


1. Introductiop

The gauge constructions in the theory of materials with

defacts have been Successfully developed in the last ten years

(see,a.9.,[1-3]). The complete gauge fielq thecry for materialg

with dislocaticns and disclinations has first been Presented in

(1}. The approach developed by Radid and Edelen includasg the

combinations of the Yang-Mills {Y™) minimal coupiing theory, the

conventional equations for defect dynamics and the cCartan
structure equationa. It has been shown that the space group G'p-

S0(3)eT(3) may be viewed ag a é-parameter gauge group that leaves

the Lagrangian of elasticity theory invariant. Breaking of tha
homogenaity of the action of S0(3) was ghown to give rise to

disclinationa and rotational dislocations, while homogeneity

breaking of T(3) givea rise to translaticnal dislocations, as a

final result, the fielq theory Lagrangian that describss the

deformable elastic continuum together with the dislocation and
disclination fields has been derived in [1],

Note that the Kadid-Edelen (KE} gqauge model allows us to

study the defect dynamics, It ig known, however, that the mobility

of dislocations in semiconductors depends on the electronic states

of materials (see,e.q.,[4]). Moreover, the core of disclination

acts as an acceptor (donor) thus leading to tha formation of the

dislocation subbang in tha midgﬁp of the electronic Bpectrum [5-

71. The subject of our investigation in the present article is the
electronic properties of defect gsystems. We show that the
electronic properties of paterials with dislocations and

disclinations may be viewed in the framework of the gauge



approach. For this purpose, we axtend the Lagrangian of the KE

model by adding the electronic terms in the gauge i{nvariant form.

The plan of the paper is as follows. In mection 2 tha XK

gauge model is considered. fThe Lagrangian as well as the field

equations are presented. As an illustration of the possibilities

of the method, the exact monopole~like solution for static

disclinations obtained first in [8) is presented. fThe effective

Lagrangian for the electrenic subsystem is constructed in section

4. The electron fields are considered to transform by the spinor

representation of the gauge group S0(3). Spiner components are

suggested to be the electron states with spin up and spin down,

respectively. It is of interest that the primary free electrons

are found to interact with disclination fields. We have solved the

Schrédinger equation in the external potential given by the static

vortex-like disclinations. The term deacribing the interaction of

electron flelds with acoustic waves ia derived in sectiom 4b. In

this case electrons are shown to interact with both the

dislocation and disclination tields. Restricting here attention to

phenomena where only diaclination fields play a significant role,

we have analyzed the Schrédinger equation in the presence of the

interaction term. As a result of the interaction, the localization

of slactrons in the region of the core of the monopole-~1like

disclination ia established. Saction 5 is devcted to concluding

comments.

¥We have used here (unless otherwise stated) the mame notation

a8 in [1]. Namely, lower case Greek indices, a,B,..., take thair

values from the get I={1,2,3}). The same is true for indices

denoted by capital letters, A,B,..., and by lower case Latin

letters, 1,j,k,....atartinq with the letter 1. Lower case Latin



letters at the beginning of the alphabet, a,b,..., take their

values from the index sets J={1,2,3,4). as usual, the summation

for repeated indices is assumed. The labels i,j,k,a,8, and y are

the Gw labels, whereas the labels a,b,c,... and A,B,C,... are the

space labels.
2.The Kadid-Edelen gauge model

The Lagrangian that is invariant under the inhomogeneous

action of the gauge group G takes the following form [1];:
sp

=L +L,+ .
L LZ L‘ L ' {2.1)

where
L~ (po/2)B‘EUB: - [A(R, 8" 2uE 8's™z_1/8 (2.2)
describes the elastic Properties of the raterial,
- - 1 pacy bd ]
L, (8,/2)8, D k"X D), (2.3)

describas the dislocations, andg
L= - (8/2)C,0P] g% P, (2.4)

deacribes the disclinations. ‘The strain tenmsor in (2.2) is

deternined as

|
n-n‘a B (2.5)

where
1 i £ ) 1
B=8x'+ :mxw‘:‘ + ¢! (2.8)
is the distortion tensor. In (2.s) ﬂx‘ describes the integrable
part of the distortion, the second term arises from the
inhomoganecus action of the rotation group S0(3), and third arises

from the breakinq of the homogeneity of tha action of the
translation group T(3). The state vector x'(X')=y' x'1) in (2.¢)



characterizes the configuration at time T in terms of the

coordinate cover (x") of a reference confiquration, W': are the

compensating gauge flelds associated with disclination fields,
wvhereas ¢: are associated with dislocation fields. Tensors D; and
Ff; are determined as follows: .

[ § 1 1 (- 39| o) L S |
D 0,8, 8¢ Ty (W, 6 Wod L), (z.7)
and

o o oo ¥

Fl=8W - 3w csrwfwh. (2.8)

In {2.2-2.4) A and u are the Lamé constants, p, is the mass

density in the reference configuration, 8 and 8, are the coupling

constants, caﬂ are the components of the Cartan-Killing metric of

the subgroup S0(3}, c®  are the structure constants of the Lie
By

algebra S50{3)}, and 1;1 are the generating matrices of the group

50(3}). In (2.4) the quantities g** are given by g'’=

-5

V&
k“=1/y, and x*=0

for asb. The parameters { and y are the two positive "propagation

and ¢™=0 for a=b, whereas in (2.3) k'"=-§"",

parameters". The field equations that determine the functions X',
Wf and ¢: are given in Appendix.

The physical substantiation of the KE model as well as some

other details may be found directly in {1]. It is necessary to

take account of the fact, however, that only defects continuously
distributed in materials can be considered in the framework of
this model. Moreover, as was mentioned in (9], the gauge
translational and rotational degrees of freedom were treated in
(1] separately, which is of interest only in the regime of dilute

defect distribution. Some of these problems have been studied in

(9,10) where the gauge theory of defects for discrete systems was

developed by using simplicial and differential geometric methods.



The field equations given in Appendix are a system of coupled

nonlinear differential equations which is very difficult to solve

in the general case. To study most of the problems of practical

interest, the linearization procedure developed in [1] may be

used. This procedure invelves the ecaling of the gauge group with

a group secaling parameter e. As was shown in [1], in the first

order approximation the elasticity theory is recovered., In the

second order approximation the dislocation fields appear whereas

the disclinations enter the equations only in the third and higher

order approximation. However, as was mentioned in {1), there are

other possibilities, one of which is examined in the next saction.

2.The exact monopole-like solution for static diaclinations

Let us consider the disclination Lagrangian 1;1&+I& where the
dislocation fields ¢: are ignored from the beginning. In this case
(Al0} and (Al) can be rewritten as follows:

862"~ cfaw:'c;" = Tb/2, (3.1)

and
: z‘w“,l = 0 2
ai DI A 4] t (3. )

where the condition (A12) takes now the form T;-réjz:zj. At this

stage we choose the regular representation for the rotation group

50(3): 1;1- claj, where €,

a ie the full antisymmetric tensor,

=] = L — 4 -
. 1; Caﬁ aaB' and CmB CBG' where C33 1.

Note that the system (3.1-3,2) is similar to that in the ™
field theory with the Higgs triplet. Since the underlying group
for ths YM theory, SU(2), and S0(3) have isomorphie Lie algebras,

the known golutions in particle physics may be suitabla in defect



dynamics. Indeed, as was first shown in [1), if the disclination
energy density ceefficient s, is very large, the right-hand side

of (3.1) tends to zere thus reducing (3.1) to the free M

equation. The static solution of such an equation (well known as
the solution of Yang and Wu (see,e.g.,[11])) was used in [1] to

describe the far field of a statie disclination.

On the other hand, in [8) the static monopole-like ansatz for

(3.1,3.2) has been chosen in the form

' xhy = s, Fir)x'/r (1.3)
and

o B, . af 2 o _
WX = 8 CBABXB/I , W = o, (3.4)

where r’= x‘xr In accordance with the boundary conditions (A5)

and (All), the function F(r) in {3.3) must tend to the constant

value, F, as r-m, while the disclination fields HT tend to zero as
1/r. Let us note alsoc that the solution (3.4) is already antiexact
in accordance with (Al4) since XAWT+Tle0.

Clearly, (3.4) 1is the solution of ¥Yang and Wu that is

singular as 1.0, while {3.3) is the exact monopole form analogous

to that for the Higgs triplet in fieid theory. Note that the
singular behaviour is peculiar to dislocations and disclinations
and may be explained due to the fact that the elasticity theory

formulae are not valid for small r.

Let us show that the right-hand part of (2.1) turns out into

zero at our choice of (3.3,3.4). The satress tensor u: determined

in (aA2) may now be written as

oy= X X'g(r} (a1’ (r)-3)/2¢m1g? (1) =11 /07, (3.5)



where g{r)=aF(r)/sr. Clearly, a‘: is symmetric. Thus, the right-

hand side of {3.1) takes the form c'afﬁxﬁalo, and we obtain the
free YM equaticn. The deformation tensor E“= (xAerz)gztr)—a",
and the distortion tensor B:- (x‘x‘/rz)g(r;. As can be sasily

seen, (3.2) reduces to

3,9(r)[3Ag°(r)-B] = -2([Ag’(r)-Bg(r) )/r, (3.6)

where A=A/2+u, and B=3A/2+u. carrying out the integration in (3.6)
we obtain the following condition:

|Ag*(r)-Bg(r)| = g /17, (3.7

where g, is an integration constant. The stress tensor takes now
the form
a':- goxlx‘/r‘, {3.8)

which agrees with the result of {1), but is valid for all r {with
the exception of the small region near r=0 where the elasticity
theory does not work). Wa would like to remind that in [1] only
the region of large r has been conaidered. Note that the solution
(3.3,3.4) has a vortex-like behaviour. Due to the nonlinear
character of (3.7) the new principal feature, as compared to the

monopole solution, arises. Namely, the analysis of {3.7) shows two

distinctly defined reglons characterized by the

dimensional
pParameter ro-(z‘lg:a./am’)"‘.
The solutions of (3.7) are found to be [8]
g,(r) --Noc:x:mh[%c:c:sh't r:/l:'2 1. rsr_
sim) = gztr)-~N°cos[%cos"r§/rz+ g], nro , 3-9)

vhere N =2 (B/3A)Y2 Obvicualy, the symmetric solution g*(r)--g(r)

is alsc present. It is convenient te introduce the universal



dimensionless parameter t=r/ro. For t-0 g(t) diverges as %7

For t+e g(t) tends to zero as t™°. At t=1 g(t) has a jump from the

value N to -N /2. Fig.1 shows the function gn(t)=g[t)/No. One can

see that g{t) essentially changes its behaviour when t passes the

point t=1. To restore now the function F(r} we perform numerical

calculations (the integration constant is set to be zerc here).

The result is presented in Fig.1. The region tx1 determines the

core of the disclinations, i.e., the region where defermations
take maximal values. Beyond the core the state vector y' changes

elowly and tends to a constant value as t-s.
The topeological charge (or, equivalently, the Frank index)
can be defined as follows (see, e.qg.,[12]):

_ 3 1k A, B, . C.3
N = (1/8nF )Je ©40cd X8 "3 x5 . (3.10)

After straightforward calculations we obtain that N=1 for (3.3).
It should be noted that disclinations with the Frank index N=1 are
now not so well studied in =olids to be compared with the case
Ne¢l. The reason is that the investigation of disclinations with
N=1 as well as cores of disclinations meets

considerable

mathematical problems because the nonlinear relation between
stresses and strains must be taken into account. As we have shown

here, the gauge model of defects allows us to describe the

disclinations with N=1 quite well.

4.Electronic properties of defect systems

Let ug introduce the electronic fields ¥ (x ) transforming

under the action of the rotation gauge group SO0(3)} according to
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The effective potential (4.19) is shown. The parameter set

*
isa used: 4B/3A=2, JIJ=1/2, m =0Q.5MeV, r°=530, ao=5i, EF=D.039V, &0

that K1=0.06ev and K}=0.0032ev.



5%y - iy, (1%, 78 ) =187 (4.1

We have taken the spinor representation for fields w} {j=1,2). In
this case T"= ta/Z where t¥ are the Pauli matrices. Two states Wl

and 02 may be associated with the spin up and spin down electron

states, respectively.

a) Bfectine fLagnangian (Jnee caae)
Let us consider the long-wave electronic states. We derive
the effective Lagrangian for the electronic subsystem that is

invariant under the inhomogenecus action of the gauge group G_ in

P
the form

Ly~ {iR[¥'D¥-(D¥")¥] - (hz/m*)([}‘f)DAi}/z, fa.2)

vwhere ¥ is the two-component spinor, n is an effective electron

mass, and the covariant divergence for electron fields is

determined as

(+ S §
(0,%) = 8% -igT Wiy, (4.1)

where g is the group constant (in what follows we shall consider

the case g=1). Thus, we obtain in (4.2) that the primary free

electron fields interact additionally with the disclination fields

while the interaction with dislocation fields, ¢:, do not appear

in the free case. Clearly, the variation of (4.2) with respect te

WT adds new terms to the Euler-Lagrange eguation (Al10). Moreover,

the variation of (4.2) with respect to ¥ gives an additional

equation. We do not know at present how to carry out the complete

analysls of the self-consistent system of equations for defect

dynamics in the presence of the electron fields. Wwe see, however,

two types of problems which can be studied, First, we can

investigate the electronie pProperties of defect systems

10



considering the Schrédinger equation in the external potential

given by the dislocations and {or) disclinations.

st

Second, we can
7dy the influence of the electron fields on defect dynamics.
We shall consider here the first problem. Namely, let us

Sstudy the electronic properties of continuum media in the presence

of the vortex-like disclination {(3.4). The variation of (4.2) with

respect to ¥ gives the Schrodinger equation which takes the

following form in the stationary case:

~(n?/am*y (6, it™w%/2)% = v

{4.4)
We restrict attention here to static disclinations (WT=0). Using
the gauge condition a"wf:n, one obtains from (4.4)
[3°-it%W et wWwsa19 = - (20 E/mtye, {4.5)

where az:aAa". Subgtituting the solution (3.4) in (4.5), one gets

(8°-ie, v (x)/r%)a*-1/2r%19 = -(2m*E/nd) e, {4.6)

This equation may be solved in the usual way. Let us introduce the
operator of the total angular momentum

a a a
MU= M+ 1Y, (4.7)
where M'i"rb=--iru:c'“"ixnaB denotes the ordinary angular momentum, and

Im=h'ra/2 denctes an isospin, Breaking up 4° into the radial and

angular parts, &= oo+ (1/r2)a; g’ We rewrite (4.6} in the form

(&%+ (1/1-3)3; o= (Mo %) /mr-1/20%19 = - (am"Esn) e, {4.8)
Since Hfrb= —hza; g+ we finally obtain
[p~ M /h'r+1/8r°1% = - (2 E/n?) %, (4.9)

The solution of (4.9) is well known. The. wave function ¥ may be

11



presented in the form i(r.¢.9)=RJ(r)YL (#,8), where YL are

the spherical spinore which satisfy H’Y:‘- h%J(J+1)Y:_, M Y:_=
fm¥’  ana

R (r) = cJ(kr)'“st(kr). (4.10)

Here I is the Bessel function, a&=vJ({J+1}, and C, can be

determined from the normalizatien condition. The quantum numbers

take the following values: J=1${1/2) at 1»0; J=1/2 at 1=0, and

m=J,...,J, where 1 (1=0,1,...w) im the orbital gquantum number.

The energy spectrum E ia similar to that for the free motion,
E*hﬁg/ZM'. Thus, we obtain that the presence of the vortex~like

disclination only slightly modifies the electronic propertias of

continuum media.

b) Elective Zagnangian (genenal cane)

Here, we consider the electronic properties of defect systemsa

when the deformation potential which characterizes the interaction

of electrons with acoustic wvaves is taken into  account. We

construct the interaction Lagrangian in the following gauge

invariant form:
Line= “¥ 0w (e, (4.11)

where the deformation potential in the isotropic case may be
defined ams

C C
W, (x y=-(G/2}SpE, (x), (4.12)

and G is the interactien constant. lLet us remind that B, ie

determined in (2.5). In the defect free case we easily obtain from

(4.12) the known expression for the deformation potential (eee,

®.9.,(13]) where the constant ¢ is determined ag G-(Z/J)Er, and E

is the Fermi energy. Thus, the complete theory includes now

12



elastic fields, dislocations, disclinations, and electron fields.

The effective Lagrangian takes the form

L = Lx+ L¢+ 1h+ LT+ Lint’ (4.13)
where L

x'L¢'Ih'Lw and Lint are determined in (2.2-2.4}, (4.1), and
(4.11), respectively. Note that electron fields in (4.11) interact

with both the dislocation fields ¢: and the disclination fields

W?. In the present paper, we restrict our attention only to

disclination fields. Namely, we consider the static monopole-~like

disclination (3.3,3.4) as the external field to the Schrédinger

equation. An analogous problem has been studied in relativistic

field theory [14]. It has been shown that the Dirac equation for

massless fermions possesses the zero-energy fermion bound state in
the presence of the static t‘Hooft-Polyakov monopole. As a

consequence, fermion number iz broken thus leading to the strong

baryon-number breaking in monopole-fermion interactions [15]. In
our (non-relativistic) case we expect the appearance of discrete
levels in the electron spectrum in the presence of the monopole-

like disclinations.

Taking into account the interaction term {4.11), we rewrite

the Schrodinger equation {(4.4) in the form

[6°-1t%W%e*- Wit ae m*GEwa“/hz]w = - (2m"E/t%) §. (4.14)
We consider the case when the dislocation fields are absent

whereas the disclination fields are taken to have the monopole-

like form (3.3,3.4). Thus, (4.14]} can be rewritten as

(93— W/Rc% 1/4r%+ n"G(g%(r)-3) /¥ = -(2m E/n) ¥, (4.15)

The wave function in {4.15) may again be chosen ag a product of

13



the radial and angular parts. In this case one obtains for the

radial part R

&R + (2m" /8% (B- {7(3+1) ~1/4) K%/ 2am" v*4G9% (x) /2-3G/2]R = 0. (4.16)

It is of interest that the constant term in (4.16) ims determined

as 3G/2#E . Thus, the electron enargy is really measured relative

to the Fermi energy. Wa reduce {4.16) to the usual fornm

SR+ (2m" /%) [ - v, ir=o, (4.17)
where E—B—Br and
Vo~ —(E/3)g7(N)+ (T (I+1)-1/410%2m" 2, (4.18)
Using (3.9), we rewrite (4.18) in the following form:
-K cosh®[Lcosh™ ! (1/t%) 1+x:/t2, tsl
- ! : {4.19)
il —chosa[%cos" (1/t‘)+§]+xz/t2, tel

vhere K =4BE/3A and K=[J(J+1)-1/4Jh%/2n"r’ are the positive
dimenaivnal parameters. The analysis of (4.19) allows us to obtain

the full information about the elactron spectrum. let us study

first the qualitative behaviour of V. FOr t-0 the second term

in (4.19) tends to infinity as t™ whareas the first term diverges
-4,3 - +

as -t . For t-+1° one ocbtains v“pxz-xl. For ta1 V."-ltz-x‘/l.

For t+m the first term in (4.19) tends to zero as -t* vhereas the

mscond term as t2, It is clear that the potential well always

arises in the region tsl. The characteristic paramatears of the

potential well essentially depend on the values of K and K:' When
K, decreaszes {or, equivalently, !:1 increases), the minimum of V_"
moves to tha left and the depth of the potential well rapidly
increases. Such a behaviour takes place in a wide range of the

parameters. We have inveatigated (4.19) numerically taking a

14



parameter set related to semimetals (EF=0.03eV). The typical curve

for v is shown in Fig.2.
eff .

Thus, we find that in accordance with our proposal the
discrete levels must appear in the electron spectrum due to the

presence of the static monopole-like disclination. Moreover, it

follows immediately from Fig.2 that the electron states with E<E_
are localized in the region of the core of disclination., This
result agrees quite well with that for the electron localization

in the region of the core of dislocation {see, e.g., [4-6,16,17]).

5.5ummary

Let us note the main results obtained in the paper.

1. We extend the KE gauge model by including electron fields. The

effective Lagrangian that describes elastic fields, dislocations,

disclinations, as well as electron fields is constructed in the

gauge invariant form. In the framework of this model one can study

both the influence of electron fields on the defect dynamicse

{using, for example, the quasiclassical approximation for electron

fields) and the electronic properties of materials with defects.
2. We obtained the exact monopole-like solution for static

disclinations with the Frank index N=1. The stress tensor is found

to depend only on the model parameters (A and up} and on the

disclination core radius (ro).

3. We investigated the long-wave electronic states of materials

with disclinations. When the interaction between electron fields

and acoustic waves is taken into account, the electrons with the

energy E<E_ are obtained to be localized in the region of the core

of the monopole-like disclination.

In  the present paper, we restricted attention to



disclinations. Note that disclinations are not so well studied in

sclids to- be compared with dislecations. The reason is that

disclinations are =meldom observed in ordinary 3-dimensional

crystals. Nevertheless, they are important in 1liquid crystals,

polymers, and amorphous bodies. our interest in disclinations

comes from the known results obtained first in the relativistic
field theory for the t’Hooft-Peclyakov monopole. Thers is ne doubt

that the investigation of electronic properties of materials with

dislocations in the framework of the gauge model are of

consliderable interest. The work in this direction should be

continued.

Appendix
!’heﬂeldequaﬂmmo{de@ed.d.unamlco
Here we present tha field aquations of defect dynamics

obtained firast in [1]. The Euler-Lagrange equations with respect

to xl take the form

Aot = o _ A, o0 _ab
alpl 8A°| 7ﬂl(w7pj "TGJ+F-5RJ)'

(A1)
where the explicit expression for the stress tensor
A - A 5 ¥ & J nc o RE, SC
%y = /283, (8x vy Wit ve)) (8™ 8 e 12,8y, (A2)
and the momentum
- Jowd O K o8

pl puﬁlj(a‘z +7auw¢x +¢4)' (A3)
RT is determined as follows:
LU (R acy bd 1.g ¢tuy! k K o) o0k
R: BL/&D.b slsljk k [ac‘d ad‘c ’ak(w‘:‘q W‘:Ocnratrcdx 1.

(Ad)

Note that (Al) are the equations of balance of the 1linear

momentum. When wf are aqual to zero (pura dislocated material)

{Al) reduces to the well-known in classical slasticity theory form
a‘u:-a‘pl. As was shown in [1], the two types of the boundary
conditicns may be written for (A1) :

16



a) the Dirichlet data {traction-free spatial boundaries)
| 1 ces
Sx |aE =0 % 165 specified) , (AS)
4 It
b) the homogenecus Neumann data (zerc initial and final momentum)
Zi"a|asq= 0. (A6)

Here and below, aE‘wEa) are the spatial boundaries of the 4(3)-

dimensicnal Euclidean space, respectively, n is a

dgenerated basis for the ﬁ]— dimensional space Aa(EJ, My is a

top-down generated basis for the space AZ(ES), and Z:= 6L/6BL

top~-down

where
Ao a_
2= -al, 2=p, . (A7)
The Euler-Tagrange equations with respect to ¢: are
ab i Q.ab b
8 R Ty W R = zy2, (AB)

where RTh is determined in (A4) . The boundary conditions are the

homogeneous Neumann data

R, ’az = 0. (A9)
[
The variation with regpect to W? gives
ab B ab_ b
86"~ Cra®s S8 = Tor2, (A10)

ab_ i 4 a_ o
where G, = aL/BFGb and T~ (r:iL/(:i'i»a’u]|cm}.J The
for (Al0} are obtained to be the natural Neumann data

boundary conditiens

aB _
G “alaaa‘ 0. (A11)

Additionally to the Euler-Lagrange equations, we write here

the important relationship between dislocations, disclinations,

and stresses

1
T Tg, (2x'+2r"8)) (A12)



and the integrability conditions

r;Ja“‘Bj =0, (A13)
which determine the balance of moment of momentum.

Finally, we note that the theory [1] has been constructed in

Buch a way that the nonexact gsuge condition must bae satisfied.

Namely,

x"#!=0, x*w=0. (Al4)
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