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1. INTRODUCTION 

The single-impurity Anderson model (SIAM) has been propos­
ed many years ago 111 to describe highly dilute random al­
loys12•31 .. In practice, this model is used to imitate other· 
systems too.·· For example, more recently· this model has been 
widel~ used to describe mixed valence and heavy fermion sys­
tems 4 - 71. Although it is a simplified model, nevertheless 
it contains most of the relevant physics and a great deal 
of interesting works has been done on it 12 -71. But it still 

. remains only partially solved. The elegant Bethe-Anzatz tech­
nique as applied to the reduced Anderson model/3/ leads 
to the exact static solution of SIAM only. The generalization 
of this approach for realistic k2 electron spectrum has not 
been done yet. 

In the past years many efforts have been made.to calculate 
dynamical properties of SIAM using various advanced methods' 
of many-body theory14- 151 . Unfortunately, the proposed solu­
tions are, as a rule·, limited in several ways; they are valid 
for a rather narrow intervals of relevant parameters. More­
over, no general concept for construction of the interpolating 
dynamical solution of SIAM has been proposed. In such situa­
tion the unified self-consistent approach, which permits to 
obtain a solution interpolating between weak and strong cor­
relation limits, is highly desirable. 

In this paper we present a un1fied self-consistent calcu­
lation· of, the one-electron Green function (GF) ·which gives 

"'the correct results both for the weak and the strong Coulomb 
correlations. The approach we suggest is founded on the same 

··;· type of concept which hks proved to be valuable for Hubbard 
·model 116-17/ and which has been suggested as essential for 
various .many-body systems with complex spectrum and strong 
interaction 116 - 211 • We believe that the solutions which are 

.,.derived below bear the real physics of SIAM . 

2. OUTLINE OF THE METHOD 

The 
letely 

irreducible GF(IGF) method allows one to describe camp­
the quasiparticl~_£tr.a_~itQ_Q!lillPing in a very general 
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way. It is based on the notion of the "irreducible" parts of 
GF's (or the irreducible parts of the operators, out of which 
the GF is constructed) in terms of whi_ch it is possible, with­
out recourse to a truncation of the. hierarchy of equations 
for the GF's, to write down the exact Dyson equation and to 
obtain an exact analytical representation for the self-energy 
operator. Therefore, in contrast to the standard equation-of­
motion approach, the decoupling is introduced in the self­
energy operator only. The general philosophy of the IGF method 
lies in separation and identification of elastic scattering 
effects .and inelastic ones. The ir'reducible GF's are so defin­
ed that. they cannot be reduced to .the lower-order ones by any 
way of decoupling. This procedure extracts all-relevant (for 
the problem under consideration) mean-field contributions and 
puts them into the generalized mean-field GF.It is worth to 
emphasize that, in general, the mean-field renormalizations 
can exhibit quite nontrivial structure. To obtain this struc­
ture correctly, one must construct the full. GF built of the 
complete algebra of relevant operators and develop a special 
projection procedure for hfgher-order GF's in accordance with 
the algebra found. The most important feature of this appro-
ach is a very nontrivial structure of the mean-field renor­
malizations as found in cases of the Hubbard model in the 
strong correlation limit 1161 and the ·magnetic polaron prob­
lem at finite temperatures and an arbitrary value of s-f ex­
change 119 ,20/ • It is important to note that there is a pos­
sibility of generalizing the scheme described above introduc­
ing IGF's for higher-order equation of motion 1211 • 

3. SIAM. WEAK CORRELATION 

Let us consider the standard·one-impurity Anderson Hamil­
tonian 111 

H:= :£ Ekc;ucku+fd~d~adoa +U/2~ngang-a + 
ku a a 

+;;, Vk(c;adoa+d~acku). 
{1) 

This is the basic Hamiltonian which will be discussed here. 
The simplest way of dealing.with (1) is to. apply the Hartree­
Fock {HF) theorylll. But, as it was pointed in review paper13~ 
it is a fairly rough approximation which has.no region of 
applicability. Nevertheless, from the formal point of view 
we consider-that the validity region of it is limited to . 
we;;~k correlation (U .... O) only. In this limit, due to the mi-
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xing of d and s states, the resonance level exhibits a fini­
te width. We~ill give below the IGF calculations for U .... 0 • 

For calculation of the electronic quasiparticle spectrum 
of the model described by Hamiltonian (1) let us consider the 
equations of motion for one-electron GF's 

.«cku(t)c~(t')» =-iO(t -t')<[cka(t),c:a(t')]+>' (2) 

« d0a(t) d;a(t') » = -iO(t- t') < [ d 0a(t), d;a(t')] +>. (3) 

Because of c-d coupling GF's (2) and (3) are elements of the 
matrix GF 

[ 

I + >> .<<clu· cka "" 

0("") = .<<d
0

alc;u»"" 
+ ]' 

«c :ldo » 
ka a "" 

«doJ d;a»"" . 

(4) 

Performing first time t differentiation of (4) and introdu-· · 
cing the irreducible GF by definition116, 17/ 

ir . + I . + I + < ) <<doano-al doa » = «doano-a do a>> -.<no-a> .«doo- doa » 5 

we obtain the following equation in matrix form 

- ""' - "ir 
~·ctJ("").O("",P)=l+UD (U~), p . 
p 

(6) 

where all definitions are rather evident. In order to.calcu­
late the higher-order GF on the r.h.s. of (6) we have to 
write the equation of motion obtained by means of differen­
tiation with respect to the second time variable t'. Defini­
tion (5) allows one to remove the inhomogeneous term in this 
equation. If one introduces irreducible parts for the r.h.s. 
operators by analogy with expression (5), the equation of 
motion (6) can be exactly rewritten in the form of the DYSON 
equation 

- -o "O" ,.., 
0=0 +0 MO. 

The generalized mean-field GF 0° satisfies equation 

- -o . -
~·ctJ (U~)O (U~,P)=l. 
p p 

The explicit solution of (8) for diagonal elements is 
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-1 I Vkl2 I 
o l ( - . I vP 12 + >> = w -. k . I. --

«c Jckaru. "-<-Un-a-k ru-•P - ka - d 

(9) 

_!Vp:l2 I-\ + 0 
«d0 ld0 » =lru-£d-Un -I. a u ru -a- P 

(10) 
(iJ - (p 

these expressions coincide with A~derson's HF result-
111 

and 
in the limit U = U lead to exact results for GFs. 

The self-energy operator M, which describes inelastic scat­
-tering processes has the following matrix form 

L[: :~.] (11) 

where 

_a - 2 .ir + ir 
M = U .«d n I d n » . 

00 Oa 0-u Ou-0-u· w 
(12) 

Thus, by introducing irreducible parts of GF (or the irredu­
cible parts of the operators, out of which the GF is construc­
ted) the equations of motion for the GF(4) were exactly tran­
sformed into a Dyson equation (7) with an exact representa­
tion of the self-energy operator, expressed in terms of higher 
order GF. It should be emphasized that for weak correlation 
case, U ~ 0, the functional of the mean-field renormalization 
can be represented -in' terms of mean densities of electrons 
(see Eq.(5)). · 

Th~ formal solution of.Dyson equation (7) can be written 
as 

- - 0 -1 -1 a.:.l(a) -MI. 

From (13) one immediately obtains 

2 
. + _ _ _a· _ I vP I -1 

.«d0 ld 0 » -=leu-£ -Un -:-M 00 -2 -----1 , 
a a· cu d -a p w - £ 

p 

. «c I c+ » 
ka ka- cu 

::{{.j- ( -
k 

- 2 
IVkl ·-- a 

cu -£ - Un - M 
d -{I 00 

4 

(13) 

(14) 

~ 

'? 

In order to calculate the self-energy operator in a self­
consistent way, we have to expres~ it approximately by. lower 
order GF's. Let us start in analogy with Hubbard model 
with a pair-type approximation 

a 2 00 d w1 d w2 d w3 M00 (w),U ( {n(w1)[1-n(w
2
)-n(w

3
)]+ 

w+w -w -w --:-oo 1 2 3 

(15) 

+ n(w2) n(w3) I gO-a (w1) gOa(w 2) go-a<ws)' 

where 
1 + . 

-gOa=--;; Im «d Ou I do a». 

If we take for the first iteration step 

g -o(w-i -Un ) 
Oa d -a ' 

(16) 

we immediately obtain Mg0 = 0. This result reflects the f~c~ 
that only one impurity site is present. For periodic Anderson 
model the pair approximation (15) should work quite well. 

Let us try (again in analogy with the Hubbard model /16/) 

another type of approximation for M. Owing to the well-known 
spec.tral theorem the GF in the· r. h. s. of ( 12) can be expressed 
in terms of correlation functions. The approximation which. 
we will use now reflects the interference between tQe one­
particle branch and the collective one: 

+ + + 
<do-u do-ado ad!b (t) do-a (t) do_Jt) > == 

+ 
""'<no-ano_Jt)> <doadoJt) > + 

+ + + -
+ "doJlo-ado_Jt) doa (t) ><do-ad o-Jt) > + 

+ + . - + 
+ <dOadO-adO-a(t) dOa(t) > <do-adO-a(t) >. 

(17) ' 

If we retain only the first term in (17) ( cf: 1121 ) and make 
use of the same first iteration as (16)~ we obtain for'the' 
self-energy operator 

2 
M (w) =U - a . 

1 - n(£d -Un-a) 

ru-E -Un 
d -a 

<n n > • 
0-a 0-a 

(18) 
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It is very interesting that when retaining the second term 
in (17) we'obtain · 

I + { u . 1 
«do-t d01 »w = w- (d - n * - Moo<w) - ~ 

p 

« d0 , I d~, » = { w - ( - U n t - M * ( w) - ~ 
+ v+ (U d 00 p 

where ..J 

2 
I v I -1 

p l 
(U - ( p 

2 
IV I -1 

P I . 
(U-( 

p 

u . 2 "" 1 + N ( w ) - n ( w2 ) - + 

Moo(w) =U r dw1dw2 I t-.Llm«S; I S~»w lx 
-oo w-w

1
-w

2 
TT 1 

1 + 
x 1- - Im «doul do~» l 

.TT v w2 

(19) 

(20) 

(21) 

with s+ + 
( cf (12iD) = dOt do+ 

+ 
80 = do.J. dOt or, in more convenient form, 

u 2· w-w w 1 Moo ( (U ) = u r d (L) I coth 1 + tanh - l X 
1. <>I'J'I 2T 

: 1 -+ 
x f..:.-;-Imx;

0
-(w-w1) lg0u(w1). 

(22) 

The essential feature of this approximation is connected with 
the fact that spin up and spin down el~ctrons are corr~lated 
when they occupy the ,impurity level. So this really improves 
the HF theory in which just these correlations are missed. 
The scattering of the d-electron with the band electron causes 
the impurity level to be shifted and broadened. But by inclu­
ding the correlation effects for the weak cor·relation case 
we obtain additional shift and broadening due to electron­
electron inelastic scattering processes. This, 'of course, 
leads to small corrections for shift and width and influences 
mainly on the line form of spectral density. The role of 
electron-electron correlation becomes much more crucial for 
the case of stro~g correlation. In the region where U is very 
large, but finite, the theory faces the most serious diffi­
culties 1141 • 
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4. SIAM. STRONG CORRELATION 

To depict the behaviour of the system in.the case of 
strong Coulomb correlations when·the scattering between the 
band and d electrons ispresent we need a more-sophisticated­
approach than one proposed in papers 18 - 151 • The relevant al­
gebra of the operators used for description of the stron? 
correlation has the similar furm as for Hubbard model 116 • 
Let us represent matrix GF (4) in the following form 

[ + - . . + ] «ckul cku»w · ~ «ckul fo{3u»6J 
~ ~ 

(23) Gu(w) = 

~ «f0 1 c;:,.» , ~ «f
0 

1 r
0
+
13 

» · 
a au w a 8 au u 

where 

a + -
foap = no-udOu(a = ±); nou = nou; nou = (1- nOu) • (24) 

The equation of motion for auxiliary GF 0 

[ 

<<ckulc;u>>{t) 
:; + 
Gu(w) = «fo+.ul cku»w 

«fo-u I c~>{t) 

«ckul fO++U»CiJ 

+ 
<<fO+ul fO+u»CrJ · 

' + 
«fo-ul fO+u»w 

.. + 
« cku I f o-if>>w ] 

<<;:fo+ulf~:u>>CrJ (25) 

«fo-ul fo-u»w 

in the mat~ix notation reads 
~ 

~- ~ ~ 

EGu(ru) - I = 0, 

where 

({1)-fk) 

~ 

E= 0 

-V k -V k 

(ru- fd - U) 0 .+ 

0 0 (w- fd -U_) 

and 

I 1 0 0 I I 0 

I= I o n+ o ; 0 = 0
21 0-u· 

0 0 n- D 
0-u 31 
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a=-
{ 

u. 
Ua = 0, 

a=+ 
(27) 

0 0 

0 22 0
23 I (28) . 

0
32 

0 
33 



Here D is a higher-order GF. As an example we give now two 
matrix elements 

D22 =.<<(c~no-u+ d~-ucp-·udou- c;_udo-udou> I f~+u»"->, 
. ' (29) 

. + + + 
Daa = .«( cpu(l- no-u> - do-u.cp-udou + cp-ud 0-udod I fo-u»(L). 

Let us introduce the matrix irreducible GF 
with the definition given in the paper 1161 

j)ir in accordance 

"'ir ... A-+« -a+ -a-l ") ..; 
D = D - ~ A-a [au au L. (30) 

where the coefficients Aa~ are determined from the condition 

.<[ D~~, r0+~u] > = o. (31) 

The corresponding exact Dyson equation is 

8 = 3° + B0 M8, (32) 

where a0 is.the generalised mean-field GF. It is very impor­
tant to show the explicit form of the mean-field renormaliza­
tions 

+ + 
<( d . c + c d ) (n - n... 'I > . . 0-a p-a p-a 0-a Oa -1J-d 

A++ 
.<no-a> 

+ + -< ( d
0 

c + c d 0 ) (1 + n0 - n0 ) > 
-a p-u p-o: -a a· -a A-

(1- no-u> 

A-+ =-A++ ; A+- =-A 

(33) 

(34) 

The generalized mean-field GF of the d-electrons has the form 

+ 0 
.«d0 ld0 >> u u _(L) 

<n
0 

> :l V A-+ 
- -u P ·p 

(L) - £ d - U - :l V A++ (
1 

+ - ) + · + P "->-£ -U 
p . d 

8 

:l V A+~' 
(1 + p . p ) • 

(ti."-.<no-u>) 
+ 

(L)-( -U -:l VA--· w-(d -U+ 
d - p p 

For the VP = 0 we obtain. exact atomic solution 

Fat= <no-r? 

(L)-(d-U+ 

(1 - <n0_o>). 
+ -------. 

((L) -(d ""'U_)· 

(35) 

The conduction electron GF in this approximation reads 

+ 0 2 at 1-t «ckalcku»(L)=I(L)-(k -IVkl F (w) • 

This form of solution also gives the correct expression-for 
Vk =0. The self-energy operator has the form 

M=f-1:l vpv <<Dirl<i)ir)+»II-:~ 
pq q 

This equation is an analogue of the equation for the self­
energy operator in the Hubbard model 1161 so we are not going . . 

to write it explicitly here especially because of its com-
plicated structure. But it is important to note that the 
self-energy operator for. the periodic Anderson model is much 
more similar to.the self-energy operator of the Hubbard model. 

5. CONCLUSIONS 
\ 

In summary, we have obtained the new interpolation solution 
- one-particle GF for the SIAM in the framework of IGF for­
malism. In the weak correlation case the functional of the 
generalized mean-fields (GMF) depend~ only of·mean_electron 
densities and this solution improves the.HF solution 111 and 
a"llows to incorporate the correlation of.the spi~-up a~d 
spin-down electrons occupying the impurity level, in a self­
consistent way. For the case of a strong Coulomb correlation 
we obtained an essentially new solution confirming the sta­
tement116-211 that in this case the mean-field renormaliza·­
tion. has a quite nontrivial structure and cannot be reduced 
to the mean density functional. The theory we suggest allows 
one to find explicitly the damping of quasiparticleexcita­
tions in a self-consistent way as it was demonstrated in 
detail here for weak correlation case. And lastly, it.should 
be emphasized that SI~ and periodic Anderson model (PAM) 
will.have very different structure of GMF as well as the 
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structure .of·· inelastic scattering corrections due to the self- . 
energy operator. The more detailed analysis of the obtained 
soiution and a comparison with the solution for PAM will be 
published elsewhere. 
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