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1. The study of the dynamics of a liquid drop is a problem 

of self-dependent interest with a wide variety of 

applications. Beginning from Kelvin's work related to 1863 

(1), it continuously attracts attention of physicists. 

Besides its natural exploitation and exploration, e.g., in 

the physics of aerosols, the liquid drop model has been 

considerably developed in various phenomenological theories. 

It has .been successfully applied in the theory of a 

gravitating _sphere (see, e.g., (2,3)) as well as in the 

collective model of atomic. nuclei (4). There are also 

biophysical applications of the model (5-7). · Lately, the 

physics of microemulsions is of great interest '[ 8, 9 ]'. As is 

known, the microemulsions are formed after the surface active 

substances (surfactants) are added into the mixture of two 

liquid comp~nents that are insoluble in each other (~sually 

oil and water). At some critical concentration of the 

surfactapts the components after mixing yield a clear 

solution p~high stability. It consists of micelles ·that are 

the drops of one liquid (oil) in the other (water) • The 

environments of the liquids are saturated with the surface

active molecules. Other objects of our interest will be 

vesicles (10,11). Vesicles appear in solutions of molecules 

that have a tendency to form bilayer membranes. In the frame 

of the phenomenological approach ( if _the surface layer or 

bilayer is ~onsidered to be infinitely thin) the micelles and 

vesicles can be studied simultaneously. 

In this note, we shall be interested . in the dynamical 

properties of micelles and vesicles, namely, in the spectra 

of the vibration modes connected with the interface between 

the drops and the surrounding liquid. The relaxation of the 

micelle and . vesicle surface form to its 

investigated 

equilibrium 

in [12,13) (spherical) one has been already 

where the dispersion law of the relaxation mode has been 

calculated. However, as has been underlined in [14), these 

calculations have been carried out using the incorrect 

assumption of the constant area of the interface. It is 

pointed out in [ 14) that in a correct consideration it is 
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account 

vector of 

dynamical equations 

the surface and 

necessary to take into 

for the displacement 

concentration of the surface-active molecules on 

both 

the 

this 

surface. It is known that the coefficient of the micelle 

surface tension is anomalously small in microemulsions and 

the dependence of the surface energy density on the curvature 

should be taken into account [15). In the recent work [16), 

where the surface modes of fluid droplets are investigated in 

detail, this dependence was not taken into account (note, 

however, that in [ 16 J the effects of surface viscosity and 

compressibility have been studied). In the mentioned work 

[14), among all, nonlinear equations (boundary conditions) 

have been obtained to describe the dynamics of the micelles 

and vesicles with the inclusion of the curvature 'energy and 

redistribution of the surfactant molecules on the micelle 

surface. However, the linear surface modes have been found 

after a number of approximations in a too simplified f~rm. 

In this paper, we base on the linearized boundary 

conditions. for micelles and vesicles found in [14). Solving 

exactly the hydrodynamical problem for · bulk viscous fluids 

exterior and interior to the drop (in the linearized case for 

incompressible fluids), we obtain an exact equation for the 

frequency of the proper vibrations in the shape of micelles 

and vesicles. This equation gives wide · possibilities for 

analytical and numerical studies of the frequency spectra. To 

demonstrate it, we consider the limiting cases of i) the 

weakly-damped capillary waves for a liquid drop without the 

surfactant molecules; ii) the pure relaxation mode of the 

surface micelle vibrations, and iii) the surface mode 

connected with the redistribution of the surface active 

molecules on the micelle surface. The obtained analytical 

expressions make the formulae found in.[14) more precise even 

w~thin the same degree of accuracy. Moreover, we have 

obtained the frequencies in the higher order of small 

quantities. 

2. In the case of an extremely small surface tension 

coefficient at the interface of two liquids, the dependence 
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of the surface energy density cs on the curvature must be 

taken into ac_count [ 15 J • If R
1 

and R
2 

are the local curvature 

radii, then the expansion of c (which is symmetrical in R 
s .1 

and R
2

) including the second order of 1/R is 

( 1 1 ) K ( 1 1 ·)
2 

K C = cx-{3 - + - + - - + - + --
s R R 2 R R RR 

1 2 1 2 12 
(1) 

The coefficients o:,{3,K and Kare the functions of temperature 

and chemical potentials. If the dependence on the curvature 

can be neglected, o: is the usual surface tension coefficient. 

The conditions K>O and 2K+K>O must be fulfilled to make the 

function (1) positively defined. The quantity f3 equals zero 

for vesicles and {3>0 for micelles (the curvature radii are 

measured from the interior to the exterior of the micelle). 

The phenomenological analysis of the micelle formation shows 

[14) that after the addition of surface active substance into 

the oil-water· mixture, the coefficient o: decreases to the 

value o:={3
2

/ (2K+K) . Then, the formation of the micelles with 

the radii R ={3/o: begins. Such a picture is true if 
m 

k T/8rr(2K+K)<<l, 
B 

(2) 

when the micelle distribution in radii has a sharp maximum 

near R=R. The stability of the spherical micelle with 
m 

respect ~o small perturbations js ensured by the condition 

ex = o:-2{3/R +Kl(l+l)/R2 > O. 
I O 0 

(3) 

For micelles with the radii R=R this also gives K<4K. In . m 

(3), R
0 

is the equilibrium radius of the micelle and the 

orbital number 1 appears after the expansion of the deviation 

R(0,¢)-R
0 

in spherical harmonics, 

R(0,¢)-R = u(e,¢) = R [ a (t)Y (0,¢). 
0 0 Im Im 

(4) 
Im 

The index m runs from -1 to 1 and 1 changes from 1=2 to some 

1 -rrR /d where d is the mean interatomic distance [ 16, 17] max o 
(the mode l=O is excluded since by assumption the surface 

encloses an incompressible fluid and there is no change in 
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the total amount of the micelle materia~; .l=l is also 

excluded s_ince it corresponds to motion of the center of mass 

of the droplet) . Thermal fluctuations of the surface form 

which may play a significant role for small~ (18] and lead 

to logarithmic corrections to a,~,K and Kare not considered. 

This is possible if the condition (2) is satisfied. 

After . this necessary introduction we can formulate the 

dynamical equations for the micelle surface quantities as 

they have been found in (14]. In the linearized form (the 

small quantities are u from ( 4) , the deviation n' from the 
s 

equilibrium value of the surfactant density n , and the 
. s 

surface velocity vs) they are as follows: 

avs b.+2[( ~) r __ .L_ a-2-
Ps-"af R2 Ro 

0 

au_ 
at -

Kh. ] - .L --- u 
R2 

0 

s 
V , 

r 

'- '-2~ V - V ) pl P2 ar (nl rl n2 r2 ' 

(5) 

(6) 

with 1 a . a 1 
ti.= -----e ae sineae + ----

.L sin sin2e 
a 

ae ' t,..Lylm=-l(l+l)Ylm' 

av; 1 aa ans' 1 a 
Ps-"af - R an ae = R ae<-nlvrl+n2vr2) 

0 s 0 

+(a; - ~
0

) (-n1ve1+n2ve2>' 

av; 1 aa an: 1 a 
Ps-"af - R sine 8n ~ = R sine a¢<-nlvrl+n2vr2) 

0 s 0 

an' n 
s s [a. s 

at + R sine ae sine ve 
0 -

+(a; 
s 

av¢_] = o. +~ 

- .!_) - V + V R <n1¢1n2¢2>' 
0 

(7) 

(8) 

(9) 

In these equations, p is the mass density of the surface 
s 

layer, v:, v; and v; are the components of the surface 

velocity vs, p' is the _variable part of the·pressure, and n 

is the constant shear viscosity. The in.dices 'l' and '2' 

relate the quantities to the bulk fluids interior and 

exterior to the droplet. All variable · quantities (after 

differentiation) are related to r=R
0

• In addition to (5)-(9), 

the following condition must be satisfied at the interface: 
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V = V V 
1 2 

s at r=R . 
0 

( 10) 

The detailed obtaining of (5)-(9) is given in (14]. We only 

note that in these equations the flow of the surface-active 

molecules to the micelle surface is neglected (this flow is 

connected with very slow diffusion processes). Small surface 

kinetic terms are also omitted, which is true if the 

condition (2) is satisfied. Due to the same reason, the terms 

with a~/an and aK/an are neglected. Finally, the 
s s . 

incompressibility of the bulk fluids is assumed (divv=0). 

Note that there is no terms with Kin the equations, which is 

due to the invariance with respect to small variations of the 

term proportional to Kin the surface energy. 

3. To obtain the solution of the above formulated problem, 

one must know the distr.ibution of the bulk fluids outside and 

inside the drop. This means, in our case we have to solve the 

linearized Navier-Stokes equation 

av_ 
at - 21 ti.v - .! grad p' p p ' (11) 

in both reg ions. As distinct from ( 14] , we follow 

Chandrasekhar's approach (3], that ·allows us to obtain the 

exact solution of (11) in a quite simple way. Namely, we 

express the velocity as a sum of a poloidal and a toroidal 

part as follows: v = v +v , pol tor 

V =[[e ~~- _! a] tor Im e rsine a¢ e¢ r ae Tlm(r,t)Ylm(e,¢), (12) 

_ [ 1 (l+l) 1 a2 
1 a2 

] 
vpol- Lim er r2 + ee r arae + rsine ara¢ ulm(r,t)Ylm(e,¢) • 

(13) 

Any poloidal field of the form ( 13) is orthogonal to any 

toroidal field (12). Substituting (12) and (13) into (11) in 

spherical coordinates, we obtain 

L TO> 
I Im o, 

B Ill 
L u<l>+ _1_ rl ♦ l 

1 Im p
1 

o, 
B <2> 

L u121 - - 1 r- 1 = o (14) 
2 Im P2 , 
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where the differential operator L
1 

reads 

L = _£. + Tl 1 [l ( l+ 1) _ ~] 
1 at p I r2 ar2 ' 

i=l,2, (15) 

and the solutions of the Laplace equation (it follows from 

(11)) have been used 

p' = [ B111 (l+l) r 1Y , 1 I Im Im 
p' = '"'B121 1 -1-1 

2 L.. J r y • 
Im Im 

( 16) 

After some transformations, (5)-(10) with the use of (4) can 

be now rewritten in terms of the functions T and u in the 

following form: 

a (t) =l(l+l)R- 3 U111 (R ,t), Im O Im 0 
(17) 

Pa + ex a (l-1).(1+2)R- 2= B 1
1l (l+l)R 1- 1- B121 1R_1_2 

s Im I Im O I O I 0 

2l(l+l)R- 3 (Tl -T) ) (a/ar-2/R )U 111 , 
0 1 2 0 Im (18) 

V (t) = l(l+l)R- 2au 111 /ar, Im O Im (19) 

8T 11 > 
Im 2 (1) 8 Ill (2) 

Psat= R
0

Tlm (T11-T12) + 8r(-T11T1m +T)2T1m ), ( 20) 

2 (1) 
a Ulm 

PS~ 
acx 

n -- V = 
s 8n Im 

s 
( a: -
ar 

~ ~ +. 1 (l+l) )·(-Tl u<1>+11 u<2 >). 
R

0 
Br · R2 t Im · 2 Im · 

o (21) 

After differentiation, r=R must be ·set in these equations. 
0 . 

In (19) ~nd (21), the expansion 

n~ = ns[ Vlmylm (22) 

has been used. Moreover, the conditions (10) together with 

(12) and (13) give the equations 

U111 (R t) =U 121 (R t) TCll (R t) =T 121 (R t) 
Im O I Im O ' ' Im O ' Im O' ' 

au< 1 1 au 121 
Im Im 

ar ar 

6 

,r=R 0. (23) 

!] 

I 

/) 
\j 
I 

Eqs. (17)-(23) are the complete_ set of the equations necessary 

to determine the frequency spectrum of the small micelle 

surface vibrations. All poloidal quantities connected with 

the ,velocity field will be considered to depend on time as 

exp(-iwt). The toroidal functions that are independent of the 

poloidal ones will be assumed ~o be proportional to 

exp(-iQt). That is, we suppose a ·(t)=a (O)e-iwt,and so on, 
Im Im 

and T 01 (r,t)=T 111 (r;O)e-10t. After substitution of U and T Im Im 
into ( 14) , we come to equations determining the spherical 

Bessel functions [ 19] with the following general solutions 

finite as r➔o:i: 

U111 (r,O)=C 111 rj (z )-i{3 111 r 1
•

1;p w, Im Im I 1 I 1 

u 121 (r O)=C 121 rh(s) (z )+i{3 121 r- 1/p W 
Im I Im I 2 · I 2 1 

T 111 (r 0) =D 111 rj (Z ) Im I Im I 1 1 

T121 (r O)=D 121 rh111 (Z )+E 121 rh 121 (Z ) Im I Im I 2 Im I 2 1 

O:sr:sR
0

, 

(24) 

( 
, '; ) 1 / 2 r2:R

0 
; z i =r 1.wp 1 1} 

1 
; 

(25) 

Zl=r(iQpl/T)l)l/2• 

To exclude the exponential divergency as r➔o:i, we must use 

( h . t. h 111 . f t t . . ,...-24) s=l forte func 1.on 1.f rom wo roes 1.z -1."ll.W 
· I 2 

in 

we 

choose the one with Rei~Iw<O. If the root with Rei~Iw>O is 

chose_n, one must set s=2. 

As to the toroidal mode, · note that 

is absent. Really, the eqµations for T 01 
. Im 

in our problem it 

contain no physical 

quantities which may lead to surface vibrations. So 

ReQ=O=Rei~ ill. To exclude the di vergency of T 121 for large r, Im , 
we must set o121 =E 121 =o. Together with (20), (23) and (25) Im Im 
this gives o111 j (Z )=O and D111 [j (Z )+Z j' (Z )=O.These 

Im I 1 Im I 1 1 I( 1 
equations are compatible with ea.ch other if D 11 =0 or, if Im 
simultaneously j ( z ) =O and Z j ( z ) =O with the only possible 

I 1 1 I 1 

common root z =O 
1 

(that is, Cl=O). This proves our statement 

because in both cases there is no toroidal mode. 

Combining (17)-(24), we come after some simple but 

cumbersome algebra to the following equations for 

determination of the coefficients c01 from (24): 
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x c 111 + Y c 121 = o 
Im Im ' 

z c 0
> + w c 121 = o, 

Im Im 

where (in what follows,. r=R
0 

in z
1

) 

X 
pl 
1 

z . 
1 Jl+l(Zl)[ 

21 + 1 J < z > 2 ( 1+ 2) P + P - A / w 
2
] 

I 1 I I ' 

P 2 z h 111 (z ) 
Y=--+--2 1-1 2 [ ] 

l+l 21+1 < 1 > 2 (l-1) p - p + A /w2 
h (z ) 1 1 , 

I 2 

lz j <z , 
z _ p 1 I+ 1 1 [ 2] - 1 - 21+1 J (Z > 2(1+2)P + p/R + n /w 

I 1 s O I 

z h < 1 > ( 
W - l+l 2 1-1 z2) [ ] --p2-21+1 <t> 2(1-l)P-p/R -n/w

2
. 

h (z ) s o 1 
I 2 

Here, we have denoted 

A1 = a:1 (1-1) (1+2)R~
3

, 
acx -3 

n 1 = nsan l(l+l)R
0

, 
s 

pl P2 p s pl p2 
P1 = r + 1+1 + R' P= -+ -2 2 

0 z z· 1 2 

( 26) 

(27) 

(28) 

It is assumed that from two above mentioned roots i:.J Iw the 

root is chosen for which Rei:.Jiw<O. The second root does not 

change (27) due to the property h:
21 

(-z)=(-1) 
1
h;i> (z) [19). 

The condition of nontrivial solvability of (26) leads to the 

equation 

X W - Y Z = o. (29) 

This is the main result of the paper. Eq.(29) is the equation 

for determination of the proper frequencies of the surface 

vibrations of the considered liquid drops. Within the linear 

approximation this equation is exact giving_ wide 

possibilities for both numerical and analytical analysis. 

4. Let us consider a few simple examples of the application 

of eq.(29). For the beginning, we 'give asymptotic expressions 

for the Bessel.functions j (z) and hc1,(z) [19) we shall use: 
I I 

8 

I j I +1 ~ Z [ + z
2 

T - 21+3 1 c21+3> c21+s> 
+ ... ], 

h <1> 2 
+,-. ·], I +1 ~, Z [ + z for lzl<<l, 

h <t> -21-1 l (21-3) (21-1) 
I 

(30) 

j h c 1 l 
1+1 ~ ·+ l+l + . I - 1 . 1. if I z I >>1. ~-l. -z- ... , ~ ~ J.+ z + ... , 

I 

(31) 

i) Consider the spectrum of the capillary waves of the 

liquid drop. We will neglect the quantities p and n but, 
s I 

contrary to [14), no additional conditions will be used as to 

the velocity. distribution of the bulk fluids. Substituting 

the asymptotics (31) for I z I >>1 into (27) and keeping in 
1, 2 

(29) only the terms of_ the order z, we obtain in the first 

approximation the well-known result [1] (if a: 1 is replaced by 

ex in (28)) 

w
2 = A /p . 
0 I I 

(32) 

In the next approximation we retain in (29) the terms of the 

orders z and 1 (then in X and Y the terms -1 and -z and, 

correspondingly, in Zand W the terms -1 and -1/z should be 

retained: this means that, contrary to [14), the viscosity 

terms in (6)-(8) must also be taken into account in such an 

approximation). The equation for w then reads 

2 2 ,1/2 2 
[w - WO] [ (-J.W) a + b] = wo(21+1)/l(l+l), (33) 

with 
a = Rop1[l/:.Jp11J1 + l/:.Jp21J2]' 

b = (p1-P)
2
/P1P2+ 2P1 (1J1-7J2)/:.Jp1p27j17)2. 

For vesicles, the quantity b equals zero identically. For our 

liquid drop we have lbl<<la~wl. Representing 

w"' w
0

(1+li), ltil«l, (34) 

and substituting it into (33), we obtain in the first 
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approx1.mac.1.on 

/J. 
2 -1 1 (21+1) [b-a1w /2 (1-i)] 2 1(1+1) 0 (34a) 

It has been already taken into account here that Re1=Iw<o. 

Note that these weakly damping capillary waves differ from 

the result [14) even in the most rough approximation 
corresponding to b=O. 

ii) Now, consider the opposite case lz l<<l that seems to 1,2 
take place for micelles. Neglected p and n and keeping in 

s I 

(29) the terms of the orders 1 and z2, we obtain the 

following quadratic equation with respect tow: 

. [qlpl 1(1+2) 
(21+1) (111+112) [pl (l+l)+p21]+2(1J1-1J2) ~ (21+3) (21+5) 

p Ip 2 1 2 -1 ] , p I q I . -2 
- -11- (21-3) (21-1) + l.--2 = Al (111+112)1(1+1) (2l+l)w , (35) 

2 WR 
0 

with p =11 (21
2
+41+3)+7J 21(1+2) and q =11 2(12-1)+11 (212+1). 

I 1 2 I 1 2 

It is not difficult to solve and discuss this equation. 

Depending on the determinant of the quadratic equat.ion one 

can obtain the solutions of various characters. We omit here 

such an analysis that is connected with concrete values of 

the quantities entering into (35) and write down only the 

case when the first term in (35) can be neglected. Then, 

analogously as in (14), we obtain the pure relaxation mode, 

however, its analytical expression differs from that in (14]: 

W "' -iA R
2
1 (l+l) (21+1) (11 +11 ) /p

1
q

1 
• 

I O 1 2 
(36) 

iii) The last example will be the situation when the main 

role in eqs.(27)-(29) is played by the quantities connected 

with the surface -active substance. We consider the case for 

which the surface vibration frequency w is much larger than 

w0 from i). Then we can neglect A /w2 in comparison with p • 
I I 

We also will not take into account p /R and obtain w for 
s 0 

· .. lz1,2 l>>l. Retaining in (29) the terms of the order z2 and z, 
the"equation for determination of w is 

10 

2 · -- _-_ , 1/2 (pl -- P2 --J 
wpl(1p1111+1p211)+(-1.w) ROplnl-nl p;p2112+~p1111 = o. 

(37) 

The solutions of this fourth degree equation can be easily 

obtained. If the last term in (37) is ne9lected, we find the 

following solution that coincides with the result from [14) 

(this is the only case when our result fully coincides with 

[ 14] ) : 
1 - . -- 1-- 2/J 

WO= 2(±13-1.),-Ron/[1p1111+ P2112]} . (38) 

However, (38) is true only if the quantity 

n [P P ] _ 2 I ~-- ~-- 1-- 1-- -1 
/J. - 3 --2 p P2112 + p pl 111 [ pl 111 + P27J2] 

•p
1
w

0 
2 1 

(39) 

obeys the condition l~l<<l. The first correction to the 

solution (38) has the form w=w (l+L'i). This surface mode is 
0 

connected with the redistribution of surface-active molecules 

on the micelle surface. The frequency of this mode possess~s 

real and imaginary parts of.the same order of magnitude. Note 

that distinctions of the results i) and ii) from [14) are due 

to approximate solutions of the dynamical equations given in 

Section 2 and approximate caiculations of the velocity 

distribution that have been used in [14). 

5. Thus, with the use of linear dynamical equations of the 

phenomenological theory developed by Lebedev and Muratov [14] 

for the surface vibrations of micelles· and vesicles and 

applying the exact solution of the linear hydrodynamic 

problem for incompressible bulk fluids inside and outside the 

drop, the exact equation for the frequency spectrum has been 

obtained. The redistribution of the surfactant molecules on 

the micelle surface has been taken into account as well as 

the influence•of the surface layer mass density. The obtained 

equation gives many possibilities for the analysis of the . . 
spectra and further comparison with experiments, e.g., light 

or neutron scattering, neutron · spin-echo studies ( 2'0) and 

others. To demonstrate it, we have considered a few simple 

examples such as the weakly-damped capillary waves of a 

liquid drop, the relaxation mode of the micelle and the mode 
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connected with the redistribution of the surface-active 

molecules. The obtained analytical expressions make the 

recent results [14) more precise. 
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J1HCbI B. 
0 cneKTpax nqBepXHOCTHbIX Kone6aHHH 
MH~enn H Be3HKyn 

Ell-90-390 

B paMKax nHHeHHOH ~eHOMeHonorHqeCKOH TeopHH J1e6eAeBa 
H MypaToBa HaHAeHo TOqHoe ypaBHeH~e AnH co6cTBeHHbIX no
BepxHoCTHbIX MOA MH~enn H Be3HKyn, TeopHH yqHTbIBaeT nepe
pacnpeAeneHHe noBepxHocTHo-aKTHBHoro Be~ecTBa Ha noBepx
HocTH MH~emibI H 3aBHCHMOCTb IlnOTHOCTH noBepXHOCTHOH 3Hep 
rHH OT ~PHBH3Hbl, IlonyqeHHoe ypaBHeHHe Hcnonb3OBaHO AnH' 
6onee TOqHbIX, no cpaBHeHHIO C pattee H3BecTHbIMH, BbiqHcneHHH 
cneKTPOB noBep~HOCTHbIX Kone6aHHH B pa3nHqHbIX npH6nH~e~ 
HHHX, 

Pa6oTa BbinonHeHa l3 J1a6opaTOpHH TeopeTHqecKOH ~H3HKH 
mum. 
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Within the linear approximation of the recent~·Lebedev · 
and Muratov·s phenomenological theory an exact equation 
for· the proper surface modes of ·spherical micelles and· 
vesicles is obtained. The theory takes into account the 
redistribution of the surfactant molecules on the micelle 
surface and the dependence on the curvature. The equation 
found allowed us to calculate the surface vibration spec
tra in various approximations more precisely if compared 
with the previously known results. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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