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In many cases, the heat motion of macromolecules in a 
solution is influenced by their internal dynamics. This, in 
its turn, has an effect on the scattering or absorption 
spectra of the electromagnetic radiation. Unlike such 
experimental methods as M6ssbauer spectroscopy that allows 
one to study details of the thermal internal motion of atoms 
in macromolecules, the Rayleigh light scattering spectra of 
macromolecules are first of all determined by their diffusion 
motion 1

-
31 Doppler shifts that are reliably and fast 

measured uslng the light 

find the translational 

beating spectroscopy, enable us to 

diffusion coefficients of the 
scatterers. Under the experimental condition qR~l (R is the 
size of the macromolecule, ~(4rr/A)sin(9/2) is the difference 
between the wave vectors of the incident and scattered light, 
A is the wavelength and a is the scattering angle) , the 
effects of the internal macromolecular motion are very small 
against a background of the diffusion motion. Nevertheless, 
using special computational procedures, it is possible to 
separate the mode corresponding to the internal dynamics 41 

(the experiments 4
l have been carried out to find the 

possibilities of the correlation spectroscopy of scattered 
light in the study 

coils). In 5
'

51
, the 

spectra from the 

of the internal dynamics of 
deviations of- the half-widths 

polymer 

of the 

pure diffusion-like ones for the 
.translational motion have been observed. The character of the 
relaxation differed from the one-exponential law. This 
allowed one to register the contribution of the fluctuations 
of the DNA coil form. However, quantitative results 
corresponding to the DNA internal dynamics have not been 
obtained. 

The depolarized Rayleigh light scattering from the 
solution of optically anisotropic macromolecules is now used 
mainly f6r the determination of rotational diffusion 
coefficients71 . The anisotropy of the polarizibility of 



macromolecules performing Brownian motion exhibits itself in 
the depolarized scattering also if qR->0. For small 8, the 
influence of the translational diffusion on the spectra is 
suppressed. The intensity of the scattered light with the 
polarization normal to that of the incident light is 
determined by the correlation function of the polarizibility 
tensors a

1
J in the laboratory frame 71

• For dilute solution 
of anisotropic macromolecules, the normalized intensity of 
the scattered light is defined as 

I (t) = <a (t) a (O) >j<a2 >. 
Xl: xz x:r. ( 1) 

Here, the angle brackets denote the statistical averaging. It 
is assumed that the light beam moves along the axis y and the 
polarization of the incident and observed light is parallel 
to the axes z and x, respectively. 

The dynamics of rigid anisotropic particles is 
determined by their orientational motion and in the diffusion 
approximation is well investigated 2

' 
31 . For deformable 

particles, the conception of the orientational dynamics loses 
its sense. It has to be replaced by the concept of the 
conformational dynamics determined by internal degrees of 
freedom. The essential peculiarity of all types of motion 
(including short-range one) realized in the protein structure 
consists in the fact that they are of highly collective, 
correlated character. Even very localized changes in the 
conformational state of the protein lead to cooperative 
excitations of the considerable part of the 
macromolecule11' 91 • 

In our previous paper101 the low-frequency vibrational 
excitations of globular protein macromolecules have been 
studied. These excitations effectively took into account 
displacements and turns of the molecular groups and fragments 
and their conformational transitions. The collective 
excitations have been taken into account by introducing some 
dynamical variables describing the rotation of the 

2 



macromolecule and the deformation and asymmetry of its 
surface form. The results of such a modelling have been used 
to study the resonance absorption of gamma quanta by 
M6ssbauer marks connected with the macromolecule 11,li!l 

In 
the present paper, we consider the effects of internal 
collective excitations of globular macromolecules in the 
depolarized light scattering. 

we will proceed with the model of collective excitations 
of protein molecules that was proposed in 111 • In the most 
simple case, taking into account the excitations leading to 
quadrupole deviations of the macromolecule surface from the 
equilibrium spherical one, the Einstein-smoluchowski equation 
has been derived in 10

l This equation describes the 
probability density for the state of the macromolecule to 
change during the time t from the initial to the final state. 
The quadrupole dynamic deformation is the average of the true 
deformation over the internal motion of atoms. To describe 
this deformation, it is convenient to use a set of five 
collective variables: three Euler angles O(w1,wi!,w) giving 
the orientation of the orthogonal molecule-fixed axes with 
respect to the laboratory frame and two parameters Os~<w and 
osT~/3 characterizing the form of the macromolecule in its 
own coordinate system. The detailed discussion of the meaning 
of these parameters is given in "' The Einstein-
Srnoluchowski equation in the space of the variables ~.7 and n 
to> is difficult to solve. Here, we will use its more simple 
variant describing rotational-vibrational excitations with 
four variables ~ and n. The parameter 7 will be fixed by some 
7err· Such excitations are known from the collective model of 
the atomic nuclei as the so-called longitudinal-rotational 
excitations (see 13

>). The kinetic equation with 7=7.,rr is 

aP a a a 1 ' a-r A(4+j3 a~i p + w-3 
a~ 

~' 
a~ 4 

~-, E cCTI~) P. (2) 
(Tool 

Here, cCT =sin-2 (T-2rrCT /3) and I~ are the projections of the 
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quantum-mechanical angular momentum onto the molecule-fixed 
axes (fl=l}. The nondimensional time 1:=kTt/Z and the 
elasticity parameter ~=C/kT are introduced. The coefficients 
c and Z determine the potential energy of the deformation and 
the dissipative function, respectively 10

'
11 

l The initial 
condition for equation (2) and the volume element in our 4-
dimensional space are as follows: 

dV = (3
3 d(JdQ. (3) 

The solution of (2) can be searched for as a linear 
combination of the particular solutions 

substituting this into (2}, we obtain two equations 

' ( (1/2)1: c.,.r~ - c)it(O) o, 
U=l 

c , ~-' + E] F(p) o, 

( 4) 

(5) 

( 6) 

with c and E being the parameters of separation. Eq.{6) after 
some substitutions becomes the equation defining the Laguerre 
polynomials so that 

(7) 

E = 2i\(n+s+2), n=O,l, ••. , 

where s depends also on the proper values of (5), c, because 

s = ~(Vl+C/2 - 1). (8) 

Now, let us introduce the probability density of the deformed 
particle to transfer from the initial state (J(O)"'IJo to the 



final state ~(~)ES: 

~ 2 
, _ = znn! 2 1 2 1 -

2 (YY,.,Z) e Y L -rcr.~i-icco,--- Ln,.. (y)L_" .. (yJ, v n~o rcn+2s+2) " u 

(9) 

The series in (9) can be summed by using the properties of 
the Laguerre polynomials, but we will not write down this 
result. Note that independently of the magnitude of s, rr,. 
satisfies the condition II,(y,y0 ,0)=~-

30 (~-~0 ). Consider now eq. ( 5) for the function t (Q) • The 
differential operator in this equation (if c~ 1 are replaced 
by the principal values of the inertia tensor J u ) is the 
quantum-mechanical operator of "the asymmetrical rotator131

• 
So its proper functions and values can be written immediately 
using the well-known results14

l. The orthogonal proper 
functions are linear combinations of the Wigner functions, 

(10) 

where M and K run from -I to I. Let us explain the appearance 
of one more index v. Substituting tn

1
v into (5), multiplying 

it from the left by D~, and integrating over Q with the use 
of orthogonality properties of the Wigner functions, we 
obtain 2I+l algebraic equations to determine A

111
J:. From the 

condition of nontrivial solvability of this algebraic system, 
we obtain the secular equation of the degree 2!+1 that has to 
be solved with respect to c

111
• The roots of this equation are 

denoted by the subscript v=l,2, ... ,2I+l. Thus, we have 21+1 
proper values c

111 
for all I and every value of v corresponds 

to own set of real coefficients A111 ~_, e.g., for I=2 we have 
five values c

211
, v=l, .... ,5, and 25 coefficients A

211
Jt (some of 

them are identical). Now, one can easily write down the Green 
function of the initial equation (2). It is of the form 
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P(~.n.~ ,n ,,) ~Err (y,y ,,>• (O)t(O), 00 • 0 •• o (11) . 
where the summation over s means the summation Over all I,M 
and v. Thus, the rotational-vibrational excitations of 
deformable particles, which are used to model internal 
motions of globular protein macromolecules, are fully 
described by the function (11). This is the probability 
density of the state change of the, globule. The stationary 
probability distribution is the Boltzmann distribution in 13 
vibratioris and equiprobable one in possible orientations 
giVen by the angles 0: 

(12) 

Let us return to the intensity 
depolarized light scattering (1). By using 

density of the 

the formulae 31 

a "= +a -ia , ±t xz J'Z 
( 13) 

we express the Cartesian components of the polarizlbility 
tensor in the laboratory frame through the components of the 
spherical tensor of the second rank, a~ (~~0,±1,±2). The 
rules of the transformation of a from the laboratory frame 

" " to the molecule-fixed system are as follows : 

(14) 

where a~ are the spherical components of the tensor in the 
molecule-fixed system. From (13) and (14) we obtain 

• .. ""' !. [ a {0 
2 

(O) -D2 
(0)]. 2 ~ 11 -111 1J.t (15) 

As usually, the statistical averaging in (1) must be 
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performed in two stages. Firstly, the averaging over the final states has to be carried out by using (11), and then the obtained result must be averaged over the initial states with the help of (12). The averaged value of <axz(t)axz(O)> will be calculated in the following way. The components axz contain only the Wigner functions with !;2. So due to their orthogonality properties, the terms with b2 in {11) will give no contribution to the final result. Due 
reasons, all terms containing products of 

to the same 
the 

functions with nonequal M vanish. The functions with 

Wigner 
M;1 and 

-1 give the same contributions. Thus, we will average with the following incomplete function from (11): 

(16) 

The averaging over the Euler angles can now be easily carried out to give 

<a (t)a (O)> xz xz (17) 

where 

(18) 

Analogously, 

<a 2
{0)>=.!..._rrra (O)I

2JD, [ ••• JD= xz to U u ,..,.
0 '"'o 

Formulae (17)-(19) are the main results of the paper. By llsing the ,:J-dependence of the polarizibllity tensor a
1
k in the molecule-fixed system they fully determine the intensity of the depolarized scattering (1). We will consider here two special simple cases. 

At the beginning, we consider the components a
1
k to be some constants that characterize the macromolecule. In this 

case, it follows from (19) that 
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The nonzero values of r: 2v and A2vr. are as follows: 

c (c +c +4c 3)/2, c (c +4c +c )/2, " ' ' " t 2 3 (21) 

c {4c 1+c2+c 3)/2, c c1+c2+c3 ± g, " "" 
A ~A A ~ A =-A -A V5/4n:, "' "' '" 23-1 2 1 - 2 2 2- I 

A 
2CT-2 

where 

After integration in {18) and summation in (17) with the use 
of (21) and (20), the final result for the intensity function 
will be 

' I(t) I Nv iv(~), 
v~t 

(22) 

N .. ' 

The weight multipliers obey the condition l: Nv=l, z is 
defined in (9) • and s, that depends on czv from (21), is 
given in (8). The result becomes much· simpler if the 
principal axes of the polarizibility tensor coincide with the 
principal axes of the inertia tensor. If, in addition, 
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(23) 

Now, consider the components a
1
k being dependent on the variable (3. This is possible due to the internal motion. Particularly, the following natural assumption can be made. We assume that the polarizibility tensor is proportional to the 

"' 
inertia 

So 
tensor J lk. 

•., 

The tensor J
1
k is given, e.g., in 

- tl(l;c ,ljc ,1/c). 
' ' ' 

(24) 

Acting as in the above consideration but with the additional integration over (3 and (3
0 

in (18) and (19), we obtain the result of the same structure as in (22) with N
4
+N

5
=1, N =0, 1 ,2,3 

N . ' ' ' B g G c (25) 

Thus, the correlation function of the intensity of the light scattered from the macromolecules with internal motion considerably differs from the known result for rigid ellipsoidal particles 3
l. First of all, in the case of rigid ellipsoids, the time dependence is determined by the linear superposition of five exponents. Their relaxation times are constructed from the principal values of the tensor of rotational diffusion. In our model, the essential contribution in (22) or (25) is also exponential. It strongly depends on the values c
2
v, connected with the particle form. Furthermore, this exponential contribution is modulated by the hypergeometric functions depending on time and the form parameter. If the polarizibility of the macromolecule is 
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known, the time dependence of the intensity of the scattering 
is given only by the ratio of the elasticity constant and the 
friction coefficient, c;z, and by the parameter 7. It seems 
to be possible to determine these phenomenological quantities 
experimentally and to compar~ them with the results on the 
temperature dependence of the H6ssbauer effect 11

•
12
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