


j. Introduction

A8 is known. 8 slow electron in an ionic ervetal creates s

local polarization of & surroundinsg medium, which lowers Lite

energy. When the electron moves., the polarization region follows

it, forming a quasi particle. a polarcn. In &8 quantum-mechanical

lanfuage this means that the electron rolarizes the phonon vacuum.
and the proceeses of emission and subsequent absorption of virtual
vhonone result in the renormalization of the electron enerry; thus

the polaron is a bound state of a charsed particle 4in a gquantum

acalar field. The most known between the various polaron modele ie

the Frohlich eptical pélaron. that is the model of a sacalar

particle in a continious medium interacting with LO-phonone.

Up to now the theory of the Frohlich polaron can be conaidered
as a well developed field of Bolid state rhyeics, The

investigationa have been done extensively fer varlous quantities

characterlizing a one-polaron syetem: sslf-enerdy and effective

mass. mobility., optical abesorption ccefficient and sc on. Much

less attention has been pald. however. to studying many-polaron

systeme. For the first time the possibilitv for two polarons to

form a bound state (bivolaron) has been considsred in paver b
Calculations should be also menticned of the bWipolsron dround
state energy and effective mass by the path integral method 2? the
critical value of the electron-phonon courling to form bivolarons
and the mean distance between two electrons in & bivclaron 3’4}.
From the vhysical point of view the Wirolaron concept can be
ugeful in studving the properties of negative U-centers and D
complexes in ionic crvatale. These avateme consist of & defect and
two bound electrons end can be conslidered as intrinsic

bipolarons 5_7? Recent interest in the bipolarone is caused by



their role in attemots of explaining the high-temperature super—

wonductivity. Accordina to the proposed bipolaronic mechaniam of
surerconductivity., the bivolarone of high enough denaity undergo

the Bose-Einstein condensation. which results in
81

a suverconduc—
tivity state

Naturally. the question arimes whether there is a poosibility

of an N-volaron bound state to be formed for MN2. When N

electrons provagate in a medium there are feasible vprocesses of

phonon  exchange between them. which #lve rise tec attraction

forces. Therefore a bound state of N volarons can exist. If the

constant of electron-phonon interaction is small. g « 1. the

prrobability of creating a bound state of two polarons ie 5’ times

as small as the vrobabilitv of their free propagation. In other

words., in the regime of weak coupling polarons hold their

individuality and almost independently propagate through a

crystal. In this case. it should be expvected. their +total energy

is merely a sum of enerpgies of N isolated vpolarons.

In the strong coupling regime the processes of phonon exchange
are no lonser suvoressed. and a bound atate of N electrons arises
which is surrounded by a common cloud of virtual ovhonons. Polarons
lope their individualitvy completelv. and the enermy of such a state
should strongly depend on the number of electrons N. Heallv N
rolarons comrose a bound state whose enersy is much lower than the

total energy of N isolated polarona. In paper 2 we indicated that

the formation of macroscoric volaron clusters is more profitable

energetically.

1t may aprear that the Coulomb repulsion forces between

electrons will impede the formation of an N-volaron cluster.

However. the electron-phonon interaction is iteelf of a Coulomb



type. and it is clear that st a sufficiently large courling

constant of slectron-vhonon interaction the electro-static forces

will be unable to vrevent polarons tc merae intc a cluster. The

same mav be concluded from the results on the behavicur of a

single wolaron in a field of a fixed Coulomb charsze 9}

Formation of the polaron clusters with a low energy {owing to
large N) may lead to heating a crystal. With increasing temperature
the effective constant of electron-phonon interaction

a polaron “undresses” 10. 11). which in

diminishes,

turn mav result in a

self-destruction of a rolaron cluster. So interestine ‘temmerature

effects can exist in rolaron vhysics.

The paper is oreanized as follows. In Sec.2 we introduce the

exactly solvable N-particle linear polaron model to illustrate the

decreasine N-derendence of the eround state enerev. In Sec. 3 a

revresentation is obtained for a partition function of a svstem of

N polarons as path integrals. In Sec. 4. using the variational
method. we estimate the around-state eneray and the effective mass
of the svstem. Sec. 5 contains estimations and a discussion of the

role of temperature.

2. Linear polaron model

There exists an exactlv soclvable model of an N-varticle svstem
in a pheonon  field. It is a linear version of the Frohlich

Hamiltonian:

2
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where

- z =
Yij = {1/33E k [n][k)n‘(k)]/(mk [ A] . 2.2y

Svatem (2.1) for N = 1 has been rroposged bv Bogolubov 12) to

approximate the Frohlich volaron and now is referred to as the

linear or Bogolubov rolaron. Relation {(Z2.2) provides the

coneervation of the set of N momenta :

—_ + _—
P, = -9, + L [kn k¥ + ) /@YY . 4=1.2...N.

The energy of the sveatem at fixed total momentum P = L PJ takes
the form

Py = E + PProm .
where F ia'the energy of the multipolaron at rest and m - its

effective mags. The functione nJ(k\ are introduned to characterize

the interaction between an J-th particle and a phonon with a

wave
vector k . Thev are assumed to be in the form

nJ(k) = ajn(k). y-t. 2z, .... N (2.3
System (2.1) under constraints (2.3) turns out to be exactly
solvable. Due to (2.3 the particles interacting with a £field

distinguish from one another only by different "charges” a

J

Let us now introduce a new set of coordinates {yJ} inatead of

{rj} through the linear orthogonal transformation

N
Y, :,1};'. LAVLARR (2.4)
matrix W being taken to diagonalize the quadratic form zyijrirj
2
¥ )'jo:ioijrirJ
v vy 2 L3
¥ 1{‘1‘ sy S Stury ®. (2.5)

Here. the use has been made of the relations
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There should be kept in mind that (2.5} is due to the fact that the
matrix || ujaj . i.5=1,.... N possesses the vrincipal values 0

of an (N-1)-fold degeneracv and S(N). The metrpix W is resdily

obtained : W = |l W£jH . where
T8 lEnSN-2 . 22 SN
nj
T la o )Y ERIGAFL] . 1 €0 € N-1 1£j<sn
nj n+1 j
¥ = - n n+ i Wy = TN . 1S <N
n, n+1 NJ J

The W - transformation being applied to Hamiltonian (2.1} vields

N-: &
¥ : Hr corel 3 Hly, -yl = w(l/Zy}J): —a)—,zj + Holyyl-

- _ & 2 + .
HR = (1/2“)BT§ + yR/Ziy; + E waa + (2.6}

iﬂRka +
+ E—W—V—._wk fkyN)(ak-ak)-

Hamiltonian HR describes a linear pnlaron with the rencrmalised
interaction:

n.(R) = YSTRY (k) . ¥y = SINR.
A one-polaron linear model is known to be exactly solvable 12.13)

and for the ground-state energy and the effective mase of the

N - rolaron linear model the following expressions are readily

obtained:
E= (32 [T+ g 2 (N7 - 1], m:pN[l+gZR{N)/N]. (2.7)
where

g Ny = E(nikz Y/ BV



is the dimensionless renormalised coupling constant. In the regime

of weak coupling (5;« 1) N linear polarons are indepsndent up to

the order g;. As we shall see, this is very likely to the

svetem
of N Frohlich polarone st small coupling constant. In the strong
coupling limit rg;» 1) there is formed an N-particle bound complex

with a self-enerey £ =~ R

1f the "charges™ a; are the same for all the polarons. the

renormalized coupling econstant is expreseed as
E'NY = N g,
where g 1s the one-polaron coupling conetant. Then Egs. (2.7) take

the more simple form

E =320 YT+ R - 1]. = uN[t + & . 12.8)

It ie clear that at anv courline constant E < N E1 for N > 1.

that is the energy of the multipolarcn bound state is  lower than

the sum of the ehergies El of N independent polaronas. Besides. it
is worth noting that for all the values of g: the effective mass

of svstem (2.1} is a sum of the maeees of -individual polarons.

which i a result of the momentum conservation for each of them.

This is the main distinctien as compared with the Frohlich

polaron.

It is obvipus that the epecific behaviour of the multipolaron

energy and effective mass on N estrongly depend on the concrete

model under cconeideration. For example., the Coulomb interaction

leads to the energy proportional to Ns. To convince let ue

consider a simple quantum-mechanical model., a evstem of N

identical particles with mass ¢ and charges G interacting with

each other by the Coulomb attraction law:

N
H=Tp;/2u-La/fr 1|
1=3 1¢y



Let R be a characteristic size of the svstem. Then the potential

energy of interaction of a pair of particles has an order of
—qz/R, and the total potential energy of the svstem equsale —qz/R
times the number of pairs. N(N-1)/2 . The kinetic snergy of every
rarticle equals 1/2yR2 in order of masnitude. whereas the total

kinetic energy is N times as large. As a result. the ground-state

energy cof the system is given by the expression

= N EN(N-1)
Ergp - @ —

that gets its minimum at R = 2/pqz(N~1). Therefore we obtain

L]
E= - Eg_ NiN-1)2
When N=Z. i.e. the problem has & clear physical meaning. we

arrive at the known result for a particle with a reduced mass

rlaced in the Coulomb potential. For arbitrarv N the rroblem

simulstes an N-polaron cluster and shows & characteristic N -

dependence of the ground-state enersv of the Frohlich multipolaron.
3. Path integrals

The Frohlich Hamiltonian for a svestem of N identical spinless

charged particles is of the form

hl N . .
H=TLp*/2u+Tw aa +gL [ ida X & g% oolkr, |
i t k k t=t k k k

=t
+ -E V(!ri—rjl). (3.1)
i¢)
where r, and p; are. respectively. the coordinate and momentum of
an i-th electron. o, is the amplitude of a k-th mode of a phonon

k

potential of repulsion between i-th and j-th particles. In Ref.Z)we

field with energy @, and V(tri—ri|) = ezfiri—rjj iz the Coulomb

used Hamiltonian (3.1) at N=2 for studying the bound state of two



rolarons. whereas J.T.Devreese et al.14) employed it for analyzing

optical prorerties of a two-dimensional electron gas.

For a Frchlich optical polaron it is usually assumed that

2"’231'[(:)3/2

~ o4 1/2 o am3/2 dk
o o gA - - [ TR 8 LA » T B -

where g is a dimensionless coupling constant. and ¥V is the volums
cf the svstem.

Let us consider the operator

Ztu) = exp [ -5 (H - up) J 13 ><8 |

where P ie the operator of the total conserved momentum

~ N
P=-ily *Lkaa -
J:lJ .4 akak
and {¥> is an arbitrary state. The vector u has a meaning of
average velocity. The operator Z defines a distributicon of the

grand canonical type and to it there corresponde the partition

function Z(u) = 8p Ziu), from which the ground state energy at a

fixed value of P can be defined:

$(P) = P - lim —% tn Z(ud. lim L _alinZ . P.

f3+ @ i+ B-ou (9-21

If we take different states |#>. we arrive at different boundary

conditicns in the functional integral for 7 which does not

influence the definition of energy 3(P). For simplicity, we take

[2> in the form
18 > = |O>tr|>|rz>_..[r

N |r =r = =
TymTy™ = Ty

which results in zercth boundary conditione in the N-fold integral

along paths over each of the integration varisbles. For Z it ie
roesible to get the following representation as N-fold path

integral

Zw) = [Bx Dx ...Dx, exp S[x .x,....xu) (3.3
xéo)=xjo):o



NoA
SUx x .ooxgiu | = guePNrz - w2y x? ds +

J=1 o

ul A
+ /2 ¥ 4 17§ ds ds, exp{-w|s - s_| + kuts - 53 -
i,j=t o

- ik [xi(SXB-xJ{sz)}} _

f
-L IVx (oY - x (@} do . (3.4)
1<j o d

Derivation of formulas {3.3-4) for two vrolarons is given in 2) and
can be extended without diffioulty to the case of arbitrary N.

We sghall estimates ths integral (3.3) by the Feyvnman method 15):

I ﬂxl ﬂxN exp S[xl,....xn:u1 = I Dx‘ ﬂxN eS'exp(S-S‘)

= =0 - =0
X tor=X (b= xi¢o>_x1c[:\-

f
2 I Dy o° Bxp<S-5'> (3.5)
X (orzX (H=0
i i
where the symbGl <...» stands for averaging of the functional over
the measure exp $'. As an approximating action §', we take s suf-

ficiently plain action for which the path integral may be computed

exactly. It is natural to take S' as= a quadratic form over

variables Xits) - the coefficients of which being considered

as
variaticnal parameters. One should take into account that the
action $§ is invariant under exchange of the poeitione of any  two

particles. An approximating acticn 5’ should possess the same

symmetry. Then a trial wave function of the ground state we are
interested 1in will be symmetric a priori under permitations of
any two particles. Thie takes into account the effecte of the
Boae-ptatistica of the ayetem. The fermion case should be

coneidersd separately.



Bo we chonass §' as followe:

N A N B
St ...ox 1= -BF [x*ds - 8% ¢, [xx, ds 3.8)
! n iz1 o ! 1= IJo 7 ' '
where the matrix £ takes the form
CIJ =B+ (4 -8B 611 v1.) =1 00N . (3.7

.
The relation (3.7) follows from the symmetry properties,

coefficients A and Bare varlational parameters. It is easy to
convince onseslf that the matrix C'haa two different eigenvalusee
P =4-8B. o =4+ B (N-1) . (3.8}
where (# 18 (N-1)-fold degenerated. The quadratie form in (3.8)
ghould be poeltive definite so the variatlonal parameters vary in
the range, where eaipenvaluee (P and Q: are positive.
Tt 1= oot difficult to calculate the srthogonal N*N matrix U

which disgonalizes . One variant hae the form:

U‘l'1 =b + (@ - 613 1.y = L, 0N,

UiN = Uﬂi = 1N . ¢ = 1,000,

a=b+1, b= - (YN + 1y /iN-1/N. [3.9)
Note that any other realization of the matrix ) does not influence

the resulte obtained in what folleows.

4, Variational eslimates

Bge. (3.2), (3.5} provide an uppar bound on the ground-state

energy of the system in the vicinity of the paint P = 0:
8Py < E+Pom
where £ is an uprper hound on the ground-state energy at P = 0, and

m is a lower bound on the effective mass of ths syatem. To perform

the calculationes. we chenge the varitables in {(3.3) with the help of

liner transformation U:

10



Xx (s =%V U (5) . {4.1)
JEI 13 7

In new variables yi(s1 the approximating acticn (3.8) is diagonal:

-

N

o P noo B

STy, s ¥, :ngﬁl c_]'yf ds - E,?:lni Bryi ds . f4.2)
where in accordance with (3.8} the frequencies Qj are egnal for all
=N s =0

The averages cntering into the estimate (3.5) are as follows:

N
<exp -ik fx (s FxJ_(sg&]‘» = <exp —1kt§l U ¥y ts, )—U”)Qrszﬂ‘z =

| S 4 d 0
exp { - l)=:x EZUMUJ{G‘ (s‘ -5, )-U‘;’zs s .5, 1—U§£G‘ fsz,s2 )}}

(4.3

where G‘l’(sl.sa) is the Green function of a linear oecillator

with frequency {}, obeving the cerresponding boundary conditions:
{

(@ ds® - (516D (5,00 = S50, 68 0.0 59 (gao-0.

t4.4)
6 (5.0 = [eh 0, (8-5-0) - ok Qg (B-1s-a}11/20,8h 0,8
It can eaeily be found that
' N.
e? = (u/ea@) (f1,Ren {1,332, {4.5)
, ﬂyN ) u G 3Nz Qllg gﬁ Iz
Ytorzy i fhs0 =t
g 3
(uys2y [ ds < yjisy > = 37 Quff eth 0,8 - 11 . (4.6)
0

Using (4.3-6) we can obtain an estimate for the enerzy as a
function of the parameters ) and DN' For the ground-state ensrgy of
the multipolaron at rest and its effective mase we get the

estimates

11



[i1]

E= % LIN-D + 0,0 - Ha?%ﬁi“ [ do ™% L F oy + (-1 72 (o))
0
s N1 f.vn_u"?—" vl (4.7
m = pNt1+ %%’%/2 ?dor o® = r@;q’“rm + (N—wp;[”’m)n. (4.8)
where
8, (a) = glﬁ (1-e Oy Nﬁ; [1_B—nﬂa) .
ko) = nln (N-1+e 0 Oy NlnN'l"e_QNU’ (4.9

Note that the part of the acticn (4.2) with the parameter £

aprroximates the inner motion within the polaron cluster. It

follows from (3.9) and (4.1) that

N
_ 1
nys) o ?l,xitsj

So. motion of the centre of inertia of the evetem 1a aprroximated

by &an nscillator sction with frequency QNThe sction (3.4) ie

invariant under simultaneous translations of all the coordinates
xl[s). The centre of inertis of the system (3.1) moves along a

straight line when there ts no electron-phonon interaction. In

this cauve QN:D . which ons can eees sasily from (4.7) taking o = 0

and changing the sign of &2 (the system of pravitating maseBes).

The approximating action $' occurs to be invariant under

translations. Minimization over (] results {in an expression

analngnue to (2.9).

When o * O the centre of inertia of the system movese along

a rather intricate trajectory. the more different from a straight

line. the larger is o . Bogolubov was the firat who had paid

attention to thie faetls’. Correepondingly, the wvariational

12



rarameter QN will not be egqual to zero as we shall see later. In

any case the velues of the parameters 1 and QN are defined by

minimizing the multipelaron energy {4.7).
Let us now examine varicus Himiting caess. In the weak

coupling regime {g ¢ 1 Y [ = QN = O and

Noo*?* T do  —wo

£=- n J o = = - Now . 4,10
3/z W _
mo=pN L+ A [ da /5 679 ) = N(1vave) t4.11)

)
i.e. to the first approximation in coupling constant g the cluster
falls into N independent polarons. Corrections to the additive
formula (4.10-11) for the system energy and effective mass arise
only in the two-phonon approximation and are of an order of o
For two polarens these corrections have been found in 2) Formula
(4.10) has been derived without taking inte account the Coulomb

repulsion which at emall o does not allow & bound state of rolarcns

te be formed at all,

In the atrong coupling regime (g » 1) ) and QN are large, and

(4.7) acquires the form

_ 3 Mol 2N-1 . 17172 NiN-1) e2vTg
E = [(N‘l)ﬂ*‘{)’q]—'ﬁamn—- H—'N*‘Nn;] +'—"r—ejn_—-£m.

(4.12)
If the Coulomb repulsion ise neglected,

at Q:ﬂN . 80 that

(4.12) reaches its minimum

E=3nm- ——,,——’F““’Naf a0 g, = i te)? (4.13)
1 n ’ min - ¥ Ty -
whereas for the ground-state energy of the system we get the

egtimate

E=-wefr3m NP . (4.14}

13



Here —w {a® 73n) is the energy of one polaron in the strong coupling

reglme. Qualitative dependence of the energy of a polaron cluster

was dliecussed in Sec.2. The result of Ref. 2)15 raproduced when

one pute N=2.

The expreseion for the multipolaron effectlve mass is as

followsa:

m = (16a* /812 1N° . (4.15)

For N = 2 relation 74,15} coinclides with the result of Ref.z? Thus
the N-polaron svetem Roes from a weakly correlated. loosely formed
state at emall a to a compact, strongly correlated configuration at

large ¢ with an enormbus maes. So. In the strong coupling limit, an

N-relaron cluster 1e proved to be practically localized.

The correction §E for the Coulomb two-body repuleion can be
found by substitutinga Qmin defined by (4.13) into the last term in
(4.12) and is given by

6E=£L§;Lae’ VT

It is. naturally. valid when

6E/E = —Nﬁl— (2ue* /w12 1 (4.18)

The phveical meaning of the conditicn (4.16) is obhvious.

5. Conclusion

Thus., when the electron-phonon interaction 1s strong. the
Coulomb repulsion does not really preclude formatlon of a cluster.

a bound state of N polarone. It may, however. happen that for con-

crete substances the strong couprling regime is not reached.

Indeed., a characteristic =scala of the Coulomb repuleion energy Ec

is given by the pntential of ionization of a hydrogen atom. 1.me.

EC v 10 eV: a characteristic value of the frequency., w =2 (lOlSA

14
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ol ot x (107t

- 10_2) aV. Hence it followa that a bound state

becomee feamible when & X (Ec/willz % 10-20. In thie case the
17

polaron radiuas defined by R & 4na/a¥2pm turne out to be equal

to several dozen angstroms, which is much larger than the lattice

constant. This means that even at such, almost unreal large values

of a, we are all the same dealing with a cocllective effect so that

the Frohlich polaron concept remains valid.

The energy of one polaron in the atrong coupling regime when

a & 10 equalse about several tenths of eV. However., as a result of

a strong deprendence on the number of particles in a polaron

cluster. the cluster energy may on the whole be signiflcantly

lower. If that energy in the procees of formation of a cluster 1is

trangferred to the lattice. it may be sufficient for hweating the

cryatal and even for melting it (i.e. at slectron concentration of

the order of 107— 108 rrn:)l_1 which is not very large aa compared to

the Avogadrce number).

However, the pclaron cluster will be destroyed before the

crystal. If in the process of its formation heat is really

released. then heating of the medium should diminieh the effective

In our paper 10), we have

constant of electron-phonon interaction.
studied a high-temperature expansion of the ground-state energy of

one polaron. The obtained result is as follows:

E/w = - 0.5 YR/ Ta + 0,020 o® Y3 + O(®1 , = wkl « 1,

from which it is seen thazt when the second term in brackats is

emaller than the firet one. the aystem effectively goes 1into the
regime of weak coupling and ite energy is described by the firet

order in o In an N-particle problem this regime means., ae we have
sean, that & polaron cluster hae fallen into N independent polarcna.

This occurs when 1/8 » (0.03x)®. i.e. when k8 » kS, = 107%2, =~

15



0.01 EPO[ where Epo[ represents the polaron energy in the strong

coupling regime st zero temperature. Qualitatively, BC iB estimated

to be of sn order of 5O K,

Recall that we have considered the behaviour of charged

bosona. It may happen that for fermions a similar effect will be

weakened owing to the Paull principle. It can ococur that Fermi

particles in a crystal prefer to form bipolarons se the collapse

into the multipolaron etate becomes impoesible. Still. may be. scme

temperature effects do exiets in fermion systems too. This

needs

the investipgation.
Note the great significance of the mass value of a ‘“bare"
rarticle polarizing a medium. Heavy charged particles (deuterons,

e.g.) form polarons of a very small radius. The coupling constant

a le proportional to the sguare root of the particle maes 17). and

the polaron radiuva will be inversely prorortional to ite masa. For

8 proton in the strong coupling regime the rolaron radiue will be
significantly smaller than ths lattice constant, and the Frohlich

model ie no longer applicable. This rroblem aleo requires further

studies in the framework of a more realistic theory in which the

structure of a lattice im taken into account .
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