


1. The study of the dynamics of a liquid drop is a problem
of self-dependent interest = with a wide variety of
applications. Beginning from Kelvin’s work related to 1863
{1], it continuously attracts attention of physicists.
Besides its natural exploitatidn and exploration, e.g., in
the physics of aerosols, the liquid drop model has been
. considerably developed in various phenomenological theories.
It has .been. successfully applied in the theory of a
gravitating sphere (see, e.g., [2,3]) as well as in the
collective model of atomic nuclei [4]. There are also
biophysical . applications of the model [5-7].  Lately, the
physics of microemulsions is of great interest [8,9]. As is
known, the microemulsions are formed after the surface active
substances (surfactants) are added into the mixture of two
liquid'cqmpqnents that are insoluble in each other (usually
oil ‘and water). At some critical concentration of the
surfactants the components after mixing yield a clear
solution of high stability. It consists of micelles ‘that are
the drops of one 1liquid (oil) in the other (water). The
envirohments of the liquids are saturated with the surface-
active molecules. Other objects of our interest will be
vesicles [10,11]: Vesicles appear in solutions of molecules
that have a tendency to form bilayer membranes. In the frame
of the phenomenological approach (if the surface layer or
bilayer is considered to be infinitely thin) the micelles and
vesicles can be studied simultaneously.

In this note, we shall be interested in the dynamical
properties of micelles and vesicles, namely, in the spectra
of the‘vibration modes connected with the interface between
the drops and the surrounding liquid. The relaxation of the
micelle and  vesicle surface form to its equilibrium
(spherical) one has been already investigated in [12,13]
where the dispersion law of the relaxation mode has been
calculated. However, as has been underlined in [14), these
calculations have been carried out using the incorrect
assumption of the constant area of the interface. It is
pointed out in [14] that in a correct consideration it is
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necessary to take into account dynamical equations both

for the displacement vector of the surface and the

concentration of - the surface-active molecules on this
surface. It 1is known that the coefficient of the micelle
surface tension is anomalously small in microemulsions and
the dependence of the surface energy density on the curvature
should be.taken into account [15]. In the recent work [16],
where the surface modes of fluid droplets are investigated in
detail, this dependence was not taken into account (note,
however, that in [16] the effects of surface viscosity and
compressibilfty have been  studied). In the mentioned work
(14], among all, nonlinear equations (boundary conditions)
have been'obtained to describe the dynamics of the micelles
and vesicles with the inclusion of the curvature energy and
_redistribution of the surfactant molecules on the micelle
surface. However, the linear surface modes have been found
after a number of approximations in a too simplified form.

In this

conditions for micelles and vesicles found in [14]. Solving

paper, we base on the 1linearized boundary
exactly the hydrodynamical problem for bulk viscous fluids
exterior and interior to the drop (in the linearized case for
incompressible fluids), we obtain an exact equation for the
frequency of the proper vibrations in the shape of micelles
and vesicles. This .equation gives wide possibilities for
analytical and numerical studies of the frequency spectra. To
demonstrafe it, we consider the limiting cases of i) the
weakly~damped capillary waves for a liquid drop without the
surfactant molecules; ii) the pure relaxation mode of the
surface micelle vibrations, and 1iii) the surface mode
connected with the redistribution of the surface active
molecules on the micelle surface. The obtained analytical
expressions make the formulae found in.[14] more preciée even
within the same degree of
obtained the

quantities.

accuracy. Moreover, we have

frequencies in the higher order of small

2. In the case of an extremely small surface tension
coefficient at the interface of two liquids, the dependence
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of the surface energy density €_ on the curvature must be
taken into account [15]. If R1 and R2 are the local curvature
radii, then the expansion of €, (which is symmetrical in R,
and R,) including the second order of 1/R is
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€= a-B[ %7 + %; } + g [ %r + %— } + Eﬁg— . (1)
The coefficients «,B8,k and k¥ are the functions of teﬁperature
and chemical potentials. If the dependence on the curvature
can be neglected, a is the usual surface tension coefficient.
The conditions k>0 and 2x+k>0 must be fulfilled to make the
function (1) positively defined. The gquantity g equals zefo
for vesicles and B>0 for micelles (the curvature radii are
measured from the interior to the exterior of the micelle).
The phenomenological analysis of the micelle formation shows
{14] that after the addition of surface active substance intoc
the oil-water‘mixture, the coefficient o decreases to the
value a=BZ/(2n+E). Then, the formation of the micelles with
the radii R =B/« begins. Such a picture is true if

]%T/Bn(2n+2)<<1, (2)

when the micelle distribution in radii has a sharp maximum
near R=R . The stability of the spherical micelle with
respect to small perturbations is ensured by the condition

o« = a-23/R0+K1(1+1)/R§ > 0. (3)

For micelles with the radii R=R_ this'also-giveS‘E<4K.>In
(3), R,
orbital number 1 appears after the expansion of the deviation

is the equilibrium radius of the micelle and the

R(6,¢)-R0 in spherical harmonics,
R(6,¢)-R) = u(6,9) = RY a, ()Y, (6,8). (4)
Im

The index m runs from ~1 to 1 and 'l changes from 1=2 to some
lmax~an/d where d is the mean interatomic distance [16,17]
(the mode 1=0 is excluded since by assumption the surface

encloses an incompressible fluid and there is no change in
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the total amount of the micelle material; 1=1 is also
excluded since it corresponds to motion of the center of mass
of the droplet). Thermal fluctuations of the surface form
which may play a significant'role for small B [18] and lead
to logarithmic corrections to «,8,k and k are not considered.
This is possible if the condition (2) is satisfied.

After .this necessary introduction we can formulate the
dynamical equations for the micelle surface quantities as
they have been found in {14]. In the linearized form (the
small quantities are u from (4), the deviation n! from the
equilibrium wvalue of the surfactant density n_, and the

sﬁrface velocity v®) they are as follows:

du _ _s (5)
3t = Vi
av*® A +2 KA
ro_ L B ) _ L]y = propr-n.? - (6)
ps at Rz [(a 2 2 ]u p1 P; 26r (nxvr1 n,v 2)’
[o] 0 RO
. 1 8 . . 8 1 8
with A = == sine—< + == AY =-1(1+1)Y ,
1 s1ne 48 a8 sinZe a0 m Im
ave an
) 1 8a “"s _ 1 8,
P73t " R. “on 38 R, FEANLRMRL A APY
a 1
+[5’f - 'ﬁ;] (=M, Vg, ¥M,Vg,) s (7)
s ’
i,i - 1 g.q_. ans = 1 __.a_(- v +Mn_v )
P.73 R sin6 an_ 3¢ R sind 3¢ T Ve1™MVe2
: f (8)
a 1
+['5E - 'ﬁ;]( M V1t MaVg,)
an’ n_ p . av’
8t R051n9[55 Sind vg + 567] =0 (9)

In these equations, P, is the mass density of the surface
s

)
velocity v®, p’ is the variable part of the pressure, and 7

layer, v:, v and v; are the components of the surface
is the constant shear viscosity. The indices ‘1’ and ‘2
relate the quantities to the bulk fluids interior and
exterior to the droplet. All variable quantities (after
differentiation) are related to r=R . In addition to (5)-(9),
the following condition must be satisfied at the interface:
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vV =v. =V at r=Ro. (10)

The detailed obtaining of (5)-(9) is given in [14]. We only
note that in these equations the flow of the surface-active
molecules to the micelle surface is neglected (this flow is -
connected with very slow diffusion processes). Small surface
kinetic terms are also omitted, which is true if the
‘condition (2) is satisfied. Due to the same reason, the terms
with o8/6n_  and &8k/dn_ are neglected. Finally, the
incompressibility of the bulk fluids is assumed (divv=0).
Note that there is no terms with k in the equations, which is
due to the invariance with respect to small variations of the
term proportional to k in the surface energy.

3. To obtain the solution of the above formulated problem,
one must know the distribution of the bulk fluids outside and
inside the drop. This means, in our case we have to solve the
linearized Navier-Stokes equation

av
3t

Av - % grad p’ 1 (11)

o3

in Dboth regions. As distinct from ([14], we follow
Chandrasekhar’s approach [3], that rallows us to obtain the
exact solution of (11). in a quite simple way. Namely, we
express the velocity as a sum of a poloidal and a toroidal

part as follows: v=v +v ,
pol tor

_ 18, 12 '
v, = )l:m[ee - R ] T (r,0)Y, (6,9), (z)
v =7 [etd¥) , o 1 ® , _1 * 1 (r,t)Y. (8,9)
pol ml T 2 6 r 0Jrae rsing drad¢ m 7 m e

(13)
Any poloidal field of the form (13) 1is orthogonal to any
toroidal field (12). Substituting (12) and (13) into (11) in
spherical coordinates, we obtain

(1) (2)

a _ () 1141 _ @_ "1 -1 _
LlTlm = 0, LIUlm + ——5: r = 0, LZUlm —p;r = 0, (14)



where the differential operator Ll reads

. n 2

-8 . M1+ a° .

L =35 +3 [——2 v 2], i=1,2, . (15)
1 r or -

and the solutions of the Laplace equation (it follows from

(11)) have been used

p, = LBZ1r 'ty . (16)

Im

' = (1) 1
)l:mlsl (1+1)r'y ,

(5)-(10) with the use of (4) can
be now rewrltten 1n terms of the functions T and U in the

After some transformations,

follow1ng form:

a, () =1(1+1)RU( (R, 1), (17)
- : -2_ (1) 1-1_ L (2);-1-2
pa + aa (1-1)(1+2)R *= B '’ (1+1)R, B," IR,
- 21(1+1)R; % (n,-n,) (3/8r-2/R )U ", (18)
-2, (1)
v, (t) = 1(1+1)R;%au !’ /er, (19)
(1) ‘ '
aT
Im _ 2 U) _g _ (1 (2)
P = Ro (n-n,) + gz (T 40T ), (20)
2.1 4
a’u 2 . :
Im da I 2 3 1(1+1) 1) (2)
Ps—at  ~ "san Vim [_—2 "R It T 2 ][—nlulm 10, ] :
s ar 0 -RO

(21)

After differentiation, r=R must be set in ‘these equations.

In (19) and (21), the expansion

n;'=n):v Y ‘ (22)

Im Im

the conditions (10)
(12) and (13) give the equatlons

has  been used. Moreover, together with

(1) ey
(R

S B=UZ (R E), T (R, ) =T (R, E),

suil? o
—r or T Ro (22)

Eqs}(l7)—(23) are the complete set of the equations necessary

to determine the frequency spectrum of the small micelle

surface vibrations. All poloidal quantities connected. with

the :velocity field will be considered to depend on time as’

exp(-iwt). The toroidal functions that are independent of thé
poloidal ones will be assumed to be proportiocnal to
exp(-iQt). That is, we suppose a“xt)=am(0)e4&n,and so on,
and T (r,£)=1" (r,0)e™. after substitution of U and T
into (14), we come to equations determining the .spherical

Bessel functions [19] with the following general solutions

finite as r-w:

ull(r,0)=cV'rj (z,)-iB V' *'/p 0,  osrsR,
(24)
m)(r 0)= c(m (s)(z )+1B r-l/pzw’ r=R ; z.—r(lwp /n )1/2
(1) (1)_ .
V(r,0)=p"r3 (z,),
(25)
(2) (2) 1/2

2 (r,0)=p>rn!'’ (z,)+£,2' rn*’ (z,), z =r(iQp /)

To exclude the exponential divergency as r-», we must use in
(24) s=1 for the function h‘”
choose the one with Re141w<0.

if from two roots iz ~141w,we
If the root with Re141w>0 is
chosen, one must set s=2.

As to the toroidal mode, 'note that in our problem it

i . N
1) contain no physical

is absent. Really, the egpations for T,
lead to
ReQ=0=ReidiIl. To exclude the dlvergency of T for large r,
we must set D:m ::K-o. Together -with (20}, (23) and (25)
this “3 (z,)=0 and “’[3 (2,)+2,3!(2,)=0.These
equations are compatlble with each other if D()

1multaneously'jl(zi) =0 and lel(zl) =0 with the only possible

(that is, Q=0) .

vibrations. So
&)

quantities which may surface

gives D!
=0 or, if

common root z =0 This proves our statement

. because in both cases there is no toroidal mode.

Combining (17)-(24), we after simple but

algebra to the

come some

following equations for

M from (24):

cumbersome

determination of the coefficients C



X C(l) + Y C(Z)

1m Im

= 0, z ¢+ wc? =o, (26)

Im Im

where (in what follows, r=R/ in zJ

Py Z, 3., %) 2
R T [2(1+2)P+p]—A]/w],
(1)
P2 Z, h,_,(2,) 2
Yoot o, [2(1—1“’ TR TR/ ]
h (z))
1 2
1z, j]+1(zl) 2
2 ;px T 2141 jl(zl) [2(l+2)P + ps/Ro + nl/w ]
(1)
h (z
_ 141 %22M-11%; 2
W=-p, = 3171 (1) [2(1—1)P - P/Ry — nl/&)]' (27)
) h "~ (z,)
Here, we have denoted
= -3 da -
A = a (1-1) (1+2)R77, n, = np 1(1+1)R°3,
P, P, P p, P
PRET YT TR P”;*; (28)
1 2

It is assumed that from two above mentioned roots i{iw the
root is chosen for which ReidJw<0. The second root does not
change (27) due to the property h:m(—z)=(—1)lh?)(z) [19}.
The condition of nontrivial solvability of (26) leads to the

equation

XW-YZ=o0. _ (29)

This is the main result of the paper. Eq.(29) is the equation
for determination of the propef frequencies of the surface
vibrations of the considered liquid drops. Within the linear
approximation this equation is exact giving wide
possibilities for both numerical and analytical analysis.

4. Let us consider a few simple examples of the application
of eq.(29). For the beginning, we ‘give asymptotic expressions

for the Bessel. functions jl(z) and hr)(z) [19] we shall use:

2
. 4 4
jl - 21+3[1+ (21+3) (21+5) +"']'

2

1+1 2 VA . .
o 21_l[1+ 21-3) (21-D) +;..], for |z|<<1, (30)
1
(1)
3 h -
s 41 Ry R l‘+..., if |z|>>1. (31)
3, z . R z

1

i) consider the spectrum of the capillary waves of the
ligquid drop. We will neglect the quantities p_ and n but,
contrary to [14], no additional conditions will be used as to
the velocity distribution of the bulk fluids. Substituting
the asymptotics (31) for Izh2|>>1 into (27) and keeping in
(29) only the terms of the order z, we obtain in the first
approximation the well-known result [1] (if o is replaced by
o in (28)) :

2_
w, = Al/pl. (32)

In the next approximation we retain in (29) the terms of the
orders z and 1 (then in X and Y the terms ~1 and ~z and,
correspondingly, in 2 and W the terms ~1 and ~1/z should be
retained; this means that, contrary to [14], the viscosity
terms in (6)-(8) must also be taken into account in such an

approximation). The equation for w then reads

[w2 _ wz][(—iw)l/za + b] = w§(21+1)/1(1+i), . (33)

with A :
= Ropltl/jlp,n; + }/49_2n2],

o
|

o
|

(p,-p,) /P p 20 (n-n,) /4B P07,

For vesicles, the quantity b equals zero identically. For our
liquid drop we have |b|<<|alw|. Representing

w = w (1+4),  |A[<<l, : (34)
and substituting it into (33), we obtain in the first
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app+vadllidedlull
-

2
A=3 —{ﬁ:i; [b-adu 72 (1-1) 7. (34a)
It has been already taken into account here that Red=1w<0.
Note that these weakly damping capillary waves differ from
the result ([14] even in the most rough approximation
corresponding to b=0.

ii) Now, consider the opposite case |zh2|<<1 that seems to
take place for micelles. Neglected p_ and n and keeping in
(29) the terms of the orders 1 and zz, we obtain the
following quadratic equation with respect to w:

q,p, 1(1+2)
n,  (21+3) (21+5)

(21+1) (1, +0,) [p, (1+1) +p,11+2 (n,=n,) |

_ PP, 1%-1 P g, _ ) -2
n, (21-3) (21-1) t1 e =A (n +1,)1(1+1) (21+1)w ", (35)
o]

with pl='n1(212+41+3)+n221(l+2) and ql='n12(12—1)+n2(212+1).

It is not difficult to solve and discuss this ‘equation.
Depending on the determinant of the quadratic equation one
can obtain the solutions of various characters. We oﬁit here
such an analysis that is connected with concrete values of
the dquantities entering into (35) and write down only the
case when the first term in (35) can be neglected. Then,
analogously as in [14], we obtain the pure.relaxation mode,
however, its analytical expression differs from that in [14]:

w -iAlel(l+1) (2141) (n,+7,)/p q, - (36)

iii) The last example will be the situation when the main
role in egs.(27)-(29) is played by the quantities connected
with the surface -active substance. We consider the case for
which the surface vibration frequency ®w is much larger than
w, from i). Then we can neglect Al/w2 in comparison with P,
We also will not take into account pJQ% and obtain w for

.12, ,1>>1. Retaining in (29) the terms of the order 2° and z,
the equation for determination of w is

10

2 ) — ———-. . N 172 p1
wp (dpn+p 1)+ (-iw) "R p 0 -n [p-4p2n2+

10
5 p

P, __
—p 7 ]= 0.

1 (37)
The solutions of this fourth degree equation can be easily
obtained. If the last term 'in (37) is neglected, we find the °
following solution that coincides with the result from [14]
(this is the only case when our result fully coincides with
[l4]3):

[H) =
o]

oI

(#43-1)1-Rpn, /(B +H 5, 1) 7. - (38)

However, (38) is true only if the quantity

2|p 2

p=2 Py, P2 Ap + Ay (39)
- §.p W2LP, P, P, Py | ey Py, ]
1%

obeys the condition |]A|<<l. The first correction to the
solution (38) has the form w=wo(1+A). This surface mode is
connected with the redistribution of surface-active molecules
on the micelle 'surface. The freqguency of this mode possesses
real and imaginary parts of. the same order of magnitude. Note
that distinctions of the results i) and ii) from [14] are due
to approximate solutions of the dynamical equations given in
Section 2 and apprbximate calculations of the velocity
distribution that have been used in [14].

5. Thus, with the use of linear dynamical equations of the
phenomenological - theory developed by Lebedev and Muratov [14]
for the surface vibrations of micelles and vesicles and
applying the exact solution of the 1linear hydrodynamic
problem. for incompressible bulk fluids inside and outside the
drop, the exact equation for the frequency spectrum has been
obtained. The redistribution of the surfactant molecules on
the miceile surface has been taken into account as well as
the influence'of the surface layer mass density. The obtained
equation gives many possibilities for the analysis of the
speétra and further comp&riéon with experiments, e.g., light
or neutron scattering, neutron spin-echo studies [26] and
others. To demonstrate it, we have considered a few'simple
examples such as the weakly-damped capillary waves of a
liquid drop, the relaxation mode of the micelle and the mode
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connected with the redistribution of the surface-active
molécules. The obtained analytical expressions make the
recent results [14] more precise ’
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"MHLEJT U BEe3HKYI

- T'MH OT KPHMBH3HbI, IJlonyyeHHOe ypaBHeHHE HCINOJb30BaHO O’

HUAX ,

OUAN .

Juckm B,

: E17-90-390
0 cnexTpax nOBepPXHOCTHBIX KOJIE6aHHH ‘

B paMkax nuHeitHoH ¢eHoOMeHosiOrHueckoit Teopuu Jlebenesa
H MypaToBa HaiileHO TOYHOoe ypaBHeHHE Ay COGCTBEHHBLX mMo-
BEPXHOCTHBIX MOZ MHUeJT U Bes3ukyn, TeopHs yuuThBaer nepe-
pacnpepfeijleHHe MOBEePXHOCTHO—-aKTHBHOI'O BelleCTBa Ha NnoBepx=-
HOCTH MHLEeJ/JIN U 33BHCHMOCTb IUIOTHOCTH IIOBEPXHOCTHOI 3Hep-|

GoJlee TOYHBIX, IO CPaBHEHHI0 C paHee H3BECTHbIMH, BEIYHCIIEHHI
CNeKTPOB ITOBEDPXHOCTHBIX KOJIe6aHHH B pas’MyHBIX IPHEIIHXE-

PaboTa BhimonlHeHa B JlaGopaTopuH TeopeTHYECKOH (GH3HMKH

Ipenpiut O6bexMHEHHOrO HHCTHTYTA ANEPHBIX Uccenopanmii. [ly6na 1990
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Within the linear approximation of the recent:'Lebedev
and Muratov’s phenomenological theory an exact equation
for the proper surface modes of spherical micelles and
vesicles is obtained. The theory takes into account the
redistribution of the surfactant molecules on the micelle
surface and the dependence on the curvature. The equation
found allowed us to calculate the surface vibration spec-
tra in various approximations more precisely if compared
with the previously known results. "
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