

объединенный ИНСТИтут ядерных исследований дубна

E17-90-58
E.A.Kochetov, M.A.Smondyrev

FROHLICH MULTIPOLARONS

Submitted to "ТМФ"

1. Introduction

As ia known, a alow electron in an lonic cryatal preate日 a local polarization of a aurroundina medtum, which lowers ita energy. When the glectron moves, the polarization reaton followa it. forming a quabi particle, a polaron. In a quantum-mechanical lankuage thia meane that the electron polarizes the phonon vacuum, and the processes of emission and subsequent absorption of virtual phonons result in the renormalization of the electron eneray: thue the polaron is a bound state of a charged particle in a quantum ecalar field. The most known between the various polaron modele ie the Frohlich optical polaron, that is the model of a scalar particle in a continious medium interactine with Lo-phonons.

Up to now the theory of the Frohlich polaron can be conaidered as a well developed field of solid state physica, The investiqations have been done extenaively for various quantities characterizing a one-polaron sybtem: self-energy and effective mass, mobility, optical absorption coefficient and so on. Much less attention has been pald, however, to atudying many-polaron systems. For the firet time the poseibility for two polarons to form a bound state (bipolaron) has been considered in paper 1) Calculationa should be also mentioned of the bipolaron ground state energy and effective mass by the path intearal method ${ }^{2}$) the critical value of the electron-phonon coupling to form bipolarone and the mean distance between two electrons in a bipolaron 3,4 . From the phyeical point of view the biwolaron concept can be useful in studying the properties of negative U-centers and D^{-} complexes in ionic cruatals. These syatems consist of s defect and two bound electrons and can be considered as intrinsic bipolarons 5-7) Recent interest in the bipolarons ia caused by
their role in attemots of explaining the high-temperature superconductivity. According to the proposed bipolaronic mechanism of superconductivity, the bipolarons of hiph enouph density underpo the Bose-Ginstein condensation, which results in a suberconductivity state ${ }^{8}$)

Naturally, the question arises whether there is a posibility of an N-molaron bound state to be formed for $\mathcal{N} 2$. When N electrons proparate in a medium there are feasible processes of phonon exchange between them. which pive rise to attraction forces. Therefore a bound state of N polarons can exist. If the constant of electron-phonon interaction is small. $\boldsymbol{\delta}$ 《 1 , the probability of creating a bound state of two polarons is $\boldsymbol{g}^{\boldsymbol{2}}$ times as small as the probability of their free propagation. In other words, in the regitne of weak coupling polarons hold their individuality and almost independentiy propagate through a crystal. In this case. it should be expected, their total energy is merely a sum of energies of N isolated oolarons,

In the strong coupling repime the processes of phonon exchange are no longer suppressed. and a bound state of N electrons arises which is gurrounded by a common cloud of virtual phonons. Polarons lose their individuality completely, and the eneray of such a state should strongly depend on the number of electrons N. Really N Dolarons colioose a bound state whose energy in much lower than the total energy of N isolated molarons. In paper ${ }^{2)}$ we indicated that the formation of macroscopic polaron clusters is more profitable energeticallv.

It may appear that the Coulonb repulsion forces between electrons will impede the formation of an N-polaron cluster. However, the electron-phonon interaction is itbelf of a Coulomb
tvpe, and it is clear that at a suffioientiv large coupline constant of electron-phonon interaction the electro-static forces will be unable to prevent polarons to merae into a cluster. The same may be concluded from the results on the behaviour of a single polaron in a field of a fixed Coulomb charee 9 ?

Formation of the polaron clusters with a low energy fowing to large N) may lead to heating a crystal. With increasing temperature the effective constant of electron-phonon interaction diminishes, a polaron "undresses" 10, 11), which in turn mav result in a self-destruction of a polaron cluster. So interestine temperature effects can exist in polaron physics.

The paper is oreanized as follows. In Sec. 2 we introduce the exactly solvable N-particle linear polaron modei to illustrate the decreasing N-dependence of the ground state energy. In Sec. 3 a representation is obtained for a partition function of a svstem of N polarons as path integrals. In Sec. 4. usine the variational method, we estimate the ground-state energy and the effective mass of the svstem. Sec. 5 contains estimations and a discussion of the role of temperature.

2. Linear polaron model

There exists an exactlv solvable model of an N-particle sustem in a phonon field. It is a linear version of the frohlich Hamiltonian:

$$
\begin{align*}
& H=-1 /(2 \mu) \sum_{j}^{N} \nabla_{j}^{2}+(1 / 2) \sum_{i, j}^{N} \gamma_{i j} r_{i} r_{j}+\sum_{k} \omega_{k} \alpha_{k}^{+} a_{k} \\
& +\sum_{j}^{N} \sum\left[i \pi_{j}(k) / \sqrt{2 \omega_{k} \nabla}\right]\left(k r_{j}\right)\left(\alpha_{k}^{+}-\alpha_{k}\right) . \tag{2.1}
\end{align*}
$$

where

$$
\begin{equation*}
\gamma_{i j}=(1 / 3) \sum_{k} k^{2}\left[\pi_{j}(k)_{i}(k)\right] /\left(\omega_{k}^{2} V\right) \tag{2.2}
\end{equation*}
$$

Syatem (2.1) for $N=1$ has been proposed by Bogolubov 12) to approximate the Frohlich polaron and now is referred to as the linear or Bopolubov polaron. Relation (2.2) provides the conservation of the set of N momenta:

$$
P_{j}=-1 \nabla_{j}+\sum\left[k \pi_{j}(k)\left(q_{k}^{+}+\alpha_{k}\right)\right] /\left(\omega_{k} r 2 \omega_{k} V\right), . i=1.2 \ldots N
$$

The energy of the system at fixed total momentum $\mathbf{P}=\Sigma \mathbf{P}_{\mathrm{j}}$ takes the form

$$
\delta(P)=E+P^{2} / 2 m
$$

where E ie the energy of the multipolaron at rest and $m-i t s$ effective mass. The functions $\pi_{j}(k)$ are introduced to characterize the interaction between an j-th particle and a phonon with a wave vector k. They are assumed to be in the form

$$
\begin{equation*}
\pi_{j}(k)=\alpha_{j} \pi(k) . \quad j=1.2, \ldots N . \tag{2.3}
\end{equation*}
$$

System (2.1) under constraints (2.3) turns out to be exactly solvable. Due to (2.3) the particles interacting with a field distinguish from one another only by different "charges" α_{j}.

Let us now introduce a new set of coordinates $\left\{y_{j}\right\}$ instead of $\left\{r_{j}\right\}$ through the linear orthogonal trangformation

$$
\begin{equation*}
y_{j}=\sum_{j=1}^{N} w_{j i} r_{1} . \tag{2.4}
\end{equation*}
$$

matrix W being taken to diaponalize the quadratic form $\boldsymbol{\eta}_{1 j} r_{i} r_{j}=$ $\gamma^{2} \sum \alpha_{i} \alpha_{j} r_{i} r_{j}:$

$$
\begin{equation*}
\hat{W}: \sum_{i=j} \alpha_{i} \alpha_{j} r_{i} r_{j} \Rightarrow S(N) y_{N}^{2} \tag{2.5}
\end{equation*}
$$

Here. the use has been made of the relations

$$
\gamma^{2}=(1 / 3) \sum_{k} \frac{\pi^{2}(k) k^{2}}{\omega_{k}^{2}} \frac{\text { and }}{V} \quad S(n)=\sum_{i=1}^{n} \alpha_{i}^{2} .
$$

There should be kept in mind that (2.5) is due to the fact that the matrix $\left\|\alpha_{i} \alpha_{j}\right\|, i . j=1, \ldots, N$ possesses the principal values 0 of an ($N-1$)-fold degeneracy and $S(N)$. The matrix W is readily obtained : $W=\left\|W_{n j}\right\|$, where
$W_{n j}=0,1 \leq n \leq N-2, n+2 \leq j \leq N:$
$W_{n j}=\left(\alpha_{n+1} \alpha_{j}\right) / \sqrt{S(n) S(n+1)}, \quad 1 \leq n \leq N-1, i \leq j \leq n ;$
$W_{n, n+1}=-\sqrt{S(n) / S(n+1)} ; W_{N j}=\alpha_{j} / \sqrt{S(N)}, \quad 1 \leq j \leq N$.
The W - transformation being applied to Hamiltonian (2.1) yields
$\tilde{W}: H\left[r_{1} \ldots r_{N}\right] \Rightarrow H\left[y_{1}, \ldots y_{N}\right]=-(1 / 2 \mu) \sum_{j}^{N-1} \frac{\partial^{2}}{\partial y^{2}}{ }_{j}+H_{R}\left[y_{N}\right]$,
$H_{R}=-(1 / 2 \mu) \frac{\partial^{2}}{\partial y_{N}^{2}}+\left(\gamma_{R}^{2} / 2\right) y_{N}^{2}+\sum_{k} \omega_{k} a_{k}^{+} \alpha_{k}+$

$$
+\sum_{k} \frac{i \pi_{k}(k)}{72 \omega_{k} V}\left(k y_{N}\right)\left(\alpha_{k}^{+}-a_{k}\right)
$$

Hamiltonian H_{R} describes a linear polaron with the renormalised interaction:

$$
\pi_{R}(k)=\sqrt{S(N)} \pi(k), \quad \gamma_{R}^{2}=S(N) \gamma^{2}
$$

A one-polaron linear model is known to be exactly solvable 12,13) and for the ground-state energy and the effective mass of the N - polaron linear model the following expressions are readily obtained:
$E=(3 / 2) \omega\left[\sqrt{1+g_{R}^{2}}(N)-1\right] \cdot m=\mu N\left[1+g_{R}^{2}(N) / N\right]$.
where

$$
g_{R}^{2}(N)=\sum_{k}\left(\pi_{R}^{2} k^{2}\right) / 3 \mu \omega_{k}^{4} V
$$

is the dimensionless renormalised coupling constant. In the repime of weak coupling ($\left.g_{R}^{2} \ll 1\right) N$ linear polarons are independent up to the order 8_{R}^{4}. As we shall see, this is very likely to the subtem of N Frohlich polarons at small coupling constant. In the strong coupling limit $\left(g_{R}^{2}>1\right)$ there in formed an N-particle bound complex with a self-energy $E \sim \sqrt{N}$.

If the "charges" α_{i} are the same for all the polarons, the renormalized coupling constant is expressed as

$$
g_{R}^{2}(N)=N 8^{2}
$$

where 8 is the one-polaron coupling constant. Then EqB. (2.7) take the more simple form
$E=(3 / 2) \omega\left[\sqrt{1+8^{2} N}-1\right] . \quad m=\mu N\left[1+8^{2}\right]$.
It is clear that at any coupling constant $E<N E_{1}$ for $N>1$. that is the enerpy of the multipolaron bound state is lower than the sum of the energies E_{1} of N independent polarons. Besides, it is worth noting that for all the values of g_{R}^{2} the effective mass of system (2.1) ls a sum of the masses of individual polarons. which is a result of the momentum conservation for each of them. This is the main distinction as compared with the Frohlich polaron.

It is obvious that the specific behaviour of the multipolaron energy and effective mass on N stronaly depend on the concrete model under consideration. For example, the Coulomb interaction leads to the eneray proportional to N^{3}. To convince let us consider a simple quantum-mechanical model, a sustem of N identical particles with mass μ and charges q interacting with each other by the Coulomb attraction law:

$$
H=\sum_{i=1}^{N} p_{i}^{2} / 2 \mu-\sum_{i<j} q^{2} /\left|r_{i}-r_{j}\right|
$$

Let R be a characteristic size of the system. Then the potential energy of interaction of a pair of particles has an order of $-q^{2} / R$, and the total potential energy of the system equale $-q^{2} / R$ times the number of pairs. $N(N-1) / 2$. The kinetic energy of every particle equals $1 / 2 \mu R^{2}$ in order of magnitude. whereas the total kinetic energy is N times as large. As a result, the ground-state energy of the system is given by the expression

$$
E=\frac{N}{2 \mu R^{2}}-\frac{q^{2} N(N-1)}{2 R},
$$

that gets its minimum at $R=2 / \mu q^{2}(N-1)$. Therefore we obtain

$$
E=-\frac{\mu q^{4}}{8} N(N-1)^{2}
$$

When $N=2$, i.e. the problem has a clear physical meaning, we arrive at the known result for a particle with a reduced mass placed in the Coulomb potential. For arbitrary N the problem simulates an N-polaron cluster and showe a characteristic N^{3} dependence of the ground-state energy of the Frohlich multipolaron.

3. Path integrals

The Frohlich Hamiltonian for a sustem of N identical spinless charged particles is of the form

$$
\begin{align*}
H=\sum_{i=1}^{N} p_{i}^{2} / 2 \mu+\sum_{k} \omega_{k} a_{k}^{+} a_{k}+8 \sum_{i=1}^{N} & \sum_{k}\left(A_{k} a_{k} e^{i k r_{i}}+A_{k}^{*} a_{k}^{+} e^{-i k r_{i}}\right)+ \\
& +\sum_{i<j} V\left(\left|r_{i}-r_{j}\right|\right), \tag{3.1}
\end{align*}
$$

where r_{i} and p_{i} are. respectively, the coordinate and momentum of an i-th electron. α_{k} is the amplitude of a k-th mode of a phonon field with energy ω_{k}, and $V\left(\left|r_{i}-r_{j}\right|\right)=e^{2} /\left|r_{i}-r_{j}\right|$ is the Coulomb potential of repulsion between i-th and j-th particles. In Ref. ${ }^{2\}}$ we used Hamiltonian (3.1) at $N=2$ for studying the bound state of two
polarons. whereas J.T.Devreese et al. 14) employed it for analyzing optical properties of a two-dimensional electron gas.

For a Frohlich optical folaron it is usually assumed that
$\omega_{k}=\omega \cdot g A_{k}=-\frac{1}{k}\left[\frac{2 \sqrt{2} \alpha \pi \omega^{3 / 2}}{V \gamma \mu}\right]^{1 / 2} \cdot 8^{2} \sum_{k}\left|A_{k}\right|^{2} \Rightarrow \frac{\alpha \omega^{3 / 2}}{2 \sqrt{2} \mu \pi^{2}} \int \frac{d k}{k^{2}}$. where α is a dimensionless coupling constant, and V is the volume of the system.

Let us consider the operator

$$
\hat{Z}(u)=\exp [-\beta(H-\mathbf{u p})]|\Phi><\Phi|
$$

where $\hat{\mathrm{P}}$ is the operator of the total conserved momentum

$$
\hat{P}=-1 \sum_{j=1}^{N} \nabla_{j}+\sum_{k} k a_{k}^{+} a_{k}
$$

and $|\Phi\rangle$ is an arbitrary state. The vector u has a meaning of average velocity. The operator \hat{Z} defines a distribution of the grand canonical type and to it there corresponds the partition function $Z(u)=\operatorname{Sp} \hat{Z}(u)$, from which the ground atate energy at a fixed value of P can be defined:

$$
\begin{equation*}
\delta(P)=u P-\lim _{\beta \rightarrow \infty} \frac{1}{\beta} \ln Z(u) . \quad \lim _{\beta \rightarrow \infty} \frac{1}{\beta} \frac{\partial \ln Z}{\partial u}=P \tag{3.2}
\end{equation*}
$$

If we take different states $|\Phi\rangle$, we arrive at different boundary conditions in the functional integral for Z which does not influence the definition of energy $\boldsymbol{\mathcal { F }}(\mathbf{P})$. For simplicity, we take $\mid \Psi>$ in the form

$$
|\Phi\rangle=|0\rangle\left|r_{1}>\left|r_{2}>\ldots\right| r_{N}\right\rangle \mid r_{i}=r_{2}=\ldots=r_{N}
$$

which results in zeroth boundary conditions in the N-fold integral along paths over each of the integration variables. For Z it is possible to get the following representation as N-fold path integral

$$
\begin{align*}
& Z(u)=\int I x x_{1} I x_{2} \ldots D x_{N} \exp S\left[x_{1}, x_{2}, \ldots, x_{N} ; u\right] \tag{3.3}\\
& \left.\quad x_{1}(0)=x \int 0\right)=0
\end{align*}
$$

$S\left[x_{1}, x_{2}, \cdots x_{N} ; U\right]=\beta \mu U^{2} N / 2-(\mu / 2) \sum_{j=1}^{N} \int_{0}^{\beta} \dot{x}_{j}^{2} d s+$
$+(1 / 2) \sum_{i, j=1}^{N} \sum_{k}\left|A_{k}\right|^{2} \int_{0}^{\beta} d s_{1} d s_{2} \exp \left\{-\omega\left|s_{1}-s_{2}\right|+k u\left(s_{1}-s_{2}\right)-\right.$
$\left.-1 k\left[x_{i}\left(s_{i}\right)-x_{j}\left(s_{2}\right)\right]\right\}-$
$-\sum_{i<j} \int_{0}^{\beta} V\left(\left|x_{i}(\sigma)-x_{j}(\sigma)\right|\right) d \sigma \quad$.
Derivation of formulag (3.3-4) for two polarons is given in ${ }^{2}$) and can be extended without diffioulty to the case of arbitrary N. We ahall estimate the integral (3.3) by the Feyman method ${ }^{15)}$:

$\geq \quad \underset{x_{i}(0)=x_{i}(\beta)=0}{\int D x_{1} \quad \sum x_{N} e^{S^{\prime}} \exp \left\langle S-S^{\prime}>,\right.}$
where the symbol < \ldots, stands for averagina of the functional over the measure exp S^{\prime}. As an approximating action S^{\prime}, we take a sufficiently plain action for which the path integral may be computed exactly. It is natural to take S^{\prime} as a quadratic form over variables $X_{1}(s)$, the coefficients of which being considered as variational parameters. One should take into account that the action S is invariant under exchange of the positions of any two particles. An approximating action S^{\prime} should possess the same symmetry. Then a trial wave function of the ground state we are interested in will be symmetric a priori under permutations of any two particies. This takes into account the effecte of the Bose-statistics of the system. The fermion case should be considerod separately.

So we choope S' ab followe:
$S^{\prime}\left[x_{1}, \ldots . x_{n}\right]=-\frac{\mu}{2} \sum_{i=1}^{N} \int_{0}^{\beta} x_{i}^{2} d s-\frac{\mu}{2} \sum_{i=1}^{N} C_{1} \int_{0}^{\beta} x_{1} x_{j} d s$.
where the matrix C takes the form

$$
\begin{equation*}
C_{i j}=B+(A-B) \delta_{i j}, 1, j=1, \ldots N \tag{3.7}
\end{equation*}
$$

The relation (3.7) follows from the symmetry properties. coefficients A and Bare varlational parameters. It is easy to convince oneeslf that the matrix C has two different eipenvalues

$$
\begin{equation*}
\Omega^{2}=A-B, \quad \Omega_{N}^{2}=A+B(N-1) \tag{3.8}
\end{equation*}
$$

where Ω^{2} is (N-1)-fold derenerated. The quadratic form in (3.6) should be poeltive definite so the variational parameters vary in the range, where eipenvalues Ω^{2} and Ω_{N}^{2} are positive.

It ia not difficult to calculate the orthogonal $N * N$ matrix U which diagonalizee C. One variant has the form:

$$
\begin{align*}
& U_{1 j}=b+(a-b) \delta_{1 j} \quad 1, j=1, \ldots N-1, \\
& U_{i N}=U_{N i}=1 / V N, \quad 1=1, \ldots N . \\
& a=b+1 . \quad b=-(V N+1) /(N-1) / N . \tag{3.9}
\end{align*}
$$

Note that any other realization of the matrix U does not influence the resulte obtained in what followa.

4. Variational estimates

Ege. (3.2), (3.5) provide an upper bound on the ground-state energy of the ayatem in the vicinity of the point $P=0$:

$$
\delta(P) \leq E+P^{2} / 2 m
$$

where E is an uper bound on the ground-etate energy at $P=0$. and m fis a lower bound on the effective mass of the ayatem. To perform the calculations, we change the variables in (3.3) with the help of liner transformation U :

$$
\begin{equation*}
x_{i}(s)=\sum_{j=1}^{N} U_{i j} y_{j}(s) \tag{4.1}
\end{equation*}
$$

In new variables $y_{i}(5)$ the approximating action (3.6) is diagonal:
$S^{\prime}\left[y_{1} \ldots y_{n}\right]=-\frac{\mu}{2} \sum_{i=1}^{N} \int_{0}^{\beta} y_{i}^{2} d s-\frac{\mu}{2} \sum_{j=1}^{N} \Omega_{i}^{2} \int_{0}^{\beta} y_{i}^{2} d s$.
where in accordance with (3.8) the frecguencies Ω_{1} are equal for all $i=1, \ldots, N-1: \Omega_{i}=\Omega$.

The averages entering into the estimate (3.5) are as follows:
$\left\langle\exp -i k\left[x_{i}\left(s_{1}\right)-x_{j}\left(s_{2}\right)\right]\right\rangle=\left\langle\exp -i k \sum_{\ell=1}^{N}\left[U_{i \ell} y_{\ell}\left(s_{i}\right)-U_{j \ell} y_{\ell}\left(s_{z}\right)\right\}\right\rangle=$
$\exp \left\{-\frac{\mathrm{k}^{2}}{2 \mu} \sum_{i=1}^{N}\left[2 U_{i} U_{j} U_{i} G^{(i)}\left(s_{s}, s_{2}\right)-V_{i} \ell^{G}(i)_{\left(s_{1}, s_{1}\right)-U}^{j} l^{\left.\left(G^{(i)}\left(s_{2}, s_{2}\right)\right]\right\}, ~}\right.\right.$
where $G^{(l)}\left(s_{1}, s_{2}\right)$ is the Green function of a linear oecillator with frequency Ω_{l} obeying the corresponding boundary conditions:

$$
\begin{align*}
& \left(d^{2} / d s^{2}-\Omega_{l}^{2}\right) \sigma^{l i}(s, \sigma)=\delta(s-\sigma), \sigma^{l}(0, \sigma)=\sigma^{(l)}(\beta, \sigma)=0 \tag{4.4}\\
& \sigma^{l}(s, \sigma)=\left[\operatorname{ch} \Omega_{l}(\beta-s-\sigma)-\operatorname{ch} \Omega_{l}(\beta-|s-\sigma|)\right] / 2 \Omega_{l} \operatorname{sh} \Omega_{l} \beta
\end{align*}
$$

It can easily be found that

$$
\begin{align*}
& \int D_{1} \ldots D y_{N} e^{\prime}=(\mu / 2 \pi \beta)^{3 N / 2} \prod_{=:}^{N}\left(\Omega_{l} \beta / \varepsilon h \Omega_{l} \beta\right)^{3 / 2} . \tag{4.5}\\
& y_{i}(0)=y_{i}(\beta)=0 \\
& \left(\mu \Omega_{l}^{2} / 2\right) \int_{0}^{\beta} d s<y_{l}^{2}(s)>=\frac{3}{4}\left\lceil\Omega_{l} \beta \operatorname{sth} \Omega_{l} \beta-1\right] .
\end{align*}
$$

Using (4.3-6) we can obtain an estimate for the energy as a function of the parameters Ω and Ω_{N}. For the ground-state energy of the multipolaron at rest and its effective mase we get the estimates
$E=\frac{3}{4}\left[(N-1) \Omega+\Omega_{N}\right]-\frac{N \alpha \omega^{3 / 2}}{\gamma_{\pi}} \int_{0}^{\infty} d \sigma e^{-\omega \sigma}\left[\Phi_{N}^{-1 / 2}(\sigma)+(N-1) \Psi_{N}^{1 / 2}(\sigma)\right]$
$+\frac{N(N-1)}{2} \frac{e^{2} \sqrt{3 \mu}}{\sqrt{\pi}} \sqrt{n}$.
$m=\mu N\left(1+\frac{\alpha \omega^{3 / 2}}{3 \nabla \pi} \int_{0}^{\infty} d \sigma \sigma^{2} e^{-\omega \sigma}\left\lceil\Phi_{N}^{-3 / 2}(\sigma)+(N-1) \Psi_{N}^{3 / 2}(\sigma) \downarrow\right.\right.$.
where

$$
\begin{align*}
& \Phi_{N}(\sigma)=\frac{N-1}{\Pi N}\left(1-e^{-\Omega \sigma}\right)+\frac{1}{N \Omega_{N}}\left(1-e^{-\Omega_{N} \sigma}\right), \\
& \Psi_{N}(\sigma)=\Pi_{N}^{1}\left(N-1+e^{-\Omega \sigma}\right)+\frac{1}{N \eta_{N}}\left(1-e^{-\Omega_{N} \sigma}\right) . \tag{4.9}
\end{align*}
$$

Note that the part of the action (4.2) with the parameter Ω approximates the imer motion within the polaron cluster. It follows from (3.9) and (4.1) that

$$
y_{N}(s)=\frac{1}{8 N} \sum_{i=1}^{N} x_{i}(s) .
$$

So, motion of the centre of ingrtia of the eystem is aproximated by an osctlistor action with frequency Q_{N} The action (3.4) is invariant under simultanerjus translations of all the cordinates $x_{1}(s)$. The centre of inertis of the system (3.1) moves along a etraight line when there io no electron-phonon interaction. In this caye $\Omega_{N}=0$, which one can eeg gasily from (4.7) taking $\alpha=0$ and changing the sian of e^{2} (the bystem of gravitating masses). The approximating action S^{\prime} occurs to be invariant under translations. Minimization over Ω results in an expreseion analogoue to (2.9).

When $\alpha \neq 0$, the centre of inertia of the system moves along a rather intricate trafectory, the mare different from a atraipht line, the larger is α. Bogolubov was the first who had paid attention to this fact ${ }^{16)}$. Correspondingly, the variational
parameter Ω_{N} will not be equal to zero as we shall see later. In any cabe the values of the farameters Ω and Ω_{N} are defined by minimizing the multifolaron energy (4.7).

Let ue now examine various Ifmiting cases. In the weak coupling regime $(\alpha \ll 1) \Omega=\Omega_{N}=0$ and

$$
\begin{align*}
& E=-\frac{N \alpha \omega^{3 / 2}}{\sqrt{\pi}} \int_{0}^{\infty} \frac{d \sigma}{\sqrt{\sigma}} e^{-\omega \sigma}=-N \alpha \omega \tag{4.10}\\
& m=\mu N\left\{1+\frac{\alpha \omega^{3 / 2}}{3 \gamma \pi} \int_{0}^{\infty} d \sigma \sqrt{\sigma} e^{-\omega \sigma} \gamma=\mu N(1+\alpha / 6)\right. \tag{4.11}
\end{align*}
$$

1.e. to the firet approximation in coupling constant a the cluster falls into N independent polarons. Correctiong to the additive formula (4.10-11) for the system energy and effective mass arise only in the two-phonon approximation and are of an order of α^{2}. For two polarons these corrections have been found in 2). Formula (4.10) has been derived without taking into account the Coulomb repulsion which at mall a does not allow a bound state of polarons to be formed at all.

In the atrong coupling regime $(\alpha>1) \Omega$ and Ω are large, and (4.7) acquires the form
$E=\frac{3}{4}\left[(N-1) \Omega+\Omega_{N}\right]-\frac{N^{2} \alpha \omega^{3 / 2}}{\gamma_{\pi}}\left[\frac{N-1}{\Omega N}+\frac{1}{N \Omega_{N}}\right]^{-1 / 2}+\frac{N(N-1)}{2} \frac{e^{2} \sqrt{2 \mu}}{\sqrt{\pi}} \sqrt{\Omega}$.

If the Coulomb repulsion is neglected, (4.12) reaches its minimum at $\Omega=\Omega \mathrm{N}$, so that

$$
\begin{equation*}
E=\frac{3}{4} N \Omega-\frac{N^{2} \alpha \omega^{3 / 2}}{\sqrt{\pi}} \sqrt{\Omega}, \quad \Omega_{\min }=\omega \frac{4}{9 \pi}(\alpha N)^{2} \tag{4.13}
\end{equation*}
$$

whereas for the ground-state energy of the system we get the estimate

$$
\begin{equation*}
E=-\omega\left(\alpha^{2} / 3 \pi\right) N^{3} \tag{4.14}
\end{equation*}
$$

Here $-\omega\left(\alpha^{2} / 3 \pi\right)$ is the energy of one polaron in the strong coupling regime. Qualitative dependence of the energy of a polaron clugter was discuseed in Ser.2. The result of Ref. ${ }^{21}$ is reproduced when one puts $N=2$.

The expression for the multipolaron effective mass is as followe:

$$
\begin{equation*}
m=\left(16 \alpha^{4} / 81 \pi^{2}\right) N^{0} . \tag{4.15}
\end{equation*}
$$

For $N=2$ relation (4.15) coincides with the result of Ref. ${ }^{2}$. Thus the N-polaron system roes from a weakly correlated, loasely formed state at emall α to a compact, strongly correlated configuration at large α with an enormbus mass. So. in the strong coupling limit, an N-folaron cluster is proved to be practically localized.

The correction δE for the Coulomb two-body repulaion can be found by substituting $\Omega_{\text {min }}$ defined by (4.13) into the last term in (4.12) and is given by

$$
\delta E=\frac{N^{2}(N-1)}{3 \pi} a e^{2} \sqrt{2 \mu \omega}
$$

It is, naturally. valid when

$$
\begin{equation*}
\delta E / E=\frac{N-1}{N}\left(2 \mu e^{4} / \omega \alpha^{2}\right)^{1 / 2} \ll 1 . \tag{4.18}
\end{equation*}
$$

The physical meaning of the condition (4.16) is obvious.

5. Conclusion

Thus, when the electron-phonon interaction is stronf, the Coulomb repulaion does not really preclude formation of a cluster. a bound state of N polarons. It may, however, happen that for concrete substances the strong couplink resime is not reached. Indeed, a characterietic ecale of the Coulomb repuleion energy E_{C} is given ty the potentisl of ionization of a hydrogen atom. i.e. . $E_{c} \approx 10 \mathrm{eV}:$ a characteriatic value of the frequency. $\omega \approx 10^{13}$.
$\left.10^{14}\right) \mathrm{e}^{-1} \approx\left(10^{-1}-10^{-2}\right) \mathrm{eV}$. Hence it follows that a bound state becomes feasibie when $\alpha \approx\left(E_{C} / \omega\right)^{1 / 2} \approx 10-20$. In this case the polaron radius ${ }^{17}$) defined by $R \approx 4 \pi^{2} / \alpha \sqrt{2 \mu \omega}$ turna out to be equal to several dozen angstroms, which is much larger than the lattice constant. This means that even at auch, almost unreal large values of α, we are all the ame dealing with a collective effect so that the Frohlich polaron concept remaing valid.

The energy of one polaron in the gtrong coupling regime when $\alpha \approx 10$ equals about several tentha of eV . However, as a result of a strong dependence on the number of particles in a polaron cluster, the cluster energy may on the whole be significantly lower. If that energy in the procebs of formation of a cluater is traneferred to the lattice, it may be eufficient for heating the cryatal and even for meltinf it (i.e. at elactron concentration of the order of $10^{7}-10^{8} \mathrm{~mol}^{-1}$ which is not very large aa compared to the Avogadro number).

However, the polaron cluster will be deatroyed before the crystal. If in the process of its formation heat is really released, then heating of the medium should diminish the effective constant of electron-phonon interaction. In our paper ${ }^{10}$), we have studied a high-temperature expansion of the ground-state energy of one polaron. The obtained reault is as follows:
$E / \omega=-0,5 \sqrt{\pi / \beta}\left\lceil\alpha+0.029 \alpha^{2} \gamma \beta+O(\beta)\right], \beta=\omega / k \theta \ll 1$. from which it is seen that when the second term in brackets is smaller than the first one, the system effectively goes into the regime of weak coupling and its energy is described by the first order in α. In an N-particle problem this regime means, as we have seen, that a polaron cluster has fallen into N independent polarone. This occurs when $1 / \beta \gg(0.03 \alpha)^{2}$. i.e. when $k \theta \geqslant k \theta_{C}=10^{-3} \alpha^{2} \omega \approx$
$0.01 E_{p o l}$, where $E_{p o l}$ represents the polaron enerey in the strong coupling regime it zero temperature. Qualitatively, θ_{C} ib estimated to be of an order of 50 K .

Recall that we have considered the behaviour of charked bosons. It may happen that for fermions a similar effect will be weakened owing to the Fauli principle. It can occur that Fermi particles in a crystal prefer to form bipolarons so the collapse into the multipolaron state becomes imposaible. Still, may be, some temperature effects do exiets in fermion systeme too. This needs the investifiation.

Note the great sifnificance of the mass value of a "bare" particle folarizing a medium. Heavy charged particles (deuterone, e.g.) form polarona of a very small radius. The coupling constant a 18 proportional to the square root of the particle mase ${ }^{17}$, and the polaron radius will be inversely proportional to its mase. For a proton in the strong coupling regime the polaron radiue will be eignificantly emaller than the lattice constant, and the Frohlich model is no longer applicable. This problem also requires further studies in the framework of a more realistic theory in which the structure of a lattice la taken into account.

Acknowledgments

In conclusion we thank Profe. V.K.Fedyanin and N.M.Plakida, Drs. V.B.Priezzhev and V.A.Zagrebnov for useful diacuseions.

References

1) Vinetskii.V.L., Zh.Eksp.Teor.Fiz.(Sov.) 40 (1961) 1459.
2) Kochetov, E.A., Kuleshov, S.P., Matveev, V.A. and Smondyrtav, M. A., Theor. Math. Phys. (Sov.) 30 (1977) 183.
3) Hiramoto, H. and Toyozawa, Y., J.Phys.Soc.Japan 54 (1985) 245.
4) Adamowski, J., Phys. Rev. B39 (1989) 3649.
5) Anderson, P.V., Phys.Rev.Lett. 34 (1975) 953.
6) Larsen, D. . Phys.Rev. 823 (1981) 628.
7) Adamowski, J. , Phys. Rev. B39 (1989) 13061.
8) Emin, D. and Hillery,M.S., Phys.Rev. B39 (1989) 6575.
9) Platzman, P.M. Phys. Rev. 125 (1962) 1961.
10) Kochetov, E.A. and Smondyrev, M.A. , Theor.Math. Phys. (Sov.) 47 (1981) 375.
11) Gerlach. B., Lowen.H. and Schliffke,H. Phye.Rev. B36 (1987) 6320.
12) Bogolubov, N. N., Preprint JINR E-17-11822, Dubna, 1978.
13) Rodrigues, G. and Fedyanin, V,K., Preprint JINR E-17-80-724, Dubna, 1980.
14) Wu, X., Peetere. F.M. and Devreese, J.T.. Phye.Rev. 日34 (J986) 2621.
15) Feymman, R.P.. Phye.Rev. 97 (1955) 660.
16) Bogolubov, N.N., Ukranian Math. Jour. 2 (1950) 3.
17) Frohlich,H. In: Polarons and Excitons. Ed. C.G.Kuper and G.D.Whitfield, Oliver \& Boyd Ltd, Edinbourgh, 1963.
[^0]
[^0]: Received by Publishing Department on Jantuary 29, 1990.

