


1. INTRODUCTION

The single- 1mpur1ty Anderson model (SIAM) has been propos-
ed many years ago/l to describe highly dilute random al-
loys 287 In practice, this model is used to imitate other-
systems too. For example,more recently this model has been-
widely used to describe mixed valence and heavy fermion sys-
tems /4-7/, Although it is a simplified model, nevertheless
it contalns most of the relevant physics and a ‘great deal .
of interesting works has been done on it /2-7/, But it still
. remains only partially solved. The elegant Bethe-Anzatz tech-
nique as applied to the reduced Anderson model’3/ leads
to the exact static solution of SIAM only. The generalization
of this approach for realistic k® electron spectrum has not
«been done ‘yet.

. In the past years many efforts have been made to calculate
dynamical propertles of SIAM using various advanced methods’
of many-body theory /4- 15/ Unfortunately, the proposed. solu- -
tions are, as a rule,. limited in several ways; they are valid
. for a rather narrow intervals of relevant parameters. More-
over, no general concept for construction of the. 1nterpolat1ng»
dynamical solution of SIAM has been proposed. In such situa- |
tion the unified self-consistent approach, which permits to
obtain a solution interpolating between weak and strong cor-
relation limits, is highly desirable. .
] In this paper we present a umified self-consistent calcu-
lation: of the one-electron Green function (GF) which gives
“‘the correct results both for the weak and the strong Coulomb
correlations. The approach we suggest is founded on the same

" type of concept which has proved . to be valuable for Hubbard

‘model/18-17/ and which has been suggested as essential for
various many-body systems with complex spectrum and strong
interaction’/!~21 " ye believe that the solutions which are
.~ derived below bear the real physics of SIAM.

2. OUTLINE OF THE METHOD -

‘ The 1rreduc1ble GF(IGF) method allows one to .describe comp-
letely the quasiparticle spectra_ with damplng in a very general
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way. It is based on the notion of the "irreducible" parts of
GF’s (or the irreducible parts of the operators, out of which
the GF is constructed) in terms of which it is possible, with-
out recourse to a truncation of the. hierarchy of equations

for the GF’s, to write down the exact Dyson equation and to
obtain an exact analytical representation for the self-energy

operator. Therefore, in contrast to the standard equation-of-

motion approach, the decoupling is introduced in the self-
energy operator only. The general philosophy of the IGF method
lies in separation and 1dent1f1cat1on of elastic scattering
effects and inelastic ones. The ifreducible GF’s are so defin-
ed that.they cannot be reduced to the lower-order ones by any
way.of decoupling. This procedure extracts all relevant (for
the problem under consideration) mean-field contributions and
puts them into the generalized mean-field GF.It is worth to
emphasize that, in general, the mean-field renormalizations
can exhibit quite nontrivial structure. To obtain this struc-
ture correctly, one must construct the full. GF built of the
complete algebra of relevant operators and develop a special
projection procedure for higher-order GF’s in accordance with
the algebra found. The most important feature of this appro-
ach is a very nontrivial structure of the mean-field renor-
malizations as found in cases of the Hubbard model in the
strong correlation limit 7%/ and the ‘magnetic polaron prob-
lem at finite temperatures and an arbitrary value of s ~f ex-
change 719,20/ . 1t is important to note that there is a pos-
sibility of generalizing the scheme described above introduc-
ing "IGF’s for higher-order equation of motion 721/

‘3f SIAM. WEAK CORRELATION

Let us consider the standard one-impurity Anderson Hamil-
tonian’1/
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This is the basic Hamiltonian which will be discussed here.
The simplest way of dealing .with (1) is to apply the Hartree-
Fock (HF) theory’!/. But, as it was pointed in review paper’%,
it is a fairly rough approximation which has.no region of
applicability. Nevertheless, from the formal point of view

we consider-that the validity region of it is limited to
weak correlation (U - 0) only In this limit, due to the m1—
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" The geheraliz.ed mean-field GF Q°

- xing of d and s sfates, the resonance 1e§é1 exhibits a fini-

te width. We,will give below the IGF calculations for U- 0.

For ‘calculation of. the electronic qua51part1cle spectrum
of the model described by Hamiltonian: (1) let us consider the
equations of motion for one- electron GF’s
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Because of c-d coupling GF’s (2) and (3) are elements of the
matrix GF
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Performing first time t differentiation of (4) and intrddu;fe
cing the irreducible GF by definition’/16.1% .

¥y lolday > = <<dgolg_g|dg>> =<g_g> <<dgyldgy > (5)
we obtaihAthe foilowing equation in matrix form
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where all definitions are rather evident. In order to calcu-
late the higher-order GF on the r.h.s. of (6) We have to
write the equation of motion obtained by means of differen-
tiation with respect to the second time variable-t’. Defini-
tion (5) allows one to remove the inhomogeneous term in this
equation. If one introduces irreducible parts for the r.h.s.
operators by analogy with expression (5), the equation of

"motion (6) can be exactly rewritten in the form of the DYSON

equation
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satisfies equation
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these expressions coincide with Anderson s HF result’ and
in the limit U= 0 lead to exact results for GFs.

The self-enérgy operator M, which describes 1nelasticyscat-_‘

‘tering processes has the following matrix form
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Thus, by introducing irreducihle‘parts of GF (or the irredu-
cible parts of the operators, out of which the GF is construc-

ted) the equations of motion for the GF(4) were exactly tran-

sformed ‘into a Dyson  equation (7) with an exact representa-

tion of the self-energy operator, expressed in terms of hlgher"

order GF. It should ‘be emphasized that for weak correlation

case, U 50, the funct10nal of the mean-field renormalization

can be: represented in terms of mean densities of electrons
(see Egq. (5)).

© " The formal solut10n of Dyson equat1on (7) can be wr1tten
as’

a =™t oMy | - (13)

From (13) one immediately obtains
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In order to calculate the self energy operator 1n a self—

‘consistent way, we have to express it approximately by lower

order GF’s. Let us start in analogy with Hubbard model
w1th a pair- type approx1mat10n
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If we take for the first iteration step
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we immediately obtain M = 0. This result reflects the. fact
that only one impurity s1te is present. For periodic Anderson
model the pair approximation (15) should work quite well.

Let us try (again in analogy with the Hubbard model/le/)
another type of approximation for M. Owing to the well known
spectral theorem the GF in the-r.h.s. of (12) can be expressed
in terms of correlation functions. The approximation which,
we will use now reflects the interference between the one-

‘particle branch and the collective one:
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- If we retain only the first term in (17) (cf.’ 12l and make

use of the same first 1terat10n as (16) we obta1n for the"
self-énergy operator
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‘It iéivery interesting that when retaining theVsecpnd term
in’(17)'we'§btain‘ » o
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'The essential feature of this approximation is connected with
the fact that spin up and spin down electrons are co?related

when they occupy the impurity level. So this really“%mproves

the HF theory in which just these correlations are missed.

- The scattering of the d-electron with the band electron causes

the impurity level to be shifted and broadengd. BuF by'inclu-
ding’the correlation effects for the weak correlation case

. we obtain additional shift and broadening due to electron-
electron inelastic scattering processes. This, of course,
leads to small corrections for shift and width and  influences
‘mainly‘on,the line form of spectral density. The rolg of
electron-electron correlation becomes much more crucial for
the case of étrohg correlation. In the region‘whgre U is very
large, but finite, the theory faces the most serious diffi-

' culties/14/. AR

4. SIAM. STRONG CORRELATION

To depict the behaviour of the system in the case of -
strong Coulomb correlations when “the scattering between the
band and d electrons is present we need a more “sophisticated
approach than one proposed in papers/s'15 . The relevant al-
gebra of the operators used for description of the stro?g
correlation has the similar form as for Hubbard model”/16

Let us represent matrix GF (4) in the following form
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"-Here ﬁ‘is a higher-order GF. As an example we“give now two
matrix elements

' S + + et
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Let us introduce the matrix irreducible GF D in accordance
with the definition given in the paper/ls/'
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where the coefficients Aal3 are determined from the condition
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‘ Thefeorresponding exact Dyson equation is
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‘where G% is the generalised mean-field GF. It is very impor-
tant to show the explicit form of the mean-field renormallza—
tions
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For the V 0 we obtain exact atom1c solutlon
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: ps + - o
w-eq=U, 7 (w -€4 -“U_):’v

The conduction electron GF in this approximation feadsz
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This form of solut1on also gives the correct express1on for
Vk =0. The self- -energy operator ‘has the form

M=T"%s A «<D¥ (DI > 17171
Pq

This equation is an analogue of the equation for the self-
energy operator in the Hubbard model’ SO we are not go1ng
to write it explicitly here especially because of its .com-
p11cated structure. But it is important to note that the .
self-energy operator  for.the periodic Anderson model is much
more similar to .the self-energy operator of the Hubbard model.

5. CONCLUSIONS

In summary, we have obtained the newv 1nterpolat10n solut1on

- one-particle GF for the SIAM in the framework of IGF for-
malism. In the weak correlation:case the funct10na1 of the
generalized mean-fields ‘(GMF) depends only of ‘mean electron
densities and this solution improves the "HF solutlon/l(vand
allows to incorporate the correlatlon of “the spin-up and
spin-down electrons occupylng the 1mpur1ty ‘level; in a self-
consistent way. For the case of a.strong Coulomb correlatlon'
we obtained an essentially new solution confirming the sta-
tement/18-21/" that in this case ‘the mean- f1e1d renormallza—\
tion. has a qu1te nontrivial structure and cannot be.reduced
to the mean density functional. The theory we suggest allows
one to find- explicitly the damping of quasiparticle excita-
tions in-a self-consistent way-as it was demonstrated in
detail here for weak correlation case. And lastly, it should

- be emphasized that SIAM and periodic Anderson model -(PAM)

w111 have very different structure of GMF as well as the,
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structure of-inelastic scattering corrections due to the self- '
energy'operator' The more detailed analysis of the obtained
solution and a comparison with the solut1on for PAM will be
published’ elsewhere.
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