


1 Introduction

The polaron problem describing an interaction between the electron and the phonon
field is valuable as a nontrivial model in quantum field theory, and therefore, it has
been studied by many investigators [1-14]. Among the methods applied to the subject
there is Feynman’s path integral approach [1] based on a certain choice of a trial action
in the polaron partition function. In the strong coupling regime, a variational method
[2] applied to this problem gives an upper bound of the polaron self-energy. But a
variational approach does not allow one to know how close is the obtained estimation
to the true energy and does not give a recipe how to calculate the next contributions.
The second order corrections to Feynman’s variational estimation of the polaron self-
energy has been calculated in [3] and the obtained result was not close enough to the
exactysolution found numerically [4,5].
In this paper, we present an improved estimation for the optical polaron ground
state energy at large coupling constant o , using the general method of representation
- of functional integrals in the strong coupling regime [6]. It is shown that the leading
term reproduces Feynman’s variational solution. We introduce a diagrammatic repre-
sentation to calculate the next corrections to the leading term of polaron self-energy.
This way,we have obtained explicitly corrections due to strong connected graphs. We
have also found the next contribution to energy from some more complicated graphs
to be a relatively small. Our estimation of polaron ground state energy in the strong
coupling limit is in good agreement with the frequently quoted exact solution [4,5].

2 Ground State Energy of the Polaron

The ground state energy E(e) of the Frélich polarons is defined by the expression

B(e) = - Jim % In Zs(c), 2.1)

Zp(a) =No/ Sr exp ——/dsr (s) + \/_ -/dtds?—)—(g{—'-(—t)||l . (2.2)
£(0)=r(g)

Our aim is to get the behaviour of the function E(a) for @ — oo. We apply the
method described in the previous paper [6] to the functional integral (2.2). The integral
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can be written in the form

r-

Zr(a) = N, or exp{ - // dtds r(t) D;'(t,s)r(s) + aU[r]} (2.3) -
¥(~T)=rx(T) .
where 5 52
— 2 -1 —_ e
T = 5 D (t,s) 6t26(t s),
and ’
dk
~lt—4 ek(r{t)- l'(-’))
aUl] = \/_ / dtdse / — (2.4)
B(a) = — lim —= InZr(a). 25)

T 2T
The Green function D,(t,s) satisfying the periodic boundary conditions is

1 ts . _ l _
Do(t’s)“—'élt_s‘_'f T—o0 Do(t—s)-—zlt Sl,
i 1 1 1
2 - d tkz - =
D-(k) / 2 Dole) = 3 v T o op

We want to find the limit in (2.5). Therefore we shall consider that T = B/2is b

asymptotlcally large. In this limit the Green functions are translationally invariant,
ie.

D,(t,s) = Do(t—~3s), D(t,s) = D(t-3s). .

The interaction function G{b] in equation (2.15) in [6] can be written

T
Iib] = — se 1t dk exp {t - b(s)) - kK? —5
UM—Vggﬁd [ sgem (ko) - b)) - A=)}, @1)

where

F(t ~ s) = D(0) - D(t —s).

Now let us consider equations (2.16) in [6]. We choose b(s) = 0 as a solution of
the first equation because this seems to be natural as it follows from the explicit form
of the integral (2.2). Then, we obtain

620 [b]

Bij(t—-s) = 5b:(t)6b;(s) [,

5;j . Z(t - S)

b dz el elt-4l :
Vor [6(t“s)_£ F3i2(g) F3/2(t-s)} ’ (28).

(2.6) '

SRR

and
s — cos(kt)
¢ —a 2.
/dse %(s 3\/_ F3/2(t) (2.9)
The second constraint equation in (2.16) in [6] has the followmg form :
D(k) = Do(k) — Do(k) e £(k) D(E),
and 1
D(k) = = —. 2.10
(k) D7U(k) + aX(k) (2.10)
Finally, we obtain for the function F(s) the following equation :
F(s) = dk 1= cos(ks) @.11)

T k24 aS(k)’

where £(k) is defined in (2.9). .
The energy Eo(a) which is defined by W, in the representation (2.18) in the paper
[6] becomes

E(a) = — = / ak [1n (K D(®)) ~ K D(k) + 1] (2.12)

/’ dt exp(—t)
\/— 220
The representation for the polaron functional integral looks as (T = p/2is asymp-

totically large )
(2.13)

ZT(C!) — e—ZTEo(u) JT(a’)
Jr(a) = N / ér exp{ - / dtds r(ty D7 (t — s)r(s) + (!Ug[l‘]} (2.14)
r(-T)=r(T) .

where

R dk  _ s
Usfr} = \/_ /dtds ~le- a|/27r7k2 k2 F(t~s)

ek EO-T0) _ g 4 ?[r(t) - r(s)):. (2.15)
The functions D(t) and F(t) are defined by equations (2.7) and (2.11). It should be
stressed that the representation (2.15) is completely equivalent to the initial represen-

tation (2.2) for asymptotically large T — oo.



3 The Strong Coupling Limit

In the section, we obtain the representation for the ground state energy of an optical
polaron at asymptotically large a. Let us consider the functional integral (2.14). In
formulas (2.14) and (2.15) we introduce new variables

, s=

k=,/up, t= 2 r(t)z# (3.1)

I’ VI

where g is a parameter depending on . Then all our formulas become

Ja(@) = N /&0 exp{ —% /72 du dv ro(u)l%D‘l (" - ”) ro(v)

"

A
AJ2
o exp(—lu~ol/w) [ dp L (u=v
+%_/A/z e Lk ar2pt P {_pzﬂp< # )}
exp{ip(ro(w) =~ ro(v))} ~ 1+ fro(u) - ro(vn?:}. (3.2

where A = 2T;1. Now let us consider equation (2.11) where we introduce

ee]

u d 1 — cos(pu)
wh(p) = [ e
K J ™ wp? + a¥X(up)

ZE(/‘P) = K}—-z_’r/dt ef' F3 iy (1 - cos(ppt)) . (3.3)

Our basic assumption to be justified is that the parameter p increases as a — oo,
One can see that equations (3-3) have the limit as g — oo if

F@t) = Lau). (3.4)
i
Then, we have
T dp 1 — cos(pu)
d(u) = —_- = s
“ / T P+ (@l®) Z)

. 32 F ’

E(up) = 3’3/2_” /dt et o732 (ut) (1 - cos(ppt) ), (3.5)
_ u32 ’

T 3V 3/2(c0)’
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and so
(o)

dp 1 — cos{pu) 1 lu
B (u) =/7'Wl— = 51— ey,

where the parameter p is chosen in such way that

a p3? 1
;5 3v2r ®3/%(c0)

Formula (3.6) leads to ®(o0) = 1/2 and

Thus, we get

FO) = 3 (L= exp(oulth), DO = 5 expl—ul),

i

D“(t-sj = (—5—; + ,112)6(t—s),,

Let us introduce a new operator

Dl u—p) = I%D—’ (37“‘—3) = (—ai; + 1) 5(u— v).

Substituting these formulas into (3.2) we obtain

1) = [ do e (Uylre]} =< exp Uyfro] >

where we introduce a Gaussian measure

Af2

do = N 6r, exp{ —% / du [rp?(u) +'ro’(u)] } |

—Af2

/dcrl:l.

and an interaction function

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

A/2
3 d 2 ‘
Uulro] = 3 g / dudv Gy (u— v)/mpp2 exp {— 92— + p* D(u - v)}

ZA/z

2
: Prol)—rol)) _y %[ro(u) — ro(v)]” :

(91}

(3:11)



Here, we introduce the notation

- exp{-]z|/p} _ T dk exp(—ikz)
Gu(fl?) = 2 = /27!' 1 + #2 JE
_ exp{-lzl} _ [ dg exp(—igz)

—00

obeying the equation

/dtD"‘(a:—-t)’D(t—y) — Sz —y). (3.13)
Let us consider the ground state encrgy of the optical polaron defined by formula
(2.1) in the form

E(a) = Eo(a) — p-e(p) (3.14)
where 1
e(p) = AlLrEo 1 InIy(p). (3.15)
For asymptotically large a — oo , substituting (3.8) into (2.12) we get
@ o) 6
o = - — 1
Ba) = =& + o) (3.16)
It is known [1,5] that in the strong coupling limit
lim e(p) = ¢
H=200
where ¢ is a constant,
Using the definition (3.7) we finally obtain
a? 4
= - — = . 3.17
E(a) 3 (1 + 36> + 0(1) (3.17)

Calculating Ix(p) in (3.15) as @ — oo we find the desired parameter €. We stress here
that 4 enters only into the function G,(z) .

4 High Order Corrections to E,(a)

The parameter ¢ is expected commonly [1,3-5] to be small. Expanding the exponential
in (3.15) we get a perturbation series in the general term

- dk;
< U: > = H / I—_‘*_——'uz—k?R(kl,...,k"), (4.1)
i=1 t

where < ... >> denotes only the connected part proportional to A due to the logarithm
in (3.15) and

AJ2
3 \'1 . dpi _p»
Rky, ... k) = (-—3\/_%) E ‘/A‘{ du,-dv,-exp[—zk;(u.-—v.-)]/;?—e pi/2 g -Q,
ZAJ2

) (4.2)
S = H exp{pD(u; — v;)} = 1 +...,
i=1
Q= ﬁ exp {~piPm [D(w — t) + D(v — v,,) — D(uy — Vm) — D(ty - w)l} .
In (4.2) w: Tla.ve used the definitions _
< Foi(u) Toj(v) >= 67 D(u — v),
<: exp[ipro(u)] :: expliqro(v)] : > = exp{—~pqD(u — v)}. (4.3)

First, we will factorize out these terms of R which give finite nonvanishing contributions
to (4.1) as £ — oco. One can see in (4.1) that these terms must have the next form

Rpimite(kvy o k) ~ AS(ky). .. 8(ks). (4.4)

Expanding S in a power series in D(u; — v;) and taking into account (3.12) one finds
that only the term

Stinite = 1 , (4.5)
obeys the requirement (4.4). It is a more complicated task to pick out parts in Q
contributing to (4.4) and we will do this later using diagrammatic representations for

(4.1).
Using a symmetry u ¢ v in U, and taking into account (4.5) we rewrite (3.11)
Uslro) = Viro] + W]ro), (4.6)
where ;
A2
3w ' ipro(u) P’
Vire] = 3V3 / dudvG,(u—v) [ dP[2 :¢'PTo —-l+~6—r0 (u) :]
: -A/2 _ o
T C
us -1 * 2n
= - H : 4.7
3\/;/ du/dPZ; @y (Pro(w) (4.7)
~A/f2 nZ :
A2 )
= Zan / du Vzn(“)1
"22 _An



and

W[r9] \/‘/ dudvG,(u— v)/ dpP : (e‘p'°(“) 1)(e'p'°(") 1)—pro(u)-pro(v) :

—A/2
(I-m)/2
- _\/‘ / dudv G,(u—v) / d”PZZ( 1) : (pro(u))(pro(v))™ : (4.8)
ZA/2 1>2 m21
AJ2
Z Z blm/ dudv Wi, (u,v).
122 m>1 A2

In (4.6)-(4.8) we have used the notation
_ _4p 2

Substituting (4.7) and (4.8) into (3.9) and expanding the exponential we obtain
for the parameter € a sum of products of the functions V and W averaged with the
Gaussian measure defined in (3.10). To each term in the sum here we can associate a
series of diagrams built by the following rules:

o A graph consists of two or more vertices Van(u) and Wi, (u,v).
o Each one-point vertex Van(u) emits 2n numbers of ro lines ,where n > 2.

o Each two-point vertezx Wiy, (u,v) has | and m ro lines entering into points u and
v. The points are connected by a wavy line G,(u~v) defined in (3.12). We stress
that the dependence é,‘(p) = (1 + p?p?)? plays an important role in further
considerations. Here I 22, m>1andl+m = 2N, > 4.

o All the ro lines of a vertez in a graph must be connected with ro lines of other
vertices by the solid lines D(u,v). A line from da given vertez can not be coupled
with another from the same vertexr due to normal ordering in (4.7) and (4.8).

o Only connected graphs arise there according to (3.15).

Following these rules we get graphs shown in Figs.1b-le . In the case p — oo,
according to (4.1) and (4.4), a finite contribution to € is given only by the "tree” graphs
shown in Fig.1d, connected "weakly” relative to wavy G, lines. These diagrams, which
cannot be separated into a pair of disconnected subgraphs by cutting one G, line
( Fig.1c ), give a vanishing contribution proportional to O(1/p). So we deal only with
"tree” graphs in the strong coupling regime.

The "tree” structure of graphs as g — oo leads to a requirement: both ! and m are

even for each vertex Wi, in a graph. Indeed, let us consider the elementary fragment -

shown in Fig.1f with one external G, line. All the V vertices in the fragment have even

D(X'y) *—e

GP(X‘Y)'W

VZn(x ) §
Wim XY

dl e) ' f)

Figure 1: Diagrams giving high order corrections to E,(a).

numbers of incoming lines and taking into account the circumstance that cach internal
D line ends at two vertices, we can conclude that the point with G, line must contain
an even number of incoming re lines. This means that, for example m =.even at the
corresponding point of Wy, -and thus ! = even immediately because of the condition
m + 1 =-2N,. Going to the "trunk” of our "tree” we see that each pair {l;; m;}:is
even separately for all the vertices W, Tiymi-

Then, taking into account (4.7) and (4.8) we find that the sign of a ”tree” graph -
shown in Fig.le containing N vertices V and L vertices W is

N L B :
sign ~ H H (~1)rit=ms)/z : (4.10)

i=1j5=1

for fixed n;, I and mj. It is casy to sce that the lowest simple diagrams giving an
essential contrlbutlon to € has the positive s;gn +1 because n = 4,1 = m = 2 for
them. o

So the contrlbutlon of the given "trec” graph to € can be represented as a 'sum of
the fast-decreasing alternating serics with a positive first term. The sum is positive: -
We have shown the positiveness of "tree” graphs.

9



9 INumerical rtesults

The first corrections to € will be given by diagrams shown in Fig.1b. These are induced
only by the interaction function Vro]. Using this circumstance, we will show how one
can exactly summarize these diagrams. Let us come back in V[re) to the ordinary
opcrator product. After some transformations one can get

A 1
<e' >= No/6roexp {-—/dt %r}f(t) - 3\/§/dsexp{—-szr02(t)} + 49} } .
0 0

(5.1)
It means that solving the Schrédinger equation
147 + U [ -¥(x) = v 5.2
57 UG | (%) = —e3 () (5.2)
with a potential
1
U(x?) = —Bﬁ/ds exp[—s? - x¥ +§ (5.3)
0

for the lowest eigenvalue, one can exactly find the parameter ;. Solving (5.2) numer-
ically we have obtained
ga = 0.015541(1) (5.4)

or in other words, taking into account only the corrections caused by V[ro) we get
, g .
Ex(a) = — P 1.020721(1) = —o”-0.108302(1) . (5.5)
For the next correction to £ we have calculated the diagrams shown in Fig.le. The

" first row of graphs gives

AJ2

/ dtdsdzdyGu(l'“y)

—A/2

3
dk; _ P,
11 / e exp (~kikiD(z ~ 1) - kakiD(y = 9)}  (5:6)
i=1 M

[ 277r3/2
Eq ~ —_— =
3 \/EA

The second series of diagrams after summation gives the contribution

Af2
” 817r2 4 dkl’ =k2/2
el ~ "ST/ / dtdsdz dy dz G, (t — s) ,.UI/EFk—?e 2

~AJ2

-exp {—kiksD(x — t) + koksD(y — ) + ksksD(s — z) — kokaD(z — y)} (5.7)
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Authors ; Results -
Feynman, Schultz 0.1061
Pekar '0.1088.
Miyake (exact) 0.108513
Luttinger, Lu 0.1066
Marshall; Mills 0.1078
Sheng, Dow. 0.1065
Smondyrev ( lower bound ) 0.109206
Adamowski, Gerlach 0.1085128
Feranchuk; Komarov 0.1078
Efimov, Ganbold 0.1080
Ours 0.10843

Table 1: Comparison of some results for the polaron ground state energy at.large
coupling ( the coefficient of a? ).

In (5.6) and (5.7) we wrote only the leading first terms corresponding to main expo-
nentials in the functions V[re] and Wire} in (4.7) and (4.8), respectively. Taking into
account the necessary remaining terms and omitting details of calculations we present
the final numerical result

€3 = €5 + £5 = 0.0012(1) ~ (5.8)
Adding it to Ez(a) we ﬁnally get '

2
Es(a) < —33;1.0219(1) = —a?-0.10843(1). (5.9)

We propose that higher-order corrections can produce a small contribution to (5.9).
Our restlt in (5.9) is in good agreement with the exact solution obtained by Miyake
[4] and later confirmed in [5}. The relative error in encrgy is less than 0.07 per cent.
The comparison of some results obtained by quoted authors {1-14] is shown in Table 1.
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: cwanow CBH3M

- Ha B OGnaCTM 60]'IbUJOVI KOHCTaHTbl BBaMMOJ.IEVICTBMF*I MCﬂO]‘IbBVGTCH npe.uno>+<eH
. HbWI HaMVI paHee MeTOJ-I npeﬂCTaBTIEHMH d)yHKLlMOHa]'IbeIX MHTerpaIIOB B pexxuMe

UMOHHY!0 oueHKy ¢evmmaHa ﬂocrpoeHa J.IVIal'paMMHaFI TeXHVIKa ANA yueta cne-_

S Pa60ra BbanJ‘IHeHa B ﬂaﬁoparopvwr reopermecxou d)vrauxn OVIHVI

e Coo6méx—me O6venuHenizoro MHCTHTYTa AZepHbIX /Hc'eneﬁoeahnﬂ,_‘ﬂyﬁuaflgg1 B R

Ed)MMOB rB. raHsonn r. E17-91-116

SHEDFVIH OCHOBHOFO COCTOHHVIH nonﬂpoua B npeAene ’

ﬂonyqua yﬂ\/HLIJEHHaH OLLEHKG LU'IF! 3Heprvm OCHOBHOFO COCTOF\HMR nonﬂpo-

CVI!leOVI CBHSVI rﬂaBHbIVI YneH B HaUJeM ﬂpe.l.lCTaB]'IEHMM BOCnpOMaBOJ.IMT BapMa-i

_ AyrOWMX NONPaBOK: K -3Hepruu. 3TMM nyreM 'ABHO nony4eHbl NONPaBsKku, oby- -
CnoBRexHbIe: CManOCBH3HbIMM rpacbarvm Monyueno xopowee cornacve ¢ wa- 1
BeCTHbIMVI TOHHblMVI qwcneHHbIMM pacueraMM 3Heprum nonﬂpoua ‘ ’
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Usmg the general method developed earlrer for the representatlon of functxo

- nal |ntegrals in’ the strong couplmg hmrt we obtain an 1mproved estlmatlon for:‘ o
. the poIaron ground state energy. at Iarge couphng constant It |s shown that the

Ieadrng -term reproduces the Feynmans variational . est|mat|on A dlagrammatrc :

representatlon is- suggested for-the ‘next’ correctlons to the polaron self-energy. e
Thts way, we have obtamed expllcrtly corrections due ‘to the strong connectedf e
: graphs Our results are ln good agreement wrth the often quoted exact numerrcal"

The mvest|gatlon has been performed at the Laboratory of Theoretlcal‘}

esrch Dubna 1991 |

ot






