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1. Int.roducUon 
In the work by ~nglander et al {1980) intenst.ve hyctrogen­deuterium exchange between the Watson-Crick b~se pair~ and a solvent was explained by using two hypotheses. According to the first one, the so-called open states arise in the DNA double helix as a consequence of thermal fluctuations. These states are segments consisting of open pairs of complementary bases and moving along the helix with constant velocity and energy. The second hypothesis identifies these states with soliton excitations (kinks of the sine-Gordon (SG) equation) . The cited paper stimulated the study of solitons in DNA by many authors. On the one hand, a possible role of solitons in the properties of DNA is discussed {providing a mechanism for long-range energy trarJsfer and a mechanism of the DNA duplication and the transcription of 1'1\RNA, protein production in cells, conformational transitions, etc.). Discussions on this theme still continue and have a contradictory character {Baverstock and Cundall 1988, Maddox 1987, Frank-Kamenetskii 1988), Even the observations of Englander et al (1980) have since been questioned. on the other hand, various models. have been proposed to describe the nonlinear DNA dynamics and to substantiate the possibility that soliton-like excitations exist in DNA (Yomosa 1983 and 1984, Takeno and Homma 1983, Homma and Takeno 1984, Fedyanin and Yakushevich 1984, Fedyanin et al 1936, Fedyanin and Lisy 1986 and 1987, Zhang 1987, Xiao et al 1987). Common features of these (essentially mechanical) models are as follows. The bases are modelled by physical pendula performing rotational vibrations in the plane perpendicular to the helix axis. Along the axis the pendula are coupled together by a nonextensible strand (however, an attempt has already been made to take into account the longitudinal motion (Xiao et al 1987)). The strands of the double helix are elastic with 



respect to torsion. The above-mentioned models highly 
idealize the realistic picture of the internal DNA dynamics. 
However, they can be considered as a possible step towards 
the description of great fluctuational rebuildings in DNA. 
one of the central points in the models discussed is the 
modelling of interactions between the complementary bases in 
pairs. The potential energy of this interaction, V(I/Jn,r/J~), 

is considered to depend only on ¢" and r/J~, being the angles 
of rotation of the bases in the n pair. various expressions 
for V have been used in the literature, however, without any 
serious substantiation. In the following section a brief 
review of V {t/J n, rjJ ~) will be given and one of the variants 
will be substantiated. There is one more point not taken 
into account in the discussed theories, namely, the problem 
of friction that always takes place in real biopolymers. The 
effects of dissipation caused by the viscosity of a solvent 
have a 1 ready 

connection with 

been considered 

nonlinear models 

(Yakushevich 1987) in 
of the internal DNA 

dynamics. However, in that work the consideration was 
carried out in the frame of Yomosa's model (Yomosa 1983) of 
the dynamics of only one strand of the double helix. 
Moreover, as it has been shown later (see, e.g., Yomosa 
1984, Fedyanin and Lisy 1986) this model contains some 
unphysical features. In the corresponding section, we 
consider the account of dissipation {both the external and 
internal one) in the above-cited more general models. We 
will proceed with the introduction of model dissipative 
functions. 

2. Base-base interaction 

In the original model of mechanical plane rotators in DNA 
(Yomosa 1983) the following expression has been suggested 
for the potential energy of interaction between the 
complementary bases in pairs: 

2 



V(~,~') =canst [1-cos(~-¢')]. (1) 

In the subsequent paper (Yomosa 1984) this expression has 
been considered to be too much simplified to contain a.n 
unphysical feature and the new variant of the H-bonding 
energy, V, has been presented~ 

V(~.~') = 2A+B-A(cos~+cos~')-Bcos¢cos¢'. (2) 

However, this energy is symmetric with respect to¢ and¢'. 
There are no physical reasons for such a strong demand. 
Takeno and Homma (1983) have suggested V(~,¢') of the form 

V(¢,~') = 2-C-cos~-cos¢'+Ccos(¢-~'). (3) 

This potential gives a correct ground state of the molecule 
(the correct minimum state is given by ¢n=¢~=0 or 2nn) but 
no more reasons have been given there for such a choice. 
From our point of view, the most reasonable choice of V in 
this class of models is of the form V=V(l) , with 1 being the 
distance between the complementary bases (Fedyanin et al 
1986, Fedyanin and Lisy 1986). In these papers, dynamical 
equations of the model with this type of the potential 
(including the break of the H-bonding) have been obtained. 
In the next work (Zhang 1987), the potential {1) has been 
supplemented with the dipole-dipole interaction using, 
however, the condition !=canst. The potential of the kind 
V=V(l) has also been used in the recent paper by Yakushevich 
(1989). This model differs from the previous ones as 
follows. The pendula are replaced by rotating discs which 
are coupled to each other by elastic springs (both along the 
axis and in complementary bases) . But we note that there is 
no longitudinal motion along the strands in Yakushevich's 
model so that the springs should be replaced by 
nonextensible strands. Moreover, the discs have no 
distinguishable points (one cannot determine whether the 
disc is turned out from the ground state or not). Hence, it 
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is also not clear how to specify the ground state of the helix. For the same reason the definition of 1 is uncertain. The function V(l) is taken in the harmonic form (- (l-1
0

)
2, where 1

0 
is the equilibrium distance). This seems to be true only for small deviations 1-1

0
• 

In general, the potential energy V(~n'~;) in the n pair of bases can be expressed using the Fourier expansion: 

V(~n,q,~)~ [ c:, 1 exp(ik~n)exp(illf>;). 
' ' ' 

( 4) 

The minimum of v corresponds to the finite quantity V ( o, o) =[Ck~ 
1

, therefore, beginning from some k and 1 the expansion coefficients c n decrease. The condition '·' V(~.~')""-V(-~,-~') implies C n =C n . Assuming the bases in k, I -k.-1 pairs being approximately identical, we obtain c
0

•
1
=C

1
,

0
, etc. If only the terms of the lowest order of k and 1 are kept in the sum (k,l=O,l), we find 

V(~.~') = C-A(cos~+cos~')-Bcos(~+~'). (5) 

For V(O,O) corresponding to the minimum of V, the condi­tions A>O and B>-A/2 must be satisfied. If A/21BI<l, we have also B>O. In this case v,.,.x= C+A~/2B+B. For A/2IBI~l 
Vm~x=C+2A-B. Note that the harmonica! potential (Fedyanin and Lisy 19B6, Yakushevich 1989) with 1

0
=0 is a particular case of Eq. (5). 

Now, consider the stacking and torsional 
interaction. Following Yomosa's paper (1983), 
-~(2-cos(~n-r;6n_ 1 )-cos(~~-~~-1 ) J is usually 

(intra-strand) 
the expression 

used. In the frame of the continuum approximation, the model intra-strand potential can be assumed to be of the form pK(~n-q,n-l)+K(tjl~-tP~_ 1 )], with only the additional condition K(6~-0)""K0 (A~)
2/2 for the function K (K

0 
is a constant). 

It is also necessary to take into account the energy of interaction between the bases and the surrounding solvent. One can assume that a) the influence of this interaction 
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appears only in the change of the coefficients in V (Yomosa 1984); b) this energy w contains a potential of the Brownian forces; c) W includes a potential of vector forces, e.g., such as the electric ones (the bases are electric dipoles) . In what follows, we shall dwell on the most simple case a). Finally, the kinetic energy of rotational motion of the bases is necessary to construct the model Hamil toni an. It has the following form: 

(6) 

The moments of inertia of the bases, In, will be replaced, for simplicity, by some effective moment, I (the bases are close in masses). 
Thus, the Hamiltonian of the model system can be written as follows: 

3. Dissipative function 
We introduce the model dissipative function with the help of the followii-tg expression: 

The first term in Eq.(B) has an ordinary form and it describes the external friction for the bases moving in a solvent. For simplicity, the approximate equality of the friction coefficients for different bases will be assumed: 
(n""(~=(. The second term in Eq. (8) is a model dissipative function describing the internal friction between the nearest-neighbour bases. The most simple form of Z is 

z ~ (1/21( r¢ -¢ 1', !n n n-1 (9) 

with (
1
n being the coefficient of the internal rotational friction. Within the continuum (long-wave) approximation, 
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• 

that is usually used in the considered models, it is 

unnecessary to know Z for all values l:J.t/Jn. It is enough to 

assume that for small At/!" the function Z is approximately 
given by Eq. (9). 

Using the Hamiltonian (7) and 

we obtain the following system 

equations for the angles t/J and t/J': 

dissipative 

of coupled 

function (8), 

differential 

(10) 

Here z is the co-ordinate along the helix axis, a is the 

nearest-neighbour distance of bases in the same strand and 

the continuum approximation has been used: Xn(t)~X(z,t), 

X • (t)---X(z,t)!a~X ;2. 
n_t 7.7. 

4. Particle-like solutions of the model vithout dissipation 

It is difficult to obtain exact solutior:s of the coupled 

nonlinear equations (10) with arbitrary v. 

easily be solved in the linearized case 

The system can 

(for example, 

optical and acoustic modes can be found). However, nonlinear 

solutions, which are of particular interest, can be found 

only in a few special cases. So for the potential (5) the 

system (10) takes the form 

(11) 

and, if t/J=-t/J', it reduces to the SG equation. If t/J=t/J', we 

come to the so-called double SG equation that is also 

integrable (Condat et al 1983). One can easily find the 

exact first integral of Eq.(lO) for wave solutions depending 

only on the combination (z-vt) (Homma and Takeno 1984, 

Fedyanin et al 1986). In the case when the ratio A/IBI is 

small or large, Eq. (10) can be solved using perturbation 

methods. Consider, for example, the wave solution of Eq.(ll) 
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for small c=BjA. "Nonperturbed" solution (for c=O) are kinks 
(~ 1 =1, i=1,2) or antikinks (~ 1 =-1): 

¢' 
' ?. 1/2 x=7 (A/K

0
a ) (z-vt-z

0
), 

= 4tan- 1exp(1J
2
X), 

;r=(1-v2;c~) -1/2. 

(12) 

Here, z
0 

is the initial position of a soliton (with no 
restriction of consideration we can take z 0=0). We represent 
the solution of the system at C*O but [t::[«1 as follows: 

¢'=¢0+¢~+ •.• , (13) 

that is, we use the standard perturbation theory. 
Substituting Eqs. (12) and (13) into (11) and keeping only 
the terms of the first order of small quantities r::,¢

1 
and 

.p~, we obtain 

= (1-2/cosh2x) [¢ -2c (~ +11 ) sinbxjcosh2x). 1 1 2 (14) 

For ~ 1 "'-1J2 , we have 
general solution 
requirements that 

two homogeneous equations with the common 
C/coshx+C

2 
(sinhx+xjcoshx}. Using the 

the solution must be finite as lxl-><» and 
vanish at c=O, we obtain C =C =0. 

' ' 
Thus, in the lowest 

approximation, ¢1 and ¢~ are nonzero only if T!
1

=7J2=7J. Then, 
the solution of Eqs. (14) is 

.P
1 

= ¢; = 2r::~(x-tanhx)jcoshx. (15) 

One can see from Eqs. (13) and (15) that the full wave 
solutions of Eqs. (11) for lcl«l have the form of a kink 
(antikink) slightly deformed in a region of about its width 
but with a nondisplaced centre. Analogously, the opposite 
case of "strong coupling" ( 1 c 1 »1) can easily be considered. 
In this limit, we obtain corrections to the rr-kink 
excitations. 
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5. Effects of dissipation 

The account of dissipation effects will be demonstrated by 

using as an example the system (11) when it reduces (at 

~=-~') to the sine-Gordon equation. In this case, soliton 

solutions of the nonperturbed equations (without 

dissipation) are as follows: 

~ 0 = 4tan- 1 exp(~€) = -~~. (16) 

E=r(z-vt)/d, TJ=±l, d=c/w=a{K/A) 112
, 

0 0 0 

We expand the solutions as in Eqs. {13) and substitute them 

into Eqs. (10). After linearizing these equations in ¢ 1 ,~; 
and in the dissipative terms that are assumed to be small 

perturbations, we come to the following equations: 

~~~-+€€+(2B/A+1-2fcosh2€] + = 0 

, 
t~"C"-il€€+(1-2/cosh €1 t = 13(€), (17) 

where +=(~ 1+~~)/2, il=(f/l
1
-¢;)/2 and the substitution 

~=w0r(t-vzc~
2 ) has been made. The function 13(0 is given by 

the formulae 

13(€) = 4pfcosh- 3€-4qfcosh€, (18) 

We search for the solution expanding + and t on the basis of 

the orthogonal system of functions f(()=1/~2cosh€ and 

fk (0 =(k+itanhO exp( ikO /~ 2nwk, 

(Fogel et al 1977): 

(19) 

Substituting Eqs. (19) into (17), we find equations for the 
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determination of the functions A("t), Bk(-r), C(T) and Dk(-r): 

CLT(T)+(2B/A)CT(T)=O, 

ATl:"(T)=a~ 

with 

a=Bp~ 2j3-4q~ 2, 

Dkl:"T(T)+(2B/A+w~)Dk(T)=0, 
BkTT(-r)+w~Bk(T)=bk, 

(20') 

The equations are solved with the initial conditions corresponding to !p
1

, ¢; and their first derivatives being zero at t=O (the soliton is supposed to create at t=O). Then, we have W=~=WT=~T=O at t=O. Using, e.g. for C(T), the representation C(T)=Jd(~(T)f((), we obtain C(i)=(dC/dT)L=-1:=0, where L=-W0"(VZC~2 Hence, C=O. In the same way we find Dk=O, A(T)=a(w
0
"(t) 2

/2 and - ' Bk=bk[l-coswk(l:"-T) J/wk. After substitution of these results into Eqs. (19) and integration, we obtain 

W(T,() = 0 
(21) 

It is evident that the method used is correct only for not very large -r-T-t. Keeping in Eq. (21) only the terms to the second order of t, we have 

This function is of the same sign as v for a kink and of the opposite sign for an antikink. It slightly changes the soliton form in the region of its centre (in all cases it leads to a deceleration of the soliton). If E increases, ¢
1 rapidly decreases. 

Let us calculate the ratio of the energy E of the obtained wave solution to the kink (antikink) energy Ek~ 

(23) 
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Using ¢ from Eq. (22), we find with the above-used degree of 
precision . 

E/Ek 1+2~~vtd- 1 fdx(q/cosh 2 x+pjcosh4 x) 
0 

"' 1-2((t/A) (~V/d) 2 [1+7t'; 1 n (a~jd) 2/3(]. (24) 

For velocities not very close to ±c
0 

the decrease of the 
soli ton energy is determined essentially by external 

friction. It is due to the continuum approximation condition 
ajd«l. Then, the solution can be written as follows: 

0 (Z, t) 
-t 2 2~~v( 

"' 4tan exp(~€)+(w 7t) 
0 Adcosht;: 

(25) 

This is true including the second order of small quantities 
(we have 

describes 

also used 

the kink 

according to the rule 

I/J 0t;:""2~/cosht;:). The expression (25) 
(antikink) with velocity decreasing 

V = v ( 1-2 (W
0
7) 

2(t/A]. (26) 

Note that the results of this section are equally 

applicable to Yomosa's potential, if A-•A+B is substituted in 

Eq. {2). In this case the obtained solution takes into 

account the effects of dissipation for the so-called 
uncoupled 2rr-solitons (Yomosa 1994). In such a way the 

dissipation effects can be considered in all the above­
discussed models. 

7. Conclusion 

We made here an attempt to present today's status of one 

trend in modelling DNA: the mechanical plane base-rotator 

models. These models are called to describe large 

fluctuational rebuildings in DNA, namely, the opening of 

base pairs. At present, such attempts are of very 

oversimplified character but they can be considered as a 
possible step towards some more realistic description. For 

the first time, we consistently took into account effects of 
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dissipation. The perturbation theory scheme we have used is 
also applicable in considering spatial inhomogeneity that 
arises from small deviations in the effective moments of 
inertia of the bases. In the continuum models it is 
displayed in a spatial dependence of the "frequency" w

0
• 

Perturbation methods can also be used if the model system 
acquires an energy from the surroundings. This will be the 
subject of our next investigation. 
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