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As emphasized by many experimental groups (see e.g. (1-

3] and references therein) fluctuation effects in high-Tc 

oxides in an applied magnetic field show a very unusual and 

complicated behaviour. On the other hand, one observes 

constant growth of evidences in favour of superconductive 

glass (SG) behaviour in HTS (see e.g. (4] and references 

therein). ·In the frame of the SG model, pioneered in [5], 

revived (due to HTS discovery) in [6,7], and then advanced 

in [8-11] 1 rather a successful description of both 

equilibrium (magnetic phase boundary Tc(H) [7,8,10)) and 

nonequilibrium (long-time relaxation of remanent 

magnetization [7,9L critical neutron scattering by 

diamagnetic correlations [11]) properties of HTS has been 

achieved. 

In this Letter we consider via the SG model a 

fluctuation-induced magnetoconductivity of weak-links-

containing systems. 

As is well known [8,9] the Hamiltonian of the SG model 

in the pseudospin representation has a form 

A 

H 

where 

-Re[J .. S~s. 
ij l] l ] 

Aij = rrH(xi+xj) (yi-yj)/¢0 , 

The model (1) describes 

¢
0 

= hc/2e. 

the interaction 

(1) 

(2) 

between 

superconductive clusters (with phases f i via Josephson 

junctions·( with energy J(T) ) on a 2-D disordered lattice 

(with cluster coordinates in a frustrated 

external magnetic field H O,O,H ) .so,as usual 



{see,however, (10) ) ,we have neglected shielding current 
effects. The field is normal to the ab-plane where a glass-
like picture of HTS is established. 

Following [ 12], we calculate the enhancement of 
conductivity normal to the c-axis (on a square lattice with 
side d ) within the SG model by the Kubo formula : 

• 
u~(w)=Jdtcos(wt)[ 

0 q 

<j~ (t) j~ (O) >/k T • q -q B (3) 

Here, j~ is the Fourier transform of the Josephson current 
density operator [11): 

j ~ N-lL eiq(ri-rk)j (4) q ik ik 

jij ~ jcsin(fi -fj - Aij) , jc 
In our case r

1
={x

1
,y

1
,0). 

2eJ(T)/hd . (5) 

The bar denotes the configurational averaging with a Gauss-
like distribution function over cluster coordinates (x1 ,yj) 
[B). By using the mode-coupling approximation scheme (see 
e.g.(14)) from (3) to (5) one gets: 

u ~ (w) 
(6) 

where 

A 4se 2
J 2 (T,H)/h2k

8
Td, J(T,H) = J(T)/(1+H2/H~}t/~ (7) 

Here s is the projected area of superconductive loops 
with a uniform phase, H

0
=4'

0
/2s. Dq(t) denotes the Fourier 

transform of the correlator o1 j(t) : 

(B) 
The transition to the SG phase occurs at the temperature 
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T<Tc(H) ,where Tc(H) is defined by an equation Lq=o(Tc,H)=O 

(it should be noted that Tc(H)<Ts, where Ts is a single 

grain superconductive temperature). A nonzero dynamic 

parameter Lq(T,H) is connected with the correlator (8) 

the following way [9) 

lim D (t) 
t-Hll q 

in 

(9) 

In the critical region near the transition to the SG 

phase ( when c<<1,c = {T~Tc)/Tc ) we have [9,11] : 

Dq(t) D~[exp(-t/1:q)/(rrt/•ql 1 /<_ erfc((t/•ql
1

/
2
)], (10) 

where 

D~ = Do/(1+q2~2), l:q = l:o/(l+q2{)2 

1:0 = 'l/C
2 

, D0 = 1/C , ~2 = ~~jc • (11) 

Here ~0 is the coherence length perpendicular to the c-axis, 

1 is the paraphase relaxation time. 

After the time-frequency Fourier transform from (10) one 

obtains <I Dq (t) 1
2
> w 

Ei(-(t,/•ql (l+Z
2
))} • 

Here Z (l-iwLq) 1
/

2, Ei (x) is 

-I 
Re{ (4/rr)tan (Z)/Z 

(12) 

an integral exponential 

function, t
0 

is a lower cut-off time parameter. 

Since it is the long-time behaviour of the correlator 

Dq(t), which completely define glassy properties of the SG 

model and observable experimental peculiarities, in what 

follows we restrict ourselves to a low-frequency (w ~ O) 

behaviour of the paraconductivity (6). Moreover, for the 

sake of simplicity, we shall consider the case when t
0
»7, it 

means that Ei(-t /L )« 1. Integrating (6) over momentum q,in 
0 q 

view of (10)-(12), for transverse paraconductivity one 

obtains : 
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<r(H)g(p) ' 
(13) 

where 

o-(O)/(l+H2jH2), u{O) =: e 2p 4J
2
{T)7/k Th

2
d , 0 0 -~ 

u(H) 

g(p) [2p-2p2+3p3+p4
+4p4e"Ei(-p)+p5

e"Ei(-p) J/6p4 
• (14} 

' Here p = p
0
c , P

0 
= S/~0 · 

Let us consider two limiting cases of eq. (13). When p~l 
(s~~2 ), i.e. well above Tc, eq. (13) reduces to the two
dimensional Aslamazov-Larkin-like law [3] : 

( 15) 
In the opposite case, when p«l {s«~2 ) ,i.e. in the region 
near Tc, u~ approaches the three-dimensional form of the XY
like model {cf.[14J,where the law ui- c-2

'
8 for HTS ceramics 

was registered) : 

u i/u(O) 
(16) 

Thus, we have the following picture. The closer the 
temperature to T , the more important become effects due to ' the granularity of the system. It seems that observed 
anomalous fluctuations (15) occur owing to a crossover 
between 2-D and 3-D behaviours. 

To compare the model predictions with the experimental 
data for HTS, it is interesting to consider a magnetic field 
dependence of the paraconductivity (13). Figure 1 shows the 
behaviour of reduced conductivity -A<r(H)/<r(O) (here 
Au(H)~u~(p,H)-u1 (p,O)) versus reduced magnetic field h 
H/H

0 
for various temperatures above Te (in redUced units t 

T/Te (0)). It is seen that paraconductivity decreases with 
increasing temperature t in qualitative agreement with the 
experimental data on excess magnetoconductivity (see e.g.[1-
3,12]). 
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In conclusion, excess magnetoconductivity of a 
superconductive glass (SG) was considered. It was found that 
samples with weak links should show a crossover between two-
and three-dimensional behaviours of excess conductivity, 
similar to that discussed for layered superconductors [16]. 

Discussions with Prof W G6tze and Dr I Morgenstern are 
gratefully acknowledged. 
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