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that biological It is now widely appreciated 

macromolecules possess a rich spectrum of internal motions 

with characteristic times encompassing some 15 orders of 

magnitude. One of the frontiers today in molecular biology is 

the study of low-frequency internal motion in macromolecules 

and the relevant biological functions. consequently, it is 

important to reveal the origin of this kind of internal 

motion and to build the corresponding physical models. A good 
• • • • • 1) 

d1scuss1on of these models lS g1ven, e.g., 1n • The models 

(the elastic global model, the harmonic model and the quasi­

continuity model) are based on a reasonable conception that 

the origin of the low-frequency internal motion is due to the 

existence of a series of weak bonds and a large numper of 

atoms distributed around these bonds·. The calculated wave 

numbers for some biological molecules within these simple 

models are close to their corresponding observed values 1
'. 

That is, the adopted physical models reflect quite well the 

real origin of the low-frequency motion in biological 

macromolecules. Possibly, complicated but unessential factors 

that were neglected during the approximate treatment are 

either cancelled out by each other or reach an internal 

mutual equilibrium in a much shorter time in comparison with 

the period of the low-frequency motion. 

Another phenomenological model of the low-frequency 

collective motions in biological macromolecules has been 

proposed in our previous papers 2
'

3
' •. The model is called to 

take effectively into account acoustic thermal vibrations of 

the particles constituting the macromolecule and the 

displacements and turns of the molecular groups and 

fragments. It is assumed that these motions lead to small 

changes (vibrations) of the globule surface with respect to 

its equilibrium fOrm. To describe such (in the most simple 

case quadrupole) deformations of the globule, it is 

convenient to use a set of five collective variables: three 

Eu~er angles 8=(B
1
,e

2
,B

3
) giving the orientation of the 

molecule-fixed axes with respect to the laboratory frame and 

two parameters 13 and ; (O::sf3<o:l, o::s,-::srr/3) characterizing the 

form of the macromolecule in its own coordinate system. such 
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dynamical variables have been successfully applied modelling 
excited states of atomic nuclei 4

). The starting Lagrangian 
and dissipative £unction of the macromolecule in solution are 
formally the same as for a viscous liquid drop under surface 
tension in other viscous fluid. It must be noted that the 
used parameters of the elasticity (C) and the dissipation (Z) 
are phenomenological, effective and they have to be 
considered as being caused by quite distinct mechanisms than 
those in a homogeneous liquid. At the present time, there is 
no microscopic theory that allows one to calculate these 
parameters. If the deformed macro~olecule is modelled by a 
homogeneous liquid drop with a large viscosity ~ and surface 
tension u in a liquid with the viscosity coefficient~', we 
have Z=SR3 (1)+81)' /3) and C=4uR2 with R being the equilibrium 0 0 0 
radius of the drop s). The probability density of the 
transition of the macromolecule from the initial state caco), 
o(O),e(O)) to the final state (~,7,e) during the timet, W(~. 
7,S;~(0),7(0),S(O);t) is the solution of the Einstein­
Smoluchowski kinetic equation. This equation that describes 
the Brownian motion of deformable particles in diffusion 
approximation has been obtained in5 >. It can be written in 
the following form: 

aw 
at 

3 
- L DrL2] W 

(T (T • 
0'=1 

(1) 

Here, Lu are the projections of the quantum-mechanical 
angular momentum onto the molecule-fixed axes (fi=l), D~=k8T/Z and D7=k~T/Z~

2 
are the diffusion coefficients in the space of 

the internal parameters. The principal diffusion coefficients 
in the space of rotations, Du=k8Tj4Za2sin2(7-2nuj3), are also 
determined by the dissipation of the deformable particle. 

The initial condition and the volume element in our 5-
dimensional space are as follows: 

W(O) (2) 
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d5 .x = j3
4 sin3'l'di3d'l'sine de de de • 

2 1 2 3 
( 3) 

The stationary solution of eq. (1) is the Boltzmann 

distribution 

(4) 

In the present paper, we obtain the solution of the 

kinetic equation (1) and use it to ~onstruct the 

autocorrelation Van Hove function which is necessary in the 

interpretation of spectroscopic experiments. It is well known 

that the internal motion of macromolecules has a considerable 

influence on their heat 'motion in solutions. In its turn, 

this affects the spectroscopic and relaxation experimental 

data in the time and frequency domains, with which the model 

predictions can be confronted. The experimental techniques 

that are p"erspective to be used in such measurements are, 

e.g., the inelastic neutron scattering 6
l, light scattering7

' 

or the Moessbauer absorption-and Rayleigh scattering spectro­

scopy8'. The spectrum of the elastic incoherent Rayleigh 

scattering of Moessbauer radiation 9
' is determined by the 

autocorrelation Van Hove function F(k,t) 

g(w) 
!:.ill_ ~ 

exp(-iwt- 2h )F(k,t), 

H ~~ ~~ 

F(k,t) (1/N) L <expikX (t) exp(-ikXJ(O))>, 
j = 1 j 

( 5) 

where w is the difference between the frequency of gamma­

quanta and the resonance frequency, k=(4rr/l.) sin(S/2) is the 

momentum transfer at the scattering, e is the scattering 

angle, r is the natural line width and XJ(t) is the position 

of the jth atom (scatterer). The angular brackets denote the 

statistical averaging. Note that the spectra of the light or 

slow neutron scattering are given by analogous expressions 

with r=o. The information obtained from the scattering data 

is, in fact, averaged over the whole macromolecule- and dOes 

not depend on ~he positions of separate Moessbauer marks. 
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The motion of an atom can be divided into the sum of the 
motion of the center of mass of the 
independent displacements r (t) 

j 

Brownian particle and the 
together with the 

surroundings. The translational motion will be described in 
the diffusion approximation. The detailed mobility analysis 
of the deformed drop in a liquid 1~' showed that at small 
Reynolds numbers the resistance force during the motion of 
the drop is the same as for a liquid sphere, that is, the 
translational diffusion coefficient is a scalar 

D 
kT 

B 11+11' 
71+211'/3 ( 6) 

The mean square angle of the particle rotation during the 
characteristic time ~0-R~11/uR: is given by the estimation 
<4?>1

/
2 

D ~ (D k TjR3 
' is the rotational diffusion - rot 0 rot- 8 011 

coefficient) and is always small. Really, D ~ (11/ll')kT/uR! . rot o- B <10-1 if R 10A and 11 8011'. We express the displacement of o- -
the atom in the center-of-mass system r (t) -r (0) during the j j time t into the small contributions from the rotations and 
small changes of the distance r

0
J from the center of mass. 

That is, omitting the index j, we write r(t)-r(O)~n(t)r(t)­
n(o)r(O), where n(t) is the unit vector of the direction to 
the atom. Then, r(t)~r0 (l+Eav(t)Y2v(e,~)) considering the 
displacement r(t)-r

0 
to be modulated by the factor in 

brackets that follows from the expansion in spherical 
harmonics within the used quadrupole appi:-oximation. Using -+ -+ -:1: -+ -:1: also n(t)-n(o)~~(t)xn(O), where~ is the angle of rotation of 
the vector n (from some initial ~(0) to ~(0)+~), we obtain 

(7) 

We have retained in (7) only the terms of the first order of 
smal'l quantities. The molecule-fixed axes are directed along 
the principal axes of the ellipsoid (macromolecule). The 
angles 9~ an~ ;~ give the orientation of the vector nco) in 
the rotating coordinate system. 
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Using all we have said above the Van Hove function reads 

2 N 

F(k,t) ~ e-k ot N-1l: <exp[i~~(t) + i((ll(t)-!l(O) ]>. (8) 

J= 1 

Here, the vector T and the scalar ( have been introduced as 

functions of the initial Euler angles 8
1
,8

2
,83 , 

kr (sine'sin¢'cos8 -cos8'sine case), 
0 0 0 2 0 2 3 

kr (cose'sine sine -sine'cos¢'cose ), 
0 0 2 3 0 0 2 

kr sin8'sin8 cos(¢'+8 ), 
0 0 2 0 3 

=qkr [sin8'sin8 sin(¢'+8 )+cos8'cos8 ]. 
oo 0 2 03 0 2 

( 9) 

The vector k is assumed to lie along the axis z of the 

laboratory frame; the angles 

tion in the system connected 

e ,e ,e determine its 
1 2 3 

with the macromolecule. 

orienta-

The angles of rotations are small quantities. This can 

be used to write approximately the operator La- from (1) in 

the form111 La-:::: -ia;aq,o-, that is, equation (1) becomes much 

simpler. In the initial condition (2) the delta-function 

depending on the Euler angles becomes simply 8 (~) and the 

volume element (3) is d~. In the small rotation approximation 

the angular brackets in (8) mean the averaging, that is to be 

carried out according to the rule 

The limits of integration over ~ are here extended to 

infinity 11 '. 

Now, we can construct the Green function of our 

simplified problem determining the probability of the 

transition during the time t from the initial state 

(ll0 .~0 ,e(O)) to the final state {!l,~.~(O)+~). It can be done 

using the proper functions obtained by the separation of 

variables4
' .The Van Hove function (8) is expressed through 

the auxiliary function 
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w(t) ~ Jexp(i7~)Wd~ 

that can be written in the form 

w{t) ~ L r1 (7)r1 (7o)W(/3,!3o,t,s1)' 
1 

( 11) 

(12) 

where the Green function of the "deformational vibrations" is 
determined through the series of the Laguerre polynomials 

(13) 

n! 2s-1/2 2s-1/2 xl: (n+2s-l/2)! Ln (y)Ln (yo)exp[-2KT(n+s-l) ]. n=O 

Here, the dimerlsionless time ~=tk T/Z and the elasticity . B 
constant K~Cjk8T have been introduced; ~K/32/2 and s 1=(1/4) (1 
+3~1+4e 1 ) depen4s on the separation parameters e

1
• The 

equation for,det~rmining 1
1

(7) reads 

+ 9c )r 
1 1 

o, ( 14) • 

with the vector components 7u from (9). We failed to find the 
proper functions- and values of this equation in the general 
case. Formally, 1 the problem coincides with that of the 
quanturn-mechanic~l motion of a particle on the sphere with 
the potential 

3 

U(7) = L 
0"=1 

Averaging this pQtential over all possible orientations given 
by the Euler angies e(O) and over the positions of scatterers 
inside the Brownian particle, we have 

a~kR H0/6. 
0 

(15) 

The proper functions of eq. (14) in the region [O,rr/3] with 
the potential (15) and the zero boundary conditions are the 
Legendre polynomials12

) P-a (cos3T) and the proper values are a+1 
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c:
1
= (a+l) (a+l+1), 1=0,1,2, .•• 

To obtain the scattering spectrum according to (10) with 

the help of (12), the averaging over the equilibrium Euler 

angle distribution must be done and the result has to be 

summed over all scatterers. The sum can be approximately 

.replaced by the volume integration. It is difficult to carry 

out these calculations in an explicit form. That is why, we 

construct the exact result depending on 1 2 and ( 2 from (9) in 
0' - -

the form of the Taylor expansion near the values ~~ and ( 2 

and limit· ourselves to the first expansion term11l. The 

result for the function (8) i~ rather complex. The averaging 

over the ;-vibrations gives the following expression: 

F(k,t) 
2 s -1+n r 2 (n+s +3/2) 

"e-k DtE IAII"T I (1-T)S/zn1.' ===:.,1-.-c<=IB lz, 
r (n+2s1+1/2) ns I 

I ,n 
(16) 

where T=exp(-21<1:), A=Jsin37 r (7)d7, 
I I (17) 

B =rr- 1 / 2r(s+n+2)2 3 (s+n+J/ 2 l~(-s-n-3j2,1/2,-A 2 (1-T)/4), 
ns 

(!8) 

and h 2=2C 2 /K=2(kR
0

)
2
/20rrK, with~ being the degenerate hyper­

geometric function. 

More significant simplifications of the result are 

possible only after some additional approximations. So, in 

the problems of the scattering and absorption of Moessbauer 

gamma-quanta the condition kR
0
>>1 can be used. In the 

experiments of the quasi-elastic light scattering from the 

statistical coils of various polymers 13
'
14

) the dependence 

of the first cumulant on kR is studied in the intermediate 
q 

region kR 1 and in the limit kR >>1 (R is the hydrodynamic 
g- g g 

radius of the macromolecule). Theoretical estimations of the 

cumulant Q
1 

for chain molecules with the inclusion of 

hydrodynamic interactions show the following interesting and 

considerable peculiarity: 0
1 

does not depend on the size of 

the chain or its segments and n k Tk3/ll· 
1- B 

Let us study the asymptotics of the autocorrelation 

function in our case under the condition kR
0
>>·1. In this case 

c: ~ a 2 and does not depend on the summation index 1. Then, 
I 
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the summation over all 1 and the integration over the initial 
and final states in "( lead to the unity factor. Using the 
asymptotics for the function 11'121 at large s that is true 
evenly in the neighbourhood of T=l, one finds 

(19) 

This expression does not contain the summation index n. Then 
the sum in (16) can be easily found to give 

In this note we will not dwell on the analysis of the Fourier 
transform of F(k,t) that determines the spectrum of the 
scattering from the system of noninteracting globules. Let us 
find the effective width of this spectrum, 0

1
• It is defined 

as follows: 
1 
n 

1 

"' J dt F(k,t). ( 21) 
0 

This is equivalent t~ the approximation of the true spectrum 
by a single Lorentzian of the width 0

1
• Taking into account 

again the condition s>>l, we have 

so, 

1 ' "' - ~ --•- Jdx exp(-lx - xp), 
Q1 2KSA 2 o 

~ r(2n+2) 
""" r(n+1) 

(-p)" 

(22) 

(2 3) 

with the major term 

Thus, 

proportional 

the effective width 
to the cube of the 

(24) 

of the · spectrum 
momentum transfer at 

is 

the 
scattering and to the ratio of the temperature and viscosity. 
It. contains no more parameters of the problem and does not 
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depend on the characteristic sizes of the globule R
0 

and 

~k8Tju ( _ the mean square amplitude of the deviation 

* l ~ 

from 

the equilibrium radius). The result agrees with experimental 

observations and coincides with model calcul·ations for chain 

macromolecules with the nece.ssary inclusion of the 

hydrodynamic interaction. The obtained results significantly 

supplement our previous works 2
' 
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