


1. INTRODUCTION | ‘

The " colour crystailographic groups are considered as
symmetry groups of scalar, vector or tensor functions
representing crystal physical properties/1_4/. Alternatively,
the colour groups might be used as the symmetry groups of the
Hamiltonian of a concrete model system/s/. The interpretation
of the Landau theory of continuous'phasettfansiﬁidns in terms
of permutational colour groups has shown their effectiveness
in prediction, analysis and generalized c1a551f1catlon of the
possible phase tran51tlons/6 12/

The group-equivalence definition is one of the main
problems in the classification and tabulation of any kind of
groups. This problem is rather complicated. The definition of
the colour-group equivalence depends on the presumable
applications of these groups. That is why the publiShed
results and lists of colour groups differ in conformity with
the respective equivalence criterion choice. on the one hand,
the comparing of these results is too complicated; On‘the
other hand, the application of the published lists and tables
for symmetry describing of a wide range of physicél phenomena
has almost been impossible due to the inappropriate
equivalence definitions.

Because of these reasons the problem of colour-group
equivalence as well as the relation between the equivalence
criteria given in  the literature are _rather
'significant/1'3’13’14/. Some aspects of this subject have
been discussed by Shwarzenberger/14/ and Roth/ls/ Part of
the introduced equivalence definitions have been summarized
by 0pechowsk1/16/

In the present work a general systematization scheme of
the possible equivalence criteria of P-type permutational
colour groups is given. It is based on the concept of
"isomorphism of groups as groups' of transformations" (see

Ref/17/). It is reformulated from the point of view of two

other approaches to the classification of colour groups of

this kind.
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2.'PERFVIUTATIONAL' COLOUR GROUPS G(P) OF P-TYPE

The theory of P-type.permutational colour groups has
been clarified in details in/'™/ . For the sake of
convenience we shell give some basic principles of this
theory.

Let G be a crystallographic group with elements g € G. The
P-type colour crystallographic groups G(P) to be disused in
this paper are subdirect product of G and P defined by the
homomorphism n:G—P :

¢Pl'= { <pig> | all g e G, m 16> B, m(@)=pePES ) (1)
cP xG ’ )

Here P is a transitive subgroup of S,r the symmetric group
permutations of n objects (colours) F = {fl,...,fn).
The colour groups G(P) are isomorphic to G by an

isomorphism £,

g: ¢(® ¢, g(<pig>)=gec . (2)

They are called permutational colour groups of the family PG
of G and P, isostructural to G. For the sake of brevity we
shall call them "colour groups". )

Obviously, the question which colour groups ¢® to be
considered as equivalent is related to the classification of
the groups G and P, as well as the homomorphisms m. As it
will be shown later, the choice of equivalence criteria for
G(P) is related to appropriated equivalence one for G and P,
i.e.. for the family PG. )

Each colour group G(P) contains two specific subgroups:
the colour—preserving subgroup

g1 - {<epih> | identity e; € P, he H <G ) a c(P)

(3)
G(P)/ H(l) 2 G/H = P

and a subgroup g (P ), the maximal one in G(P), preserving
the colour f1 €F ‘

i (g) = [

» .
n (P')= (<p’;h’>|h'e H' € G, p'e P'=m(H') S P} € c(®) .
Pz w <.

R

If ﬁ’ is an invariant subgroup in G then H'(p ) preserves

. . 1 P
all the colours, i.e. it coincides with H( ) G( ), When
H’ is not invariant subgroup of G, then the maximal invariant
i . . , /17
subgroup of G contained in H 1s/ /
- , -1
Core H = : gH g . ' (5)
. ’ geG

In this case

Ker m = H = Core H' (6)

g a P co.

13
According to Van der Waerden and Burckhardt/ / each

transitive permutation representation m of G defines a colour
group G(P), isostructural to G and vice versa. All the colour
groups jsostructural to a given G with the same subgroup H’,
but acting on different sets of colours F canlbe constructed
s H
by the same transitive representation. .7, . It. can - be
constructed as a set of permutations _of the 1left  cosets
{g H'}) of the coset decomposition of G -with respect to the
1
subgroup H’ of index n: -
glﬁ'....ng ....gnH

] = p e P, g,= e € G . (7)
gglﬁ’...gng’...ggnH’

There is one-one correspondence between the colours fi and

the left cosets giH’:

fi — giH’, vi=1,...,n . (8)

Hence, the properties and the classification of the colour
groups are reduced to investigation of the permutation
representations ng', generated by the definite subgrqups H’
of G. That was the reason SchWarzenberger/7/ had defined the
colour groups as group-subgroup pairs- H’ < G. In most of the

definitions of colour-group equivalence regarded in the
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literature such a consideration of G(P)_is presumed (see/16/
for example). Generally, they should be represented in the
following way:

‘ The colour groups G{P1) and Gépz) , 1isostructural to g
and G, are called equivalent if there exists an isomorphism &

of a special kind from G, onto Gy which maps Hi onto Hé:

& : 6 — G, S (9)

H) = §(H]).
The isomorphism 8 can be a group isomorphism, an affine or a
proper affine conjugation or an inner automorphism of G (when
G, =G, =G).

In the most popular special case, the left components p
of the combined elements <p;g> € c(P) can be considered as
permutations of the set (1,2,...,n) of the indices of the
colours’fi € F. In this case the images of the permutation
representations n are transitive subgroups P ¢ She The colour
groups are viewed as subgroups of SpX G € 5,x A, where A is
the affine group. The equivalence criteria have been
formulated by Koptsik and Kotzev/z/ as follows:

The  colour groups G{P1) and Gépz) are called equivalent
on a level T = Sx L if they are subgroups of.' conjugated by
an element y € I', where the choice of ¥ may or may not be
restricted by some conditions, i.e’ ‘

(P,) _ (P;). -1
G2 2’ =7 le 1%y . (10)

¥ € Snx L, G1 <L, G2 c L,

The group L might be chosen to be the affine group A,
the Euclidean group E or the group G, when G, =G, =G. The
element ¥ can be arbitrary or orientation preserving one in
Snx L."

Note there is not one-to-one correspondence between
the colour groups ‘regarded/14/ as pairs H’c G and as
subgroups/z/ of SnX\G. Generally, several groups G(P)c SnxG

igsostructural to a given G can exist with the same subgroup

4

H’ preserving the colour 1. These groups are conjugated by

<p;e> € Snx G, where p € StabS (1) and correspond to the
n
different enumerations of the left cosets (giH’) in the.

representation (7).
Up to the present work the relation between above two

approaches of separating the colour groups into equivalence
tlasses eq.(9) and eq.(10) has not been precisely clarified.
In. the next section of this work we propose a general
systematization scheme of possible equivalence criteria for

the colour groups.

3. EQUIVALENCE OF COLOUR GROUPS

Let two colour groups
ofPi) = (splighs),  i-1,2, (1)

act on the corresponding sets of colours

. . i

rl1) = f{l),...,fé_)) . (12)
i

In the equivalence definition for the colour groups we

. . P P.)
shall consider both an isomorphism of A:G{ 1)-—9 Gé 2 .and an

2
one-to-one correspondence B:F(l)-—a F( ), such that the

elements of the groups permgte the

.A-isomorphic
(1) and,F(z)

B-corresponding colours of the sets F

c6(P1) -, g{Py) (1), p(2)
A.G1 1'—> G2 2 ’ B:F - (13)
a<pligt>) B(e{t)) = s(ptigt> £, i=1,.0m

This condition can be represented schematically by the

following diagram:



!

: 1,.1
: <pT:g >
fgl) ° I > fgl)
1 J

l B8 (14)

f{z).

2. 2
<p~:g”> = A(<p1=g1>)

£ (2)
fx

The different classifications of equivalence are associated
with different choices of.the pair (A,B8). .

Two dgroups, acting on sets of elements, which satisfy
the condition (13) are called "isomorphic as groups of
transformations"/17/(IGT). The permutation groups which are
IGT are called "similar".

Due to the isomorphisms gizcipi)——a Gy, i=1,2, each

isomorphism A of Gipl) and Gépz) unambiguously defines an

isomorphism §:6,— G,

8= £,0 €77 (15)

and vice versa. Therefore two colour groups, eq. (1), are IGT
if and only if their groups G, and G, are IGT on the
corresponding sets of colours, i.e.

8§:G,—> G B:F(l)——e F(z)

1 2

' 16
ny(s(gh) Bef?) = gmyghe{Yy , i=1,...,n. (o)

Hence, the natural equivalence definition of G(P) up to the
isomorphisms of different kinds A is reduced to
claséification of the groués G- and the transitive
representations n.

The classification of the colour groups from the point
of view of IGT is appropriate for any dimension m of the
Euclidean space and any number of colours n.

Here the problem of coléur-group equivalence should be
considered in two aspects:

i)an equivalence of colour groups isostructural to
isomorphic G1 and G2. This aspect is appropriate in the

mathematical crystallography (We shall refer to it as a
6

General Definition (GD)).

ii)an equivalence of colour groups isostructural to the
same G. This aspect 1is more appropridte in solid state
physics: the geometrical structure of crystal and its
symmetry group G are given and the colour groups
isostructural to that G are to be classified and applied for
describing some. physical phenomenon (a Special Definition
(SD)) . '

Hence we shall propose two. - general  schemes of
systematization of the possible equivalence criteria in terms
of IGT. They are represented in the second columns "IGT" of
Table 1 for GD and Table 2 for SD, respectively. The proposed
schemes could be expended (further specification of B).

As far as we know, equivalence criterion from the point
if view of IGT has been considered only, by Van der Waerden
and Burckhardt/13/ for colour groups isostructural to a given
G. The equivalence of colour groups is identified with the
similarity of the corresponding transitive Vrépresentations
n:G— P: two transitive representations are similar if they
are related by one-to-one colour substitution. This is
fulfilled if and only/ig/the COrrespondiné subgroups Hi and

The condition (16) for IGT colour groups regarded as

H) are conjugated in G

subgroups of Snx A can be presehted as

1 1l
, Vg e G1

1 1 -
nz(a(g )) = s ni(g ) s f s € Sn P (17)
having in mind that in this case the one-one correspondence 8-
is a permutation s e S, of the colour indices. Therefore the
possible equivalence criterion in the frame of IGT given in

tables 1 and 2 can be reformulated in the sense of (10). The

results are represented in the last column "G(P)s Snx A" of
the tables. "

The relationship between the equivalence in the frame
of IGT and (8) can be derived on the base of the following
assertion. -

Assertion 1. Two colour'groups G{PI) and Gépz) ére isomorphic

as groups of transformations by an isomorphism 8:G1——-—>G2 if
7



and only if & maps the class of conjugated subgroups
-1 ! , '
{g H' g | Hj < Gys g €G,) onto the class
{g H' | H’ < G2, g e Gz), i.e.
3 G1 — G2
’ ’ -1 (18)
H2 = 9% 6(Hl) 9% r 9o € Gz.
This assertion is proved in details in Appendix 1. In the
case, when ds can be chosen to coincide with e @G, the
correspondence B maps a colour f(l) to f(z), i.e.

By Assertion}l the colour-group classification from .the
point of view of‘IGT is related to the classification of the

c1a551f1catlon o

correspondlng group-subgroup relatlons H’< G and hence to the
; the physical phenomena associated with the

possible symmetry descents GlH' (see Ref./le/).
Using Assertion 1 the General and the Special Definitions
of equivalence Aan be reformulated in terms of isomorphisms
between the pair% H’ € G. The results are given in the third
columns "“H’ < G"gof Tables 1 and Table 2. From this column of
Table 2 it follows that G(P)-classifications_by the criteria
SD8 and SD9 are gdentical.
In general, the
presented in the tables below (except SD8 and SD9) give rise

to distinct partitions into equivalence classes of. groups.

colour-group-equivalence criteria

However, in many special cases two or more partitions are

identical. For example, if G, and G, are space groups, than

partition into equivalence classes'in the sense of GDl1 (or
SD1) and of GD2 xor SD2) are identical (as a consequence of
the Bieberbach’szheorem). If the groups G are point groups
Euclidean partition into

in odd-dimensional space the

equivalence classes in the sense of GD2, GD3, GD4 will always
be identical, as!well as this one by definitions from SD2 to
SD7. In Table 3 the numbers of equivalence classes of 3-

dimensional colour point groups are given in the sense of all

8

in Table 4 the
equivalence classes of the colour groups isostructural to the
are listed. The group symbols inside the

the proposed definitions. As an example,
abstract group D2
frame of a given criterion are the class-representatives. The
number of the classes is shown in parentheses under the
criterion symbol.

It is worth to mention that there are two lists of colour

In the first one/1 3,19/

point groups -in the llterature,
there are 244 groups (classes of groups)
definition SD2 (GD2). '
groups according to the definition sD8.

It is clear that all the groups isostructural to a given G

according to the

"In the second one’’/ there are 279

with the same H’ are equivalent in the sense of any adopted
equivalence criterion in our systematization schemes. It is

more convenient  for these colour groups to use the "full"
symbol '

(P = G/H' /H(A,A’) (20)
introduced by Koptsik and Kotzev/?/. 1t contains a
comprehensive information for the structure of G(P), ‘very
useful for a classification and physicai applications of
these groups. Here the transitive permutation group P € sh is
denoted by the symbol (A,A’)n. The abstract groups A and A’
are isomorphic to the factor-groups and the corresponding

permutational subgroups of S :

n
a=c®, M) s gmap
(21)
A= B g gapep.
The groups A and A’ c A play a significant  role in the

chromomorphic classification/2/8/ of the colour groups with

respect to Image m = P. Due to the isomorphisms (21) it is

easy to show that colour groups with the same A and A’ have
similar permutational groups. They can be constructed by the

. ’
same faithful representation nA of A and are denoted by the

A
symbol (A,A’)n. Usually the similar groups P are considered

in the 1literature as identical. Hence the chromomorphic

k4



ClaSsification/z/ of the colour groups implies classification

into similarity of the permutational groups P = (A,A’)n.

/3/

symmetries implies similarity of the corresponding groups P.)

(Practically the introduced in equivalence of two P-

Let the groups P are presented as groups of permutations
of the colour indices {1,...,n}. Having in mind that the
similar P are faithful representations of the same group A,
it follows from (17) that two transitive permutational groups
are similar if and only if they can be presented ‘as
conjugated subgroups of S . ' /

So, the chromomorphic classification of the colour groups
considered as subgroups of S,x A implies a classification
into classes of conjugated subgroups of S,-

Because of the mentioned relation between the colour-group
classification and the symmetry-descent one there is one-to-
one correspondence between the chromomorphic classes (A,A’)n
(see Ref./2’8/ and exomorphic types of the symmetry descents,
introduced by Kopsky’ 1%/ .

The proposed approach to the equivalence of G(P) can be
applied to colour groups isostructural to any groups G, not
only to the crystallographic groups G. Then the different
criteria should correspond to appropriate choice of the pairs
(6,8) in -(16). In a similar way these criteria should be
reformulated in the frame of (9) and (10) on the base of the

relation (17) and Assertion 1.

4 .CONCLUSIONS

In the present paper the equivalence problem for the
P-type permutational colour groups has been studied. An
approach aimed at ‘classification of the colour groups has
been proposed. It is based on the concept of isomorphisms of
groups as groups of transformations of sets/17/. The
relationships between the proposed approach and the widely
used in the literature ones is clarified. The last mentioned
approaches are based on a) 'group—subgroup relations and
classification of subgroups; b) classification of colour
groups'G(P) as subgroups of a major group, for example Snx A-

10

our results are summarized in Table 1 and Table 2. Keepihg in
mind the conventional space group classification in the
crystallography and solid-state physics as well as the
possible physical applications of colour groups, some
recommendations for classification of 3-dimensional colour
space groups can be déne.

All space éroupsifall into 230 types (equivalence classes)
with respect to ©proper affine conjugation by  a € at.
Therefore, following the crystallographic traditions, it is
appropriate to use criteria based on proper affine
transformations a € A+ only: GD3, GD4, SD3, SD4, SDe6, sb7,
SD8 (= SD9), SD10. However in the general case the criteria
GD4, SD4, SD7, SD10, based exclusively on the use of proper
rotations, do not ©permit to establish an equivalence
relationships between a given subgroup H! < G, and all the

subgroups of the class (g Hj g_llg € G,) o% G2:L= a Glanl. For
example such a case alyays ocqurs when H’land H’2 are
enantiomorphic pairs. The resulting splitting with respect to
the .equivalence relation of the classes of conjugated
subgroups - would be inadmissible in some physicaf
applications. For example it may lead to inequality of the
colours in the colour space or to definition of nonequivalent

colour groups associated with equivalent permutation

representations Dg /1/ (the 1last might correspond to

equivalent physical properties, such as domain with the same
energies, etc.)

The choice between the 'rest criteria depends' on the
presumable application of the colour space groups. For the
- the definition GD3 (direct
generalization of SD3) is appropriate. The definition SD8 is

crystallographic applications

recommended in solid state physics, where the  physical
properties are related with the irreducible representations
of the space groups. In this case colour groups equivalent by
SD3 might be associated with unequivalent representations Dg'
of the space groups. By the similar reasons the criteria SD8
has been adopted in Ref/e—lz/ and has been called "a physical
equivalence of ‘the colour groups"/ll/, When a physical

phenomenon is associated with so-called "quasi-equivalent
11



repfesontations"/zo/ the transition from SD8 to SD3 would be

easier than backwards.

APPENDIX. Proof of the Assertion 1.

(P

Let first to assume that two groups G1 1) and Gépz) are

IGT by an isomorphism 3:6,— G, and 8 in (16). Let

set)) = £f?), (1.1)
It is easy to see that
s(H,) = H) , (1.2)
where |
my g e = f{l) . mymdyef?) - {2, (1.3)

From the structure of the colour groups it follows that ]
maps the class of conjugated subgroups (g H’ ] geG )

onto the class (g H% g-1| geG,) . i. e. there exists

9, € G2 , such that

1

I J - - —1
H) =g H) g, = 9,8 (H])g, .

Conversely, let there exists an isomorphism & and g € G2
which satisfy (18). Then Gi,/l = 1,2, are IGT of F(l) and of
the sets of the left cosets ggl)Hi) by the “pairs
(a (i) B(i)) where a(i) are the trivial automorphisms of Gy
and B(l) are the one-one correspondences »(8). Due to the

isomorphism & G1 and G2 are IGT of the sets (g(l)H } and

(G(ggl)ﬂi)} by the pair (3,8,), where

8y aftmy — seafMmp) L i=1..n (1.4)

Hl — B(Hl),

As the subgroup & (H;) and H, are conjugated in G, by g, € G,
12

there is one-one correspondence 82 from the set

1
(3(aiMn1)y = (9{Ps(u))) ana the set (2§13, such that c,

: 2
is IGT of them by the pair (aé ),32). Therefore we have that
(P,) (P,) ‘ ]
G, 1" and G, 2" are IGT of F(l) and F(l) according with (16)
by the pair (8,8), where

M aéz)_l aéz) aél) = &

Table 1. Equivalence of colour groups

belonging to different families

GD IGT H' ¢ G (P) o
G < Snx A
§- an : :
isomorphism|é§ G,— G, a, G,— G, .
- - 1 -
GD1|B~ one-one Hé = G(Hi) nz(ﬁ(g )) =s nl(gl) s 1
correspondence|d - isomorphism [& - isomorphism, s € 5,
& «» conjugation |G, = a Gla"1 Gépz) = <sja> G{pl) <s;a>~t
GD2 by a € A Hy = a Hja™ <sia> € 5 x A
B- one-one a €A
correspondence
8 «» conjugation (G, = a Gla_1 Gépz) = <g;a> G{pl) <sja>"t
. + 1 g
GD3 by a € A ‘ Hé =g a Hia 1g_1 <sj;a> € Sn x A+
B~ one-one a € A+ , g € 62
correspondence
8 «» conjugation |G, = a Gla"1 Gépz) = <sia> G{pl) <sja>” !
: + -1 :
GD4 by a € A Hé = a Hia; <s;a> € StabS (1) x Af
n
B- one-one a e A+
correspondence,
(1), - £(2)
ﬂ(fl ) = fl
13



Table 2. Equivalence of

colour groups iso

structural to the same G

sD IGT H' ¢ G P e s x A
8- automorphism | Hj = &(H]) m,(8(g ) =5 m;(9) st
SD1]|B8~ one-one 8- automorphism s-automorphism of G, s € S,
correspondence of G
5 > conjugation | Hj = a Hia_l G2(P2) = <s;a> Gipl) <s;a> t
SD2 by a NA(G)
g- one-one a e NA(G) <s;a> € Sn X NA(G)
correspondence
5 & conjugation Hé =g a H:’la-lg—l Gz(PZ) = <sja> Gipl) <s,-a>":L
SD3 by a € NA+(G) .
8- one-one a e NA+(G), g € G| <sja> € Sn X NA+(G)
correspondence
5 «» conjugation H = a Hia -1 Gépz) = <s;a> G:(lpl) <s,-a>_1
SD4 by a € NA+(G)
B~ one-one ant
correspondence,| 2 € Npt+(G) <sja> € Stabsn(l) x NA+(G)
1 2
pefty = £ ‘
5 «» conjugation |'Hj = a Hia-l Gépz) = <g;a> G{PI) <s;a> 1
SD5 by a € NE(G)
B~ one-one a € Nn(G) <s;a> € S_ X Nn(G)
E n E
correspondence o .
& & conjugation Hé =g a liianlgﬁ‘ cfz) = <sja> Gipl) <s;a>"1
5De6 by a € NE+(G)
B- one-one a € NE+(G), g € G|<s;a> € Sn X NE+(G)
correspondence
5 ¢« conjugation H} = a Hja -1 Ggpz) = <sja> G:(lpl) <sia> 1}
sSD7 by a € Np+(G) '
8- one-one ’ -
correspondence,| 2 € Ng*(G) <sja> € Stabsn(l) x Ng+(G)
1 2 ' :
peft)y = £{3 .
s  Int(G) Hy = g Hig™T ciP2) = <sig> c{PD) <sip>7?
SD8 |8~ one-one g e G <s;g> € Sn x G
correspondence
s 1Intt(e) H) = g Hig'l G,‘(’Pz) = <s;g> G':(lpl) <s;g>"l
$D9 |3—- one-one R +
correspondence geeé <sig> € 5, X ¢
a 1Intt(e) Hy = g Hig ©  |6iF2) = '<sig> c(P1) <sigo7t
SD |B- one-one
10 correspondence, + e ) +
B(f(l)) - £(2) g e G <sfg> € Stabsn(l) x G
1 1
14

., Table

3.Classification of colour-point groups

Table 4. Classification of colour groups isomorphic to‘D

GD SD
GD Number of SD Number of
o(P) (P

.GD1 130 Sp1

GD2 \ Sb2, SD3

GD3 244 SDb4, SD5 244

GD4 sD6, SD7
sSD8, SD9 279
SD10 280

2
G/H’ “o/H G/’
(G:H'] = 4 [G:H'] = 2 [G:H'] = 1
GD1 z
| D,/C, D,/CZ D, /D,
(3)
sp1 :
o) Cov/Cy Cay/Ca Cav/Cov
Can/C1 Con/C2 Can/Con
X
GD2 Cov/Cs
SD2
C2h/'cs
(12) .
2n/C3
SD9 Y
c2v/cs
(15) N
D,/C}
%
Dy/Cy

16
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Anexcaﬂnpoea H A., KoueB H H. o ,»:'g‘f El7—90—397'
.0 mpo6neme 3KBHMBANIeHTHOCTH  IBETHBIX ! . '
rpynn P-tuna ' :

i

j AHannanpymTcﬂ BO 3MOXHbIE . onpeneneﬂnﬂ SKBHBaHEHTHOCTH
“I{Be THHIX KpHCTannorpaQqucxnx rpynn P-Tuna Ha Ga3e KoH- -
L€ MUK H30MOp®H3Ma FPyNn Kak mpeo6pasoBaHus MHOXECTS . :
_Hoxaaaﬂa B3aHMOCBA3L H NPUMEHHMOCTDh DPas3JIHYHBIX' KPHTEPHEB
B MaTemaanecxon KpHCTannorpa¢HH H @Hsnxe TBEpAOTO Tena.

Al
, Pa60Ta anonHeHa B ﬂaﬁopaTopnn Teopeanecxon mnanxn
OUAH . :

Tk
3

: Cooﬁménne_Oﬁs‘ennnennoroanmryfrd'anepnmxl ucchenoh\éﬂuﬁ. Ily6ua 1990 -

Py

Hepeeon aBTODOB

fof Theoret1cal Phys1cs, JINR =

”7Alexandr0va D. A., kotzev J N. "‘;1 lh:fch’El7r§0;39ltf
-0n’ the ‘Problem of - the Equivalence: e i
’of P- Type Permutational Colour Groups

An approach a1med at equ1valence classiflcatlon of

“P type colour ‘groups .is proposed It is based on the con-

cept of 1somorphlsms of groups’ as groups of transforma-'

tions of colour sets. The relation between:the proposed

approach and- those considering the colour groups as groups

‘subgroup pairs or subdirect products of SpxG is clarified
‘The' choice ‘of an appropriate. equ1valence criterion for

the purposes of the mathematical crystallography and so-

‘11d state phys1¢s 1s d1scussed T R e

: The investlgatlon has been performed at the Laboratory

ERges
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