrections due to the str~ng connected 

graphs. Our results are in good agreement with the often quoted exact numerical 
,. ,,. , ' ~ ' 

solution. ·· 
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